CSE544
Data Management

Lecture 3
Schema Normalization
Announcements

- Monday: no class (MLK day)
- Tuesday: project groups due
- Wednesday: first review due
- Next Saturday: homework 1 due
 - git pull # just in case
 - git commit --a --m 'your message here'
 - git push
Database Design

• The relational model is great, but how do I design my database schema?
Outline

• Conceptual db design: entity-relationship model

• Problematic database designs

• Functional dependencies

• Normal forms and schema normalization
Conceptual Schema Design

Conceptual Model:

Relational Model: plus FD’s (FD = functional dependency)

Normalization: Eliminates anomalies
Entity-Relationship Diagram

Attributes
- name

Entity sets
- Patient

Relationship sets
- patient_of
Entity-Relationship Diagram

Attributes
- name

Entity sets
- Patient

Relationship sets
- patient_of

Doctor

Patient
Entity-Relationship Diagram

Patient
- **Attributes**
 - name
 - zip
- **Entity sets**

Doctor
- **Attributes**
 - dno
 - specialty
 - name
- **Entity sets**

Relationship sets
- patient_of
Entity-Relationship Diagram

Patient

- name
- pno
- zip

Doctor

- dno
- specialty
- name

Attributes
- name

Entity sets
- Patient

Relationship sets
- patient_of
Entity-Relationship Relationship Diagram

Attributes
- name

Entity sets
- Patient

Relationship sets
- patient_of

Entity sets
- Patient

Relationship sets
- patient_of
Entity-Relationship Model

- Typically, each entity has a key
- ER relationships can include multiplicity
 - One-to-one, one-to-many, etc.
 - Indicated with arrows
- Can model multi-way relationships
- Can model subclasses
- And more...
E/R To Relations

Patient
- **pno**: P311
- **name**: Alice
- **zip**: 98765

Doctor
- **dno**: D007
- **name**: Bob
- **spec**: cardio

Patient_of
- **pno**: P311
- **dno**: D007
- **since**: 2001

Patient

<table>
<thead>
<tr>
<th>pno</th>
<th>name</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>P311</td>
<td>Alice</td>
<td>98765</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patient_of

<table>
<thead>
<tr>
<th>pno</th>
<th>dno</th>
<th>since</th>
</tr>
</thead>
<tbody>
<tr>
<td>P311</td>
<td>D007</td>
<td>2001</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doctor

<table>
<thead>
<tr>
<th>dno</th>
<th>name</th>
<th>spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>D007</td>
<td>Bob</td>
<td>cardio</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notice Many-One Relationship

Patient

<table>
<thead>
<tr>
<th>pno</th>
<th>name</th>
<th>zip</th>
<th>dno</th>
<th>since</th>
</tr>
</thead>
<tbody>
<tr>
<td>P311</td>
<td>Alice</td>
<td>98765</td>
<td>D007</td>
<td>2001</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doctor

<table>
<thead>
<tr>
<th>dno</th>
<th>name</th>
<th>spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>D007</td>
<td>Bob</td>
<td>cardio</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subclasses to Relations

Product

- isa - Software Product
 - platforms
- isa - Educational Product
 - Age Group

- name
- category
- price
Subclasses to Relations

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>
Subclasses to Relations

<table>
<thead>
<tr>
<th>Product</th>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
<td></td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
<td></td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sw.Product</th>
<th>Name</th>
<th>platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td></td>
<td>unix</td>
</tr>
</tbody>
</table>
Subclasses to Relations

Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>

Software Product

<table>
<thead>
<tr>
<th>Name</th>
<th>platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>unix</td>
</tr>
</tbody>
</table>

Educational Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>toddler</td>
</tr>
<tr>
<td>Toy</td>
<td>senior</td>
</tr>
</tbody>
</table>
E/R Diagram to Relations

• Each entity set becomes a relation with a key

• Each relationship set becomes a relation with foreign keys except many-one relationships: just add a fk

• Each isA relationship becomes another relation, with both a key and foreign key
Outline

• Conceptual db design: entity-relationship model

• Problematic database designs

• Functional dependencies

• Normal forms and schema normalization
Relational Schema Design

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

One person may have multiple phones, but lives in only one city.

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?
Relational Schema Design

Anomalies:

- **Redundancy** = repeat data for Fred
- **Update anomalies** = what if Fred moves to “Bellevue”?
- **Deletion anomalies** = what if Joe deletes his phone number?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>
Relation Decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies have gone:
- No more repeated data
- Easy to move Fred to “Bellevue” (how ?)
- Easy to delete all Joe’s phone numbers (how ?)
Relational Schema Design (or Logical Design)

How do we do this systematically?

