CSE 544 Principles of Database Management Systems

Lecture 11 - Optimization Wrap-up

Announcments

- HW3 due on Friday!
- Don't neglect the project

Will Discuss the Paper

- How good are query optimizers, Really?

Basic Cardinality Estimation

- What are the basic assumptions made in cardinality estimation?
- How is the join size estimated?

Basic Cardinality Estimation

- What are the basic assumptions made in cardinality estimation?
- uniformity: all values, except for the most-frequent ones, are assumed to have the same number of tuples
- independence: predicates on attributes (in the same table or from joined tables) are independent
- principle of inclusion: the domains of the join keys overlap such that the keys from the smaller domain have matches in the larger domain
- How is the join size estimated?

$$
\left|T_{1} \bowtie_{x=y} T_{2}\right|=\frac{\left|T_{1}\right|\left|T_{2}\right|}{\max (\operatorname{dom}(x), \operatorname{dom}(y))}
$$

Benchmarks

- What are the traditional database benchmarks?
- Why are they poor tools for evaluating cardinality estimators?

Benchmarks

- What are the traditional database benchmarks?
- TPC with several benchmarks: TPC/H, TPC/DS, ...
- Why are they poor tools for evaluating cardinality estimators?

Figure 4: PostgreSQL cardinality estimates for 4 JOB queries

Subplans

- For which subplans does an optimizer need to estimate the cardinality?
$\sigma_{\mathrm{x}=5}(\mathrm{~A}) \bowtie_{\text {A.bid=B.id }} \mathrm{B} \bowtie_{\text {B.cid=C.id }} C$
where id = primary key; bid, cid = foreign keys

Subplans

- For which subplans does an optimizer need to estimate the cardinality?
$\sigma_{\mathrm{x}=5}(\mathrm{~A}) \bowtie_{\text {A.bid=B.id }} \mathrm{B} \bowtie_{\text {B.cid }=\text { C.id }} \mathrm{C}$
where id = primary key; bid, cid = foreign keys
- $\sigma_{x=5}(\mathrm{~A})$
$\sigma_{x=5}(A) \bowtie_{\text {A.bid }=\text { B.id }} B$
$B \bowtie_{\text {B.cid }=\text { C.id }} C$
$\sigma_{x=5}(\mathrm{~A}) \bowtie_{\text {A.bid=B.id }} \mathrm{B} \bowtie_{\text {B.cid }=\text { C.id }} \mathrm{C}$
If index on the fk A.bid, then $A \bowtie_{\text {A.bid=B.id }} B$ why??

Discuss Main Graph

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

sample-based?? Discuss Main Graph

DBMS C

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload)

Samples v.s. Distinct Values

- Estimate $\sigma_{x=5}(\mathrm{~A})$
- Distinct values: $\left|\sigma_{x=5}(A)\right| \approx T(A) / V(A, x) \quad(=|A| / \operatorname{Dom}(A . x))$
- Sample: keep a sample SA, use Thomson's estimator: $\left|\sigma_{x=5}(A)\right| \approx\left|\sigma_{x=5}(S A)\right| *|A| /|S A|$
- HyPer and possibly System A use samples
- Discuss pros and cons of sampling-based estimate

Samples v.s. Distinct Values

- Estimate $\sigma_{x=5}(\mathrm{~A})$
- Distinct values: $\left|\sigma_{x=5}(A)\right| \approx T(A) / V(A, x) \quad(=|A| / \operatorname{Dom}(A . x))$
- Sample: keep a sample SA, use Thomson's estimator: $\left|\sigma_{x=5}(\mathrm{~A})\right| \approx\left|\sigma_{x=5}(\mathrm{SA})\right|{ }^{*}|\mathrm{~A}| /|\mathrm{SA}|$
- HyPer and possibly System A use samples
- Discuss pros and cons of sampling-based estimate
- Pros: very good for single table; correlated attributes; complex predicates (A.x like "\%Johnson\%")
- Cons: return estimate 0 if sample doesn't contain predicate; do not work for joins (explain in class)

End-Effect on Query Runtime

Do poor cardinality estimators lead to worse runtime?

- Case 1: simple access paths (i.e. indices on keys only)
- Case 2: complex access paths (add indices on fk's)

End-Effect on Query Runtime

Do poor cardinality estimators lead to worse runtime?

- Case 1: simple access paths (i.e. indices on keys only)
- Case 2: complex access paths (add indices on fk's)

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)

End-Effect on Query Runtime

Do poor cardinality estimators lead to worse runtime?

- Case 1: simple access paths (i.e. indices on keys only)
- Case 2: complex access paths (add indices on fk's)

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)

End-Effect on Query Runtime

Do poor cardinality estimators lead to worse runtime?

- Case 1: simple access paths (i.e. indices on keys only)
- Case 2: complex access paths (add indices on fk's)

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)

Cost Model

- Given the estimated cardinality, need to estimate actual cost = weighted sum of I/O cost plus CPU cost (x400)
- What are the main takeaways?

