Large Scale Interactive Visualization of
Urban Accessibility Data

Manaswi Saha and Coco Moke Mao

Problem

We are working on making visualizing large scale data faster on interactive maps. In order
to do that, the fundamental challenge that needs addressing is of thinning. Authors in [1]
describe thinning to be “determining appropriate samples of data to be shown on specific
geographical regions and zoom levels.” Our project is based on Project Sidewalk' data. Its
an online crowdsourcing tool that allows the volunteers to contribute data on physical
accessibility. The collected data are geographic locations of different types of accessibility
features and issues such as curb ramps, missing curb ramps, surface problems, obstacles
in path and missing sidewalks. Current number of labels in the database are 181,349. The
base interactive map prototype for visualizing this data is very slow -10s. In this project,
we aim to reduce the time for visualizing this data by the help of sampling labels, different
at each zoom level.

1 ATy Retake tutorial FA manaswi ~
SIDEWALK <
Find and label the following
/ -
* 6‘& 61/ &4 (5"'5' &= Surrde;].t I:m’ghbjoghood
Explore | CurbRamp = Missing | Obstaclein | Surface Other (O] (=]) (& riendship Heights. D.C.
| _Curb Ramp Path Problem ZoomIn Zoom Out Undo Redo I' 0.9 miles & - Olabels

Audit the streets and find all the accessibility attributes L
S S 3 Current Mission

Audit %mi of this neighborhood

b

0 curb ramp.

| % st

f omissing curbramp 0 obstacle
5.2 s

0surface problem G other

B Follow the red line

Do you see any unlabeled problems? If not, |
'\ Turn left

LTI Sl o dets 2018 Google Terms of Use

Project Sidewalk is designed and operated by the Makeability Lab at the University of Maryland

Figure 1: Project Sidewalk tool to collect the point label data capturing different label types

' http://projectsidewalk.io

http://projectsidewalk.io/

Background and Related Work

R-tree: R-tree [2] was proposed by Antonin Guttman in 1984 and then widely used
theoretically and in application. Similar to B tree, R-tree is a balanced search tree, but
designed for indexing multi-dimensional data. The key idea is to group nearby objects and
represent them with their minimum bounding rectangle (MBR) in the next higher level of
the tree. At the leaf level, each rectangle describes a single object, and at the higher level,
the aggregation of objects is bounded by the MBR. Since our database is static, the R tree
will be pre-built in our case. The time complexity of search is O(log m N) where M is the
maximum number of objects in a node and N is total number of objects in the dataset.

Spatial data thinning: Google [1, 3] has proposed and implemented a sampling algorithm
for large geographical tables to address the very similar problem of determining
appropriate samples of data to be shown on specific zoom level. In this work, several
concepts are proposed which we have adopted in this project: 1) Visibility of a point when
zooming; 2) Constraints of thinning on visibility and consistency. In this work, they used a
balanced 4-ary rooted spatial tree and a DFS thinning algorithm to do sampling for
complex geographical shape while we have a point only dataset where a random
sampling should be sufficient.

Distinctive entries selection: Another work from University of Maryland [4] proposed an
approach to efficiently sample more favourable data points (e.g. more popular photos
compared to less popular ones) in a limited display window. They built a voting system on
an ensemble of interrelated indexes which allows fast determination of distinctiveness of
all entries with a query window.

Dynamic Client-Server Optimization: Moritz et al. from University of Washington [5] have
explored the optimization of visualization plan in the form of dataflow graph by
partitioning work across server and client. They have proposed a cost model for
determining a partitioning of visualization plan that minimizes latency based on data
statistics, network performance, computing and memory resources.

Finally, people have implemented similar map visualization using Quadtrees
(https://www.domoritz.de/vbb-coverage/)

https://www.domoritz.de/vbb-coverage/

Approach

As mentioned above, we would be implementing a sampling approach that will allow us
to request for less data based on the zoom level the user is at. The intuition is that
requesting all of the data takes too long to be received at the client end. Hence, we want
to restrict the number of data points sent to the client for rendering, in turn reducing the
time for visualization.

We are following the SICMOD'12 paper [1] on Efficient Spatial Sampling of Large
Geographic Tables. The idea is to show only a few representative samples at the
outermost zoom level and request for more data when the user zooms in. While
performing these requests, we want to ensure that we satisfy the following constraints:
1. Zoom Consistency: As we zoom into finer granularities, the points shown on the
coarser granularity should show up in the finer zoom level.
2. Data Distribution: The data to be visualized is of different types. We want to ensure
at each zoom level, the distribution is maintained.