- Start with some relational schema
- Find out its functional dependencies (FDs)
- Use FDs to normalize the relational schema
Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

\[A_1, A_2, \ldots, A_n \]

then they must also agree on the attributes

\[B_1, B_2, \ldots, B_m \]

Formally:

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]
Functional Dependencies (FDs)

Definition
\(A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \) holds in \(R \) if:

\[\forall t, t' \in R, \quad (t.A_1 = t'.A_1 \land \ldots \land t.A_m = t'.A_m \rightarrow t.B_1 = t'.B_1 \land \ldots \land t.B_n = t'.B_n) \]

<table>
<thead>
<tr>
<th>(R)</th>
<th>(A_1)</th>
<th>(\ldots)</th>
<th>(A_m)</th>
<th>(B_1)</th>
<th>(\ldots)</th>
<th>(B_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If \(t, t' \) agree here then \(t, t' \) agree here
Example

An FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

EmplID → Name, Phone, Position
Position → Phone
but not Phone → Position
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Position \(\rightarrow\) Phone
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

But not Phone → Position
Example

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>

Which FD’s hold?

color, category → department
name → color

name → color

category → department

color, category → price
Buzzwords

• FD holds or does not hold on an instance

• If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD

• If we say that R satisfies an FD, we are stating a constraint on R
An Interesting Observation

If all these FDs are true:
- name \rightarrow color
- category \rightarrow department
- color, category \rightarrow price

Then this FD also holds:
- name, category \rightarrow price

Find out from application domain some FDs, Compute all FD’s implied by them
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The **closure** is the set of attributes B, denoted $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \rightarrow B$
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The **closure** is the set of attributes B, denoted $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \rightarrow B$

Example:
1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The **closure** is the set of attributes B, denoted $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \rightarrow B$

Example:
1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:

$name^+ = \{\text{name, color}\}$
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The **closure** is the set of attributes B, denoted $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \rightarrow B$

Example:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:

$$name^+ = \{\text{name, color}\}$$

$$\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$$
Given a set of attributes A_1, \ldots, A_n

The closure is the set of attributes B, denoted $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \rightarrow B$

Example:
1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:
- $name^+ = \{name, color\}$
- $\{name, category\}^+ = \{name, category, color, department, price\}$
- $color^+ = \{color\}$
Keys

- A superkey is a set of attributes A_1, \ldots, A_n s.t. for any attribute B, we have $A_1, \ldots, A_n \rightarrow B$

- A key is a minimal superkey (no subset is a superkey)
Computing (Super)Keys

• For all sets X, compute X^+

• If $X^+ = \{\text{all attributes}\}$, then X is a superkey

• If, in addition, no subset of X is a superkey, then X is a key
Example

Product(name, price, category, color)

name, category → price
category → color

What is the key?
Example

Product(name, price, category, color)

What is the key?

(name, category) + = \{ name, category, price, color \}
Example

Product(name, price, category, color)

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
Key or Keys?

Can we have more than one key?
Key or Keys?

Can we have more than one key?

A → B
B → C
C → A

what are the keys here?
Key or Keys?

Can we have more than one key?

A \rightarrow B
B \rightarrow C
C \rightarrow A

what are the keys here?

AB \rightarrow C
BC \rightarrow A
Eliminating Anomalies

Main idea:

• $X \rightarrow A$ is OK if X is a (super)key

• $X \rightarrow A$ is not OK otherwise
 – Need to decompose the table
Boyce-Codd Normal Form

There are no “bad” FDs:

Definition. A relation R is in BCNF if:

Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:

$\forall X$, either $X^+ = X$ or $X^+ = \text{[all attributes]}$
BCNF Decomposition Algorithm

Normalize(R)

find X s.t.: X ≠ X⁺ ≠ [all attributes]

if (not found) then “R is in BCNF”

let Z = [all attributes] - X⁺

decompose R into R1(X⁺) and R2(X ∪ Z)

Normalize(R1); Normalize(R2);
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-1234</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

The only key is: \{SSN, PhoneNumber\}
Hence **SSN \rightarrow Name, City** is a “bad” dependency

In other words:
SSN+ = SSN, Name, City and is neither SSN nor All Attributes
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Find X s.t.: X ≠ X⁺ and X⁺ ≠ [all attributes]
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age
age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
 Phone(SSN, phoneNumber)
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)

What are the keys?