Cost Model

- Given the estimated cardinality, need to estimate actual cost = weighted sum of I/O cost plus CPU cost (x400)
- What are the main takeaways?

Cost Model

- Given the estimated cardinality, need to estimate actual cost $=$ weighted sum of I/O cost plus CPU cost (x 400)
- What are the main takeaways?

Figure 8: Predicted cost vs. runtime for different cost models

Cost Model

- Given the estimated cardinality, need to estimate actual cost = weighted sum of I/O cost plus CPU cost (x 400)
- What are the main takeaways?

Structural Query Optimization

- Studied by the theory community, little implementation
- Most critical for "aggregate push-down"
select count(*) from Author, Publication;
-- takes forever! But should take 2-3 seconds (why?)

Conjunctive Queries

- Definition:
Q(X) :- R1(X1), R2(X2), ..., Rm(Xm)
- Same as a single datalog rule
- Terminology:
- Atoms
- Head variables
- Existential variables
- $\mathrm{CQ}=$ denotes the set of conjunctive queries

Examples

- Example of CQ

$$
\begin{aligned}
& q(x, y)=\exists z \cdot(R(x, z) \wedge \exists u \cdot(R(z, u) \wedge R(u, y))) \\
& q(x)=\exists z \cdot \exists u \cdot(R(x, z) \wedge R(z, u) \wedge R(u, y))
\end{aligned}
$$

- Examples of non-CQ:

$$
\begin{aligned}
& q(x, y)=S(x, y) \wedge \forall z \cdot(R(x, z) \rightarrow R(y, z)) \\
& q(x)=T(x) \vee \exists z \cdot S(x, z)
\end{aligned}
$$

Types of CQ

- Full CQ: head variables are all variables

$$
Q(x, y, z, u):-R(x, y), S(y, z), T(z, u)
$$

- Boolean CQ: no head variables

$$
Q():-R(x, y), S(y, z), T(z, u)
$$

- With or without self-joins:

$$
\begin{aligned}
& Q(x, u):-R(x, y), \dot{S}(y, z), R(z, u) \\
& Q(x, u):-R(x, y), S(y, z), T(z, u)
\end{aligned}
$$

Extensions

- With inequalities $\mathrm{CQ}^{<}$:

$$
Q(x):-R(x, y), S(y, z), T(z, u), y<u
$$

- With disequalities CQ^{\neq}:

$$
Q(x):-R(x, y), S(y, z), T(z, u), y \neq u
$$

- With aggregates:

$$
\begin{aligned}
& Q(x, \operatorname{count}(*)):-\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{S}(\mathrm{y}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{u}) \\
& \mathrm{Q}(\mathrm{x}, \operatorname{sum}(\mathrm{u})):-\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{S}(\mathrm{y}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{u})
\end{aligned}
$$

Question in Class

- $\mathrm{Q}(\mathrm{x}, \mathrm{w}):-\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{S}(\mathrm{y}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{u}), \mathrm{K}(\mathrm{u}, \mathrm{v}), \mathrm{L}(\mathrm{v}, \mathrm{w})$
- Assume $|R|=|S|=|T|=|K|=|L|=N$
- What is the complexity of Q ?

Question in Class

- $Q(x, w):-R(x, y), S(y, z), T(z, u), K(u, v), L(v, w)$
- Assume $|\mathrm{R}|=|\mathrm{S}|=|\mathrm{T}|=|\mathrm{K}|=|\mathrm{L}|=\mathrm{N}$
- What is the complexity of Q ?
- What is the complexity of this plan?

Question in Class

- $Q(x, w):-R(x, y), S(y, z), T(z, u), K(u, v), L(v, w)$
- Assume $|\mathrm{R}|=|\mathrm{S}|=|\mathrm{T}|=|\mathrm{K}|=|\mathrm{L}|=\mathrm{N}$
- What is the complexity of Q ?
- What is the complexity of this plan?
- Can you find a more efficient plan?

Question in Class

- Push projections down: What about this complexity?
- Can we still improve?

$\underset{\Pi_{\mathrm{xu}}}{\wedge} \underset{L(\mathrm{v}, \mathrm{w})}{ }$

Semijoin Optimizations REVIEW

- In parallel databases: often combined with Bloom Filters (pp. 747 in the textbook)
- Magic sets for datalog were invented after semi-join reductions, and the connection became clear only later
- Some complex semi-join reductions for non-recursive SQL optimizations are sometimes called "magic sets"