Ideally, the sampling would be done dynamically i.e. based on the view of the map, the
data is requested for that certain view. Similarly, when the user pans, the map
incrementally builds. However, in the interest of time and for the purposes of this project,
we will be implementing a static sampling approach i.e. the samples for each zoom level
would be pre-computed and stored in the backend Postgres database. When the user
requests a certain zoom level, the data for the corresponding zoom-level will be
requested. The pre-computation is done via the sampling algorithm we implemented in
Python. Also, the panning portion will not be covered in this course project and is left for
future work. We now describe the algorithm we used to do sampling.

The map visualization has 8 zoom levels, Z € [0,7]. Let the coarsest granularity zoom level
be O, and let the finest level be zoom level 7. Any point in the map may be seen at a
specific visibility z € [0,7]. For example, if a point has a visibility of z=1, the point can be
seen when the map zoom level Z 2 1. The visibility z of each data point will be
pre-computed and implemented in two ways:

1) 1table that stores point index and visibility

2) 8 tables that stores point index that are visible at certain zoom level.
The efficiency of these two storage schemes are compared in the prelim work.
The point labels are selected using the following algorithm:

1) In the beginning, let z = 8 and add all the points into set V..

2) Assign a zoom level of z to all pointsin V,.

3) Sample 60% of the points in V, and add them into V, . z = z-1

4) Repeat step 2) and 3) until z = -1.
The sampling criteria in step 3 is to choose 60% label points with most severity in each
label type. In the future work, we will also take geographic distribution into account.
Another technique we are going to use to accelerate visualization is to use R-tree to
quickly retrieve labels in certain region when a user zooms in. The algorithm and
application of R-tree will be further introduced in related work.

Implementation

We implemented an end-to-end system for an interactive map prototype. We
prepopulated the database with the sampled labels using the offline sampling algorithm.
Each time the user zooms in/out, requests for the zoom level data are made. The
prototype is optimized such that we only make the request to the server once. All future
zoom interactions relies on the local data for rendering.

SIIVET SPTINE .)I'.'C.'l Spring
. At

Bethesda gty Bethesda

e iy
College Park LERELN, 1 College Park

s P - Alexandria ¥ Ho Sdewalk Alexandria a
o Naive Approach - With Sampling

Figure 2: lllustration of the visualizations using the two approaches. This shows the map at the outermost
zoom level, z=0. The difference is apparent in the number of point data seen in the figures. The naive
approach had a download time of 7.02s, while the sampling approach had a download time of 1.86s.

We made two improvements once we had the basic setup done. First, we improved the
sampling algorithm by sampling data per region. This was because sampling at the city
level messed up the label distribution for each region. This is demonstrated in Figure 3. As
we zoom-in, the label distribution is not maintained at each zoom level. From Figure 3, it is
clear how this approach maintains the label distribution of the underlying data at all zoom
levels.

Second, we used an hybrid approach to improve the interactive prototype. We found that
even after decreasing the data load, the rendering itself took time. The sampling approach

City Level Neighborhood Level
Sampled naively at Zoom Level 7 Sampled Geographically at Zoom Level 7
2000 2000
w 1750 1750
Q
% 1500 1500
= 1250 1250
[=]
E 1000 1000
£ 750 750
é 500 500
230 250
— . —
Sampled naively at Zoom Level 3 Sampled Geographically at Zoom Level 3
8OO
250
" J00
E GO0 200
L]
— 500)
S 400 o
T
g 300 100
5 200 -
100 20
. .) ‘
i ot qche o e it st A A A \5"9 e . '.'p""cn vt
e ™ iw.:._m:-"’L oot (:’\;l;;\.;e‘ ecl= O ot e m'?‘ N cuo ¥ s e (BT O e
Label Types Label Types

Figure 3: lllustration of the differences in sampling at the city level and at the neighborhood level.

starts to behave similar to the naive approach when you start zooming-in as you get more
data for the whole city. See Figure 5 in the evaluation section. To remedy this problem, we
using viewport based querying i.e. we only requested data at the zoo level for the region
that is currently visible. We used a boundary box over the geographic region and send it
to the server. The geographic coordinates of the box changes if the user pans or zooms.
We found significant improvement in the response time. More details in the next section.

Evaluation
For evaluating, we compared three prototypes:
1. Naive approach: querying all the data together during the initial load of the page,
2. Sampling Only approach: Pre-sampling data for different zoom levels
3. Hybrid Approach: Requesting the pre-sampled data at the different level based on
the current view of the map.
We compared all the three approaches based on two metrics: Download time and
Rendering time. For a fair comparison, we kept the implementation for rendering the map

and the data points same for all three prototypes. Using the browser’s network console,
we isolated the rendering time from network latency and total download time.