Find X s.t.: $X \neq X^+$ and $X^+ \neq$ [all attributes]
Find X s.t.: X $\neq X^+$ and $X^+ \neq \text{[all attributes]}$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

<table>
<thead>
<tr>
<th>SSN \rightarrow name, age</th>
</tr>
</thead>
<tbody>
<tr>
<td>age \rightarrow hairColor</td>
</tr>
</tbody>
</table>

Iteration 1:

Person: \(SSN^+ = SSN, \text{name, age, hairColor} \)

Decompose into:

\(P(\text{SSN, name, age, hairColor}) \)

\(\text{Phone(SSN, phoneNumber)} \)

Iteration 2:

\(P: \text{age}^+ = \text{age, hairColor} \)

Decompose:

\(\text{People(SSN, name, age)} \)

\(\text{Hair(age, hairColor)} \)

\(\text{Phone(SSN, phoneNumber)} \)

Note the keys!
Example: BCNF

A → B
B → C

R(A, B, C, D)

R(A, B, C, D)
Example: BCNF

Recall: find X s.t. $X \subset X^+ \subset [\text{all-attrs}]$
Example: BCNF

$R(A,B,C,D)$

$A^+ = ABC \neq ABCD$
Example: BCNF

R(A,B,C,D)

A⁺ = ABC ≠ ABCD

R₁(A,B,C)

R₂(A,D)

A → B
B → C
Example: BCNF

$R(A,B,C,D)$

$A^+ = ABC \neq ABCD$

$R_1(A,B,C)$

$B^+ = BC \neq ABC$

$R_2(A,D)$

$A \rightarrow B$

$B \rightarrow C$
Example: BCNF

R(A,B,C,D)
A⁺ = ABC ≠ ABCD

R₁(A,B,C)
B⁺ = BC ≠ ABC

R₁₁(B,C)
R₁₂(A,B)

R₂(A,D)

What are the keys?

What happens if in R we first pick B⁺? Or AB⁺?
Decompositions in General

\[R(A_1, \ldots, A_n, B_1, \ldots, B_m, C_1, \ldots, C_p) \]

\[S_1(A_1, \ldots, A_n, B_1, \ldots, B_m) \]

\[S_2(A_1, \ldots, A_n, C_1, \ldots, C_p) \]

\[S_1 = \text{projection of } R \text{ on } A_1, \ldots, A_n, B_1, \ldots, B_m \]

\[S_2 = \text{projection of } R \text{ on } A_1, \ldots, A_n, C_1, \ldots, C_p \]
Lossless Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Lossy Decomposition

What is lossy here?

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

Name	Category
Gizmo | Gadget
OneClick | Camera
Gizmo | Camera

Price	Category
19.99 | Gadget
24.99 | Camera
19.99 | Camera
Lossy Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Decomposition in General

\[R(A_1, ..., A_n, B_1, ..., B_m, C_1, ..., C_p) \]

Let:

- \(S_1 = \text{projection of } R \text{ on } A_1, ..., A_n, B_1, ..., B_m \)
- \(S_2 = \text{projection of } R \text{ on } A_1, ..., A_n, C_1, ..., C_p \)

The decomposition is called *lossless* if \(R = S_1 \bowtie S_2 \)

Fact: If \(A_1, ..., A_n \rightarrow B_1, ..., B_m \) then the decomposition is lossless

It follows that every BCNF decomposition is lossless
Testing for Lossless Join

If we decompose R into $\Pi_{S_1}(R)$, $\Pi_{S_2}(R)$, $\Pi_{S_3}(R)$, … Is it true that $S_1 \bowtie S_2 \bowtie S_3 \bowtie \cdots = R$?

That is true if we can show that:

$R \subseteq S_1 \bowtie S_2 \bowtie S_3 \bowtie \cdots$ but this always holds; why?

$R \supseteq S_1 \bowtie S_2 \bowtie S_3 \bowtie \cdots$ neet to check
The Chase Test

\[R(A, B, C, D) = S_1(A, D) \bowtie S_2(A, C) \bowtie S_3(B, C, D) \]

\[R \text{ satisfies: } A \rightarrow B, \ B \rightarrow C, \ CD \rightarrow A \]

\[S_1 = \Pi_{AD}(R), \ S_2 = \Pi_{AC}(R), \ S_3 = \Pi_{BCD}(R), \]

\[\text{hence } R \subseteq S_1 \bowtie S_2 \bowtie S_3 \]

\[\text{Need to check: } R \supseteq S_1 \bowtie S_2 \bowtie S_3 \]
The Chase Test

\[R(A,B,C,D) = S_1(A,D) \bowtie S_2(A,C) \bowtie S_3(B,C,D) \]

\(R \) satisfies: \(A \rightarrow B, \ B \rightarrow C, \ CD \rightarrow A \)

\(S_1 = \Pi_{AD}(R), \ S_2 = \Pi_{AC}(R), \ S_3 = \Pi_{BCD}(R), \)

hence \(R \subseteq S_1 \bowtie S_2 \bowtie S_3 \)

Need to check: \(R \supseteq S_1 \bowtie S_2 \bowtie S_3 \)

