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ABSTRACT
In this work we investigate the application of differential
privacy to electronic healthcare data stored in the OMOP
Common Data Model schema. We investigate the feasibility
of implementing differential privacy mechanism for counting
queries, and discuss the limitations of the application of dif-
ferential privacy in the context of healthcare datasets. We
additionally consider the question of how to minimize the
privacy budget ε while maintaining statistically meaningful
analysis results.
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1. INTRODUCTION
Statistical analysis of clinical data is fundamental for de-

riving novel medical insights; however, clinical data is highly
sensitive and is protected by a variety of laws and institu-
tional policies. While they protect patients from identifica-
tion, these policies serve as major barriers to the widespread
use and analysis of clinical data. Only a select few re-
searchers have access to these valuable datasets, and even
these individuals must go to great lengths to access these
data by applying for permission from institutional review
boards. While this can be frustrating, the risks involved for
an individual if their data were to be obtained by a bad actor
could lead to severe negative consequences for the database
participant, such as increased insurance premiums or prej-
udice due to stigma associated with a medical condition.
To make matters worse, even if seemingly anonymized data
is released, these data could be combined with other avail-
able information about the individual in order to re-identify
them.

In order to protect the privacy of the patients that com-
prise the database participants, it is necessary to apply pri-
vacy measures that are underpinned by rigorous mathemat-
ical theory. One such measure is differential privacy, which
has the goal of allowing an analyst to perform statistically
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accurate analyses on a dataset, while simultaneously pro-
tecting the identities of the dataset participants [3]. The
goal of applying these privacy measures is to lower the bar-
rier to accessing these datasets, thereby enabling a larger
community of researchers to conduct analyses with the hope
of accelerating the rate of innovation in biomedical research.

2. PRIVACY
The term privacy has different meanings depending on

who you ask and the given context. Colloquially, in the
context of healthcare data, privacy is usually understood to
mean that the individual has the agency to control who has
the right to see their personally identifiable health informa-
tion. A number of mechanisms have been tried to enforce
this somewhat nebulous definition of privacy. The most well
known of these methods is known as data anonymization,
which simple attempts to remove any data elements that
may be considered identifiable, such as names, telephone
and social security numbers, addresses, etc. The problem
with this technique is that it completely discounts the effect
of using auxiliary information to triangulate the identity of
an individual. The most famous example of this type of re-
identification is the Massachusetts governor who was iden-
tified by combining voter records with insurance data [10].
Other examples include high profile companies such as AOL
and Netflix releasing datasets that were subsequently shown
to be re-identifiable [3].

In light of the glaring inadequacy of data anonymization
and other methods to protect the privacy of database partic-
ipants, we need a technique that can guarantee data privacy
with some degree of mathematical rigor. We must therefore
adopt a definition of privacy that can be expressed formally,
and must take any current and future auxiliary information
into account.

2.1 Differential Privacy
The term differential privacy was coined by Dwork in 2006

[2], but the ideas were first published in a paper by Dwork
et al earlier in the same year [4]. One of the key insights of
differential privacy, is that it attempts to ensure that any-
thing that can be learned about an individual is independent
of whether that individual is a participant in the database
or not. This is formalized by considering the application
of a privacy mechanism K to two datasets D and D′ that
differ in at most one row. In the healthcare context, this
can be considered equivalent to removing (or adding) the
data belonging to a single individual patient to (or from)
the database.
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2.1.1 Definition
A randomized function K (the privacy mechanism) is said

to be ε-differentially private if it meets the following crite-
rion.

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S] (1)

Intuitively, this means that the probability that any indi-
vidual is a member of database D is less than or equal to
their probability of being a member of database D′ multi-
plied by a very small value (eε). This applies to any two
databases D and D′ that differ in at most one row. The
function K therefore obscures the individual’s membership
in the database.

2.1.2 Sensitivity

SELECT
COUNT(*)

FROM
patient

WHERE
patient.condition = "Diabetes"

Listing 1: Simple count of patients with diabetes.

One more definition is required before implementation is
possible. If f is a database query (i.e. f : D → Rd, where d
is the dimension of the returned result), then the sensitivity
∆f is defined as:

∆f = max
D,D′

‖f(D)− f(D′)‖1 (2)

The sensitivity quantifies how much the result of any given
query can differ on any two databases D and D′ that differ in
at most one row. Consider as an example the query shown in
listing 1, which returns just a single number. The sensitivity
of this query is 1, since the result can differ by at most one
(and in one position) on two databases that differ in at most
one row. That is, if one patient is added or removed from
the database, the result of the query in listing 1 can differ
by at most one. Sensitivity is an important consideration
when selecting the random function K in equation 1.