As it is visible from Figure 4, the download time and rendering time of the sampling
approaches is significantly better than the naive approach: at zoom level of 5, the
rendering time decreased from 18s (naive approach) to 100 ms (hybrid approach).

Between the sampling approaches, the hybrid approach outperforms on both metrics as
illustrated in Figure 5.

Performance Measurements

17500+ mmm Download Time
15000- mmm Rendering Time
~~12500-
E 10000 -
[«5]
E 7500-
|_
5000
" | B

Naive Sampling Only Hybrid

Figure 4: Data download time and rendering time of 3 approaches: Naive, sampling only and hybrid
approach of sampling and viewport based querying.

As demonstrated in Figure 5, the downloaded data increases as we zoom into the lower
levels. The simple trick of viewport based querying in the hybrid approach works really
well to keep the downloaded data size to be consistent across different levels and as a
consequence, reduces the download time. The reason is that at the lower levels, as we
zoom in, the geographic region becomes smaller and smaller resulting in less data being
requested. For the hybrid approach, the data across zoom levels is maintained at few KBs.
The point to remember is that data size would depend on the labels contributed in that
specific region. For e.g. regions with more problems will have more data than the others.

Download Time Downloaded Data Size
5000 - —+— Sampling Only 52066 1 —#+— Sampling Only
—+— Hybrid —+— Hybrid
4000 - 20000 -
2 =)
£ 3000 > 15000
(5] [}
N
E 2000 & 10000
1000 - 5000-
0 ity
0 1 2 3 4 5 6 7 0 i 2 3 4 5 6 7
Zoom Level Zoom Level

Figure 5: Performance comparison between Sampling Only and the Hybrid approach. Significant differences
are seen across the metrics: data download time and downloaded data size across different zoom levels.

Conclusion and Future Work

We studied the problem of reducing visualization time for interactive map visualizations.
This is particularly important when visualizing a large dataset. We used sampling and
viewport based querying to reduce the data size and increase the response time. The
project was done as a case study on Project Sidewalk's accessibility dataset. We
improved the rendering significantly using the hybrid approach from 18s to 100ms.

The current work led us to think about an important aspect of visualization: sense making.
Even though sampling works well to reduce the data size, we might lose important data
points that will allow us to understand and interpret the data, in this case, accessibility of a
region. Liu et. al mention this problem in [6]. As future work, we would like to explore this
problem: what is the best way to represent accessibility and how can we build interactive
prototypes that visualize accessibility and that are fast. There is a lot of related work in the
area of information visualization that will inform us in this future direction.

Work Distribution

Coco - Worked on implementing the sampling algorithm - that involved reading the paper
closely and writing the pre-sampling scripts.

Manaswi - Worked on implementing the interactive prototypes - that involved modifying
the existing approach (used in Project Sidewalk), and implementing the client side code for
rendering the interactive map prototypes and server side code to interact with the
database.

Note: This is part of Manaswi’s research project and hence, she is familiar with the existing
codebase of the tool and the database implementation. Hence, she took lead on the
interactive prototype implementation and Coco worked on the sampling techniques.

References

[1] Anish Das Sarma, Hongrae Lee, Hector Gonzalez, Jayant Madhavan, and Alon Halevy. 2012. Efficient
spatial sampling of large geographical tables. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data (SIGCMOD'12). ACM, New York, NY, USA, 193-204. DOI:
https://doi.org/10.1145/2213836.221385 .

[2] Guttman, Antonin. R-trees: A dynamic index structure for spatial searching. Vol. 14. No. 2. ACM, 1984.

[3] Anish Das Sarma, Hongrae Lee, Hector Gonzalez, Jayant Madhavan, and Alon Halevy. 2013. Consistent
thinning of large geographical data for map visualization. ACM Trans. Database Syst. 38, 4, Article 22
(December 2013), 35 pages. DOI= http://dx.doi.org/10.1145/2539032.253903 4.

[4] Sarana Nutanong, Marco D. Adelfio, and Hanan Samet. 2013. An efficient layout method for a large
collection of geographic data entries. In Proceedings of the 16th International Conference on Extending
Database = Technology = (EDBT "3). ACM, New York, NY, USA, 717-720. DO
https://doi.org/10.1145/2452376.2452462.

[5] Moritz, D., Heer, J., & Howe, B. (2015). Dynamic Client-Server Optimization for Scalable Interactive
Visualization on the Web. In Workshop on Data Systems for Interactive Analysis (DSIA'15) (Vol. 9).

[6] Liu, Zhicheng, Biye Jiang, and Jeffrey Heer. "imMens: Real-time Visual Querying of Big Data.” In Computer
Graphics Forum, vol. 32, no. 3pt4, pp. 421-430. Blackwell Publishing Ltd, 2013.