Suppose \((a,b,c,d) \in S_1 \bowtie S_2 \bowtie S_3\) Is it also in \(R \)?
The Chase Test

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: A→B, B→C, CD→A

S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R),
hence R \subseteq S1 ⋈ S2 ⋈ S3

Need to check: R \supseteq S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) \in S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
</tbody>
</table>

Why ?
(a,d) \in S1 = \Pi_{AD}(R)
The Chase Test

\[
R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)
\]

R satisfies: \(A \rightarrow B, B \rightarrow C, CD \rightarrow A\)

\(S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R),\) hence \(R \subseteq S1 \bowtie S2 \bowtie S3\)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3\)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3\) Is it also in \(R\)?

R must contain the following tuples:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
</tr>
</tbody>
</table>

Why?

\((a,d) \in S1 = \Pi_{AD}(R)\)

\((a,c) \in S2 = \Pi_{BD}(R)\)
The Chase Test

\[R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D) \]

\(R \) satisfies: \(A \rightarrow B, \ B \rightarrow C, \ CD \rightarrow A \)

\(S1 = \Pi_{AD}(R), \ S2 = \Pi_{AC}(R), \ S3 = \Pi_{BCD}(R), \)

hence \(R \subseteq S1 \bowtie S2 \bowtie S3 \)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3 \)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3\) Is it also in \(R \)?

\(R \) must contain the following tuples:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td></td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a3</td>
<td></td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Why?

(a,d) \in S1 = \Pi_{AD}(R)

(a,c) \in S2 = \Pi_{BD}(R)

(b,c,d) \in S3 = \Pi_{BCD}(R)
The Chase Test

R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)

R satisfies: A \rightarrow B, B \rightarrow C, CD \rightarrow A

S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R),
hence R \subseteq S1 \bowtie S2 \bowtie S3

Need to check: R \supseteq S1 \bowtie S2 \bowtie S3

Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

“Chase” them (apply FDs):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
<td></td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

Why?

(a,d) \in S1 = \Pi_{AD}(R)
(a,c) \in S2 = \Pi_{BD}(R)
(b,c,d) \in S3 = \Pi_{BCD}(R)
The Chase Test

\[R(A, B, C, D) = S1(A, D) \bowtie S2(A, C) \bowtie S3(B, C, D) \]

\(R \) satisfies: \(A \rightarrow B, B \rightarrow C, CD \rightarrow A \)

\(S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R) \),

hence \(R \subseteq S1 \bowtie S2 \bowtie S3 \)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3 \)

Suppose \((a, b, c, d) \in S1 \bowtie S2 \bowtie S3\) Is it also in \(R \)?

\(R \) must contain the following tuples:

"Chase" them (apply FDs):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b1</td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b1</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Why?

- \((a, d) \in S1 = \Pi_{AD}(R)\)
- \((a, c) \in S2 = \Pi_{BD}(R)\)
- \((b, c, d) \in S3 = \Pi_{BCD}(R)\)
The Chase Test

\[R(A,B,C,D) = S_1(A,D) \bowtie S_2(A,C) \bowtie S_3(B,C,D) \]

\[R \text{ satisfies: } A \rightarrow B, B \rightarrow C, CD \rightarrow A \]

\[S_1 = \Pi_{AD}(R), S_2 = \Pi_{AC}(R), S_3 = \Pi_{BCD}(R), \]

hence \(R \subseteq S_1 \bowtie S_2 \bowtie S_3 \)

Need to check: \(R \supseteq S_1 \bowtie S_2 \bowtie S_3 \)

Suppose \((a,b,c,d) \in S_1 \bowtie S_2 \bowtie S_3\) Is it also in \(R\)?

\[R \text{ must contain the following tuples:} \]

"Chase" them (apply FDs):

\[
\begin{array}{cccc}
A & B & C & D \\
\text{a} & b_1 & c_1 & d \\
\text{a} & b_1 & c & d_2 \\
\text{a} & b_1 & c & d \\
\text{a} & b & c & d \\
\end{array}
\]

Why?

\[
\begin{array}{cccc}
A & B & C & D \\
\text{(a,d)} \in S_1 = \Pi_{AD}(R) \\
\text{(a,c)} \in S_2 = \Pi_{BD}(R) \\
(b,c,d) \in S_3 = \Pi_{BCD}(R) \\
\end{array}
\]

Hence \(R \) contains \((a,b,c,d)\)
Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = no bad FDs
- 3rd Normal Form = see book
 - BCNF is lossless but can cause loss of ability to check some FDs
 - 3NF fixes that (is lossless and dependency-preserving), but some tables might not be in BCNF – i.e., they may have redundancy anomalies