2.2 Privacy Budget
Every time a query result is returned, even if differential

privacy is applied, some information about the underlying
database is leaked. For this reason, the value of ε in equa-
tion 1 should actually be thought of as the total privacy
budget. To indicate this, we use the notation εtotal. To
illustrate how the privacy budget may be exploited, con-
sider the database attack shown in figure 1. Each histogram
shows the results of the query in listing 2 run 1000 times
with different privacy budgets. The the goal of this attack
is to uncover the exact number of females in the database.
We see that as the privacy budget increases, the histogram
becomes more concentrated around the exact value (64347),
and when εtotal = 100, there is an obvious peak at exactly
this value.

The selection of this privacy budget is a social question,
but values such as 0.01, 0.1, ln2 or ln3 have been suggested
[3]. In this work we will investigate the effect that the value

SELECT
COUNT(*)

FROM
patient

WHERE
patient.gender = "Female"

Listing 2: Simple count of female patients.

of εtotal has on the statistical significance of the results of
various clinically relevant statistical analyses.

2.3 Mechanisms
One of the challenges of implementing differential privacy

is choosing the privacy mechanism, which is the random
function K in equation 1. The simplest privacy mechanism
that has been shown to be effective simply adds noise drawn
from the Laplace distribution, symmetric about zero and
scaled by ∆f/ε:

noise = Lap(∆f/ε) (3)

Adding an independently generated noise term to each
row of the query result ensures ε-differential privacy. For
example, in the case where the query result is just a single
numeric value, we simply add Lap(1/ε) to this value.

An additional privacy mechanism, not explored in this
work, is known as the exponential mechanism [9], which ac-
tually describes how to design algorithms that preserve pri-
vacy as well as other data properties such as covariances
between attributes. The technique has been successfully
applied to generate synthetic datasets that are statistically
similar to the underlying data [5], but that is beyond the
scope of our work.

3. DATASET
The dataset used for the analyses presented in this work is

the Centers for Medicare & Medicaid (CMS) Entrepreneurs’
Synthetic Public Use File (DE-SynPUF) dataset1. CMS is
part of the U.S. Department of Health and Human Services,
and is responsible for the oversight of federal healthcare pro-
grams, including those involving health information technol-
ogy. CMS is also responsible for administration of the Health
Insurance Portability and Accountability Act (HIPAA), a
significant portion of which deals with privacy of protected
health information (PHI).

The goal of the SynPUF dataset is to provide “a realis-
tic set of claims data in the public domain while providing
the very highest degree of protection to the Medicare bene-
ficiaries’ protected health information.” The data was con-
structed by considering a 5% random sample from Medi-
care beneficiaries in 2008 and the claims from 2008 to 2010.
While the claims data represent real Medicare claims, bene-
ficiaries in the dataset are entirely synthetic, and identified
only by an assigned synthetic identifier. The potential for
empirical research is therefore limited; however, the data are
adequate for the purposes of demonstrating the application
of differential privacy.

For this project we consider only a subset of 5% of the DE-
SynPUF dataset, which corresponds to about 166k patients,

1DE-SynPUF is freely available on the CMS website.

https://psb.re/de-syn-puf


(a) εtotal = 0.1 (b) εtotal = 1

Figure 1: Gender attacks

3k locations, 28M conditions, and the record of roughly 27M
procedures. Once the dataset and vocabularies are loaded,
and indices are created, the resulting PostgreSQL data files
are over 16GB in size.

3.1 Schema
The Observational Health Data Sciences and Informatics

(OHDSI) consortium2 is an interdisciplinary, multi-stakeholder
collaboration of researchers in the biomedical domain [6].
One of the outputs of this collaboration is the so-called Ob-
servational Medical Outcomes Partnership (OMOP) Com-
mon Data Model (CDM), which is a collectively established
standardized relational database schema used to store var-
ious types of electronic health data, including both clinical
and health economics (insurance claims) data. The schema3

contains 40 tables, and 69 indices are created in addition to
the primary key indices to improve query execution time.

3.2 Translation
Since the CMS dataset is not released in the OMOP CDM

format, it is necessary to do some data transformation and
loading (ETL). Fortunately, since the dataset has broad ap-
peal, a working group within the OHDSI consortium has
published some Python scripts4 to assist in this process.
Using these scripts, as well as manually downloading and
importing the required clinical vocabularies, we were able
to construct our research database.

4. APPROACH
We began by loading the database as described above.

We then implemented the Laplace noise mechanism applied
to a query that returns only a single numeric value. We
demonstrate that we can protect the privacy of individuals
in a database from identification by using Laplacian noise.
We then go on to evaluate the effects of the added noise to
the integrity of the data by comparing the original dataset
to the perturbed data.

2https://www.ohdsi.org/
3DDL, constraints, and indices available on GitHub here.
4https://github.com/OHDSI/ETL-CMS

The data loading steps, as well as all the Jupyter note-
books can be found in the GitLab repository5.

5. EVALUATION

5.1 Demonstrating Simple Differential Privacy

5.1.1 Dataset Statistics
In this evaluation, we look at the statistics of diabetic

patients in dataset. We define a diabetic patient as any
patient who has had a least one clinical finding with the
string “diabetes” in the condition description. Based on this
definition, there are a total of 605 possible conditions that
will define a patient as diabetic.

Using these definitions, we identified 81,051 patients who
were diabetic and 17433 patients who were not diabetic.

5.1.2 Simple Counting Attack
We started with the simplest possible implementation.

Say we want to find out something about patient whose id =
2 but we are only allowed to ask for counts. We can use the
query in listing 3 to ask the database for counts of unique
patient ids who are diabetic while also excluding patients
with id = 2. The query returns a count of 81,050, one less
than our diabetic population. We now know that patient id
= 2 has diabetes. Information has leaked.

5.1.3 Protecting the Individual
By perturbing the return counts by a random value from

our afore mentioned Laplace distribution, we can protect the
identity of individuals within our database. As an example,
take the query in listing 4. We can use so many columns
in the demographics table, that the results begin returning
single individuals like in table 1.

In order to ensure a privacy of epsilon 1, we use the
Laplace noise function with epsilon = 1, and perturb the
results by the random noise. In table 2, we see that enough
noise has been added to the count numbers to protect indi-
vidual patients.

5https://gitlab.cs.washington.edu/psbrandt/differential-
privacy

https://www.ohdsi.org/
https://github.com/OHDSI/CommonDataModel/tree/master/PostgreSQL
https://github.com/OHDSI/ETL-CMS
https://gitlab.cs.washington.edu/psbrandt/differential-privacy
https://gitlab.cs.washington.edu/psbrandt/differential-privacy


SELECT
COUNT( DISTINCT person_id )

FROM
condition_occurrence

WHERE
condition_concept_id IN(

SELECT
concept_id

FROM
concept

WHERE
(

concept_name LIKE '%Diabetes%'
OR concept_name LIKE '%diabetes%'

)
AND domain_id = 'Condition'
AND concept_class_id = 'Clinical Finding'

) AND person_id != 2;

Listing 3: Example of deducing the clinical status of patients
through query counts.

SELECT
p.gender_concept_id,
p.year_of_birth,
p.month_of_birth,
p.day_of_birth,
COUNT(*)

FROM
person p

GROUP BY
p.year_of_birth,
p.gender_concept_id,
p.month_of_birth,
p.day_of_birth,
p.time_of_birth;

Listing 4: Example of deducing the clinical status of patients
through query counts.

5.2 The Trade-off: Privacy vs Usability
When deciding how low epsilon should be when calculat-

ing the scale of the Laplacian noise, we need to take into
account the effect the noise will have on the integrity of the
data. Adding too much noise will make the data useless
for meaningful statistical analysis, but adding too little will
leave the people in the dataset vulnerable to identification.

5.2.1 Evaluation Query
In this evaluation, we are looking at the effects of pertur-

bation on a distribution. The distribution we will be looking
at is the histogram of ages of diabetic patients. We used the
Query in listing 5 to collect the counts of the ages in the dia-
betics population. In figure 2, the age distribution is shown.
This is the distribution that we will be perturbing and using
as our data integrity benchmark.

5.2.2 Usability Evaluation
We evaluated the effect of a decreasing epsilon on the

integrity of the data by comparing the distribution of the
original, unperturbed data to that of the perturbed data at
different values of epsilon. We measured distribution simi-
larity using two different tests, a Pearson’s correlation and
Student’s T-test.

SELECT
ages.age,
COUNT(*)

FROM (
SELECT

p.person_id,
min((EXTRACT
(YEAR from con.condition_start_date))

- p.year_of_birth) as age
FROM

concept c,
person p,
condition_occurrence con

WHERE
con.person_id=p.person_id AND
con.condition_concept_id=c.concept_id AND
(c.concept_name LIKE '%Diabetes%' OR
c.concept_name LIKE '%diabetes%') AND
c.domain_id = 'Condition' AND
c.concept_class_id = 'Clinical Finding'

GROUP BY
p.person_id) as ages

GROUP BY ages.age;

Listing 5: Query for collecting the counts of the ages for all dia-
betic patients.

Figure 2: Age distribution of diabetics patients. This distribution
will be used as our comparison benchmark

Starting with a value of epsilon 10, for each step of the
comparison, we decreased the epsilon by a factor of 10 until
we finally evaluated epsilon 0.001 in the case of the T-test
and epsilon 0.0001 in the Pearson’s correlation. For each
epsilon, we ran 50 simulations, perturbing the data with
Laplacian noise at a scale of 1/epsilon.

In figure 3, we see that as epsilon decreases, the p-value
of the T-tests drops exponentially, crossing the significance
threshold at epsilon=0.01. It is interesting to note that
many publications recommend an epsilon of 0.01. However,
according to this evaluation, you would run the risk of hav-
ing significantly different data than your original dataset,
opening the possibility of deriving false conclusion from a
statistical analysis.

In figure 4, we see the same result; as epsilon decreases,
the p-value of the Pearson’s correlation drops exponentially,
crossing the significance threshold at an epsilon value of
0.0001. Notice that the Pearson’s correlation is far more



Figure 3: Log(1/p-values) vs Epsilon, where the p-value is derived
from the T-test comparing the original dataset to the perturbed.

Figure 4: -Log(p-values) vs Epsilon, where the p-value is derived
from the T-test comparing the original dataset to the perturbed.

forgiving that the Student’s t-test. According to this eval-
uation, you could safely perturb your data with Laplacian
noise generated using an epsilon of 0.01. You could follow
the recommendations of the privacy community while main-
taining confidence in your statistical findings.

The Pearson’s correlation evaluation is probably more ac-
curate in its assessment. The Student’s t-test is more sus-
ceptible to changes in the distribution outliers. Since the
simulations are going to be adding a lot of noise to the tail
ends of the distributions at low levels of epsilon, the t-test
will probably over estimate the effects of the data integrity.

Table 1: A selection of results from query 4 demonstrating a nar-
rowing down of individuals by using a large number of variables.

gender id birth year birth month birth day count

8532 1974 4 1 2
8507 1979 6 1 1
8532 1982 7 1 1

5.3 Differentially Private Contingency Tables
We have shown that differential privacy is useful for main-

taining the privacy of the individuals in our dataset while

Table 2: A selection of results from query 4 that have been per-
turbed using random noise from a Laplace distribution.

gender id birth year birth month birth day count

8532 1974 4 1 5
8507 1979 6 1 2
8532 1982 7 1 2

SELECT EXTRACT(
'year' FROM date_trunc('decade',

make_date(p.year_of_birth,
p.month_of_birth,
p.day_of_birth))) AS

birth_decade,
CASE p.gender_concept_id

WHEN 8532 THEN 'Female'
ELSE 'Male' END AS gender,

COUNT(*)
FROM

condition_occurrence co,
person p

WHERE
co.person_id = p.person_id AND
condition_concept_id = '4241530' -- HIV

GROUP BY
date_trunc('decade', make_date(

p.year_of_birth,
p.month_of_birth,
p.day_of_birth)),

p.gender_concept_id
ORDER BY

birth_decade,
gender;

Listing 6: SQL query for finding all HIV patients by year and
gender.

maintaining the usability of the data for analysis. Using
these principles we generated five contingency tables com-
bining different variables, asking medically relevant ques-
tions.

The GROUP BY queries we ran were:

1. Find all patients who have a Heart Failure condition
and GROUP BY Gender and the decade in which they
were born. Listing 10 is the query used.

2. Find all patients who have HIV and GROUP BY Gen-
der and the decade in which they were born. Listing
6 is the query used.

3. Find all patients who have Diabetes and GROUP BY
Gender and the decade in which they were born. List-
ing 7 is the query used.

4. Find all patients who have used the top eight most
used drugs and GROUP BY Gender. Listing 8 is the
query used.

5. Calculate the average length of hospital stay (days) for
each patient and GROUP BY their average length of
stay. Listing 9 is the query used.

5.3.1 Contingency Tables
For each of the queries, we used epsilon 0.1 to perturb the

counts. We also compared each perturbed table to the orig-
inal query results without perturbation analyzing the cosine



Table 3: A contingency table with differentially private counts for
Heart Failure patients broken down by the decade of Birth and
Gender

Gender Female Male
Birth Decade

1900.0 2991 1156
1910.0 33325 14695
1920.0 99338 66047
1930.0 113757 93855
1940.0 59244 52999
1950.0 18198 18262
1960.0 11278 10328
1970.0 4556 4944
1980.0 1386 1129

Table 4: A contingency table with differentially private counts for
HIV broken down by the decade of Birth and Gender

Gender Female Male
Birth Decade

1900.0 31.0 NaN
1910.0 152.0 68.0
1920.0 468.0 263.0
1930.0 602.0 468.0
1940.0 374.0 260.0
1950.0 112.0 160.0
1960.0 156.0 95.0
1970.0 34.0 61.0
1980.0 17.0 19.0

similarity of the original matrix to the unperturbed matrix.
Table 3 is the perturbed results from the listing 10 query
for heart failure patients. The cosine similarity between the
perturbed table and the original table is 0.99999997242. Ta-
ble 4 is the perturbed results from the listing 6 query for
HIV failure patients. The cosine similarity between the per-
turbed table and the original table is 0.999832337593. Table
5 is the perturbed results from the listing 7 query for Dia-
betic patients. The cosine similarity between the perturbed
table and the original table is 0.999999998181. Table 6 is
the perturbed results from the listing query 8 for drug use
by gender. The cosine similarity between the perturbed ta-
ble and the original table is 0.999999814847. Table 7 is the

Table 5: A contingency table with differentially private counts
for Diabetes patients broken down by the decade of Birth and
Gender

Gender Female Male
Birth Decade

1900.0 7469 2322
1910.0 83017 32368
1920.0 259309 163332
1930.0 336061 260821
1940.0 181434 154883
1950.0 50172 48176
1960.0 29634 29408
1970.0 14726 13798
1980.0 4285 3990

SELECT EXTRACT('year' FROM date_trunc('decade',
make_date(p.year_of_birth,

p.month_of_birth,
p.day_of_birth))) AS birth_decade,

CASE p.gender_concept_id WHEN 8532 THEN 'Female'
ELSE 'Male' END AS gender,

COUNT(*)
FROM

person p,
condition_occurrence con_oc,
concept con

WHERE
p.person_id = con_oc.person_id AND
con_oc.condition_concept_id = con.concept_id AND
con.concept_class_id = 'Clinical Finding' AND
con_oc.condition_concept_id = con.concept_id AND
( con.concept_name LIKE '%Diabetes%' OR

con.concept_name LIKE '%diabetes%' ) AND
con.domain_id = 'Condition'

GROUP BY
date_trunc('decade', make_date(p.year_of_birth,

p.month_of_birth,
p.day_of_birth)),

p.gender_concept_id
ORDER BY

birth_decade,
gender

Listing 7: SQL query for diabetes by birth decade.

Table 6: A contingency table with differentially private counts
for the number of patients who take the top 8 most used drugs
broken down by the gender of the patients

Gender Female Male
Drug Name

Epoetin Alfa 83343 55904
Gemfibrozil 600 MG 22434 14955
Influenza virus vaccine 43863 33562
Lovastatin 20 MG 19404 12682
Omeprazole 20 MG 22328 13834
Oxygen 99 % Gas 37517 23965
Simvastatin 40 MG 17658 11723
paricalcitol 45418 30434

perturbed results from the listing query 9 for average length
of stay per patient. The cosine similarity between the per-
turbed table and the original table is 1.0. Cosine similarity
results are summarized in Table 8.

6. RELATED WORK
The first notable implementation of differential privacy is

the Privacy Integrated Queries (PINQ) framework [8]. This
framework, developed by one of the authors of the original
differential privacy paper, exposes an API that can be used
for differential private data analysis by non-experts. More
recently, work by Johnson et al [7] has been adopted by Uber
to implement differential privacy for internal data analysis6.
The application of differential privacy to healthcare data
has been reviewed by Dankar and El Emam note [1], but
there don’t appear to be any implementations for the OMOP
CDM.

6https://github.com/uber/sql-differential-privacy

https://github.com/uber/sql-differential-privacy


CREATE TEMPORARY TABLE top_drugs AS
SELECT

c.concept_id,
count(*) AS total

FROM
drug_exposure de,
concept c

WHERE
de.drug_concept_id = c.concept_id AND
c.domain_id = 'Drug'

GROUP BY
c.concept_id

ORDER BY
total DESC

LIMIT 8;

SELECT
c.concept_name,
CASE p.gender_concept_id

WHEN 8532 THEN 'Female'
ELSE 'Male' END AS gender,

count(*) AS total
FROM

person p,
drug_exposure de,
top_drugs td,
concept c

WHERE
c.concept_id = de.drug_concept_id AND
de.drug_concept_id = td.concept_id AND
de.person_id = p.person_id

GROUP BY
c.concept_name,
gender

ORDER BY
c.concept_name,
gender;

Listing 8: SQL query for the top eight most prescribed drugs
broken down by gender.

7. FUTURE WORK
We would like to continue this work by exploring less sim-

ple queries like numerical aggregates and categorical data,
and moving on to other tables in OMOP outside the demo-
graphics table. Our eventual goal is generate a large dataset
of synthetic patients that are statistically similar to patient
in the University of Washington Medical System. We want
to be able to release these dataset to enable open research in
the biomedical informatics community, and to give research
opportunities to researchers in other fields who do not have
access to clinical data.

Our future research will continue down the path of ana-
lyzing the utility of different privacy budget sizes and how
those effect the quality of the data.

8. CONCLUSIONS
This project was the first step in ensuring broad public

use of accurate clinical data while maintaining the privacy
of the patients. Differential privacy is a promising concept
that may create opportunities for meaningful and actionable
discoveries with clinical data. The more we can involve peo-
ple from diverse backgrounds in clinical research, the quicker
we can make impactful improvements to healthcare.

9. ACKNOWLEDGMENTS

CREATE TEMPORARY TABLE stay_count AS
SELECT

person_id,
count(*)

FROM
visit_occurrence

GROUP BY
person_id;

SELECT CASE
WHEN sc.count >= 0 AND sc.count <= 50

THEN '0 - 50'
WHEN sc.count > 50 AND sc.count <= 100

THEN '50 - 100'
WHEN sc.count > 100 AND sc.count <= 150

THEN '100 - 150'
WHEN sc.count > 150 AND sc.count <= 200

THEN '150 - 200'
WHEN sc.count > 200 AND sc.count <= 250

THEN '200 - 250'
ELSE '250+' END AS stay_length,
COUNT(*) AS num_patients

FROM
stay_count sc

GROUP BY
stay_length

ORDER BY
num_patients DESC;

Listing 9: SQL query for the length of stay.

Table 7: A contingency table with differentially private counts
for the number of patients and the average number of days they
stay in the hospital per for every visit

Number of Patients
Stay Length (days)

0 - 50 49805
50 - 100 33549
100 - 150 13210
150 - 200 2286
200 - 250 309
250+ 14
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SELECT
EXTRACT('year'

FROM date_trunc('decade',
make_date(

p.year_of_birth,
p.month_of_birth,
p.day_of_birth))

) AS birth_decade,
CASE p.gender_concept_id WHEN 8532

THEN 'Female'
ELSE 'Male' END AS gender,

COUNT(*)
FROM

person p,
condition_occurrence con_oc,
concept con

WHERE p.person_id = con_oc.person_id
AND con_oc.condition_concept_id

= con.concept_id
AND (con.concept_name LIKE '%Heart Failure%' OR

con.concept_name LIKE '%heart failure%')
AND con.domain_id = 'Condition'
AND con.concept_class_id='Clinical Finding'

GROUP BY
date_trunc('decade', make_date(p.year_of_birth,

p.month_of_birth, p.day_of_birth)),
p.gender_concept_id

ORDER BY
birth_decade, gender;

Listing 10: SQL query for finding all patients with heart failure,
grouping by gender and decade of birth.

Table 8: Table of results for the cosine similarity between the
differentially private data and the original data.

Contingency Table Cosine similarity

Heart Failure Table 3 0.99999997242
HIV Table 4 0.999832337593
Diabetes Table 5 0.999999998181
Drug Usage Table 6 0.999999814847
Length of Stay Table 7 1.0
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