Semijoin Reducer

- Given a query:

$$
Q=R_{1} \bowtie R_{2} \bowtie \ldots \bowtie R_{n}
$$

- A semijoin reducer for Q is

$$
\begin{aligned}
& R_{i 1}=R_{i 1} \ltimes R_{j 1} \\
& R_{i 2}=R_{i 2} \ltimes R_{j 2} \\
& \cdots \cdots=R_{i p} \ltimes R_{j p} \\
& \mathrm{R}_{\mathrm{ip}}={ }_{2}
\end{aligned}
$$

such that the query is equivalent to:

$$
Q=R_{k 1} \bowtie R_{k 2} \bowtie \ldots \bowtie R_{k n}
$$

- A full reducer is such that no dangling tuples remain

Example

- Example:

$$
Q=R(A, B) \bowtie S(B, C)
$$

- A semijoin reducer is:

$$
R_{1}(A, B)=R(A, B) \ltimes S(B, C)
$$

- The rewritten query is:

$$
Q=R_{1}(A, B) \bowtie S(B, C)
$$

Semijoin Reducer

- More complex example:

$$
\alpha(y, u)=R\left(a^{\prime}, y\right), S(y, z), T(z, u), K\left(u^{\prime}, b^{\prime}\right)
$$

- Find a full reducer

Semijoin Reducer

- More complex example:

$$
Q(y, z, u)=R\left(a^{\prime}, y\right), S(y, z), T(z, u), K\left(u,{ }^{\prime} b^{\prime}\right)
$$

- Find a full reducer

Semijoin Reducer

- More complex example:

$$
Q(y, z, u)=R\left(a^{\prime}, y\right), S(y, z), T(z, u), K\left(u, b^{\prime}\right)
$$

- Find a full reducer

$$
\begin{aligned}
& S^{\prime}(y, z):-S(y, z) \ltimes R\left(a^{\prime}, y\right) \\
& T^{\prime}(z, u):-T(z, u) \ltimes S^{\prime}(y, z) \\
& K^{\prime}(u):-\quad K\left(u, b^{\prime}\right) \ltimes T^{\prime}(z, u) \\
& T^{\prime \prime}(z, u):-T^{\prime}(z, u) \ltimes K^{\prime}(u) \\
& S^{\prime \prime}(y, z):-S^{\prime}(y, z) \ltimes T^{\prime \prime}(z, u) \\
& R^{\prime \prime}(y):-R^{\prime}\left(a^{\prime}, y\right) \ltimes S^{\prime \prime}(y, z) \\
& \hline
\end{aligned}
$$

Semijoin Reducer

- More complex example:

$$
Q(y, z, u)=R\left({ }^{\prime} a^{\prime}, y\right), S(y, z), T(z, u), K\left(u, b^{\prime}\right)
$$

- Find a full reducer

$$
\begin{aligned}
& S^{\prime}(y, z):-S^{\prime}(y, z) \ltimes R\left(a^{\prime}, y\right) \\
& T^{\prime}(z, u):-T(z, u) \ltimes S^{\prime}(y, z) \\
& K^{\prime}(u):-\quad K\left(u,{ }^{\prime} b^{\prime}\right) \ltimes T^{\prime}(z, u) \\
& T^{\prime \prime}(z, u):-T^{\prime}(z, u) \ltimes K^{\prime}(u) \\
& S^{\prime \prime}(y, z):-S^{\prime}(y, z) \ltimes T^{\prime \prime}(z, u)
\end{aligned}
$$

- Finally, c R" $(y):-R\left({ }^{\prime} a^{\prime}, y\right) \ltimes S^{\prime \prime}(y, z)$

$$
Q(y, z, u)=R^{\prime \prime}(y), S^{\prime \prime}(y, z), T^{\prime \prime}(z, u), K^{\prime \prime}(u)
$$

Practice at Home...

- Find semi-join reducer for $R(x, y), S(y, z), T(z, u), K(u, v), L(v, w)$

Not All Queries Have Full Reducers

- Example:

$$
Q=R(A, B) \bowtie S(B, C) \bowtie T(A, C)
$$

- Can write many different semi-join reducers
- But no full reducer of length $\mathrm{O}(1)$ exists

Acyclic Queries

- Fix a Conjunctive Query without self-joins
- Q is acyclic if its atoms can be organized in a tree such that for every variable the set of nodes that contain that variable form a connected component

$R(x, y), S(y, z), T(z, x)$ is cyclic

Yannakakis Algorithm

- Given: acyclic query Q
- Compute Q on any database in time $O(|\ln n u t|+|O u t p u t|)$
- Step 1: semi-join reduction
- Pick any root node x in the tree decomposition of Q
- Do a semi-join reduction sweep from the leaves to x
- Do a semi-join reduction sweep from x to the leaves
- Step 2: compute the joins bottom up, with early projections

Examples in Class

$R(x, y), S(y, z, u), T(y, z, w), K(z, v), L(v, m)$

- Boolean query: $Q()$:- ...
- Non-boolean: $\mathrm{Q}(\mathrm{x}, \mathrm{m})$:- ...
- With aggregate: $Q(x, s u m(m))$:- ...
- And also: $\mathrm{Q}\left(\mathrm{x}, \operatorname{count}\left({ }^{*}\right)\right)$:- ...

In all cases: runtime $=\mathrm{O}(|\mathrm{R}|+|\mathrm{S}|+\ldots+|\mathrm{L}|+\mid$ Output $\mid)$

Testing if Q is Acyclic

- An ear of Q is an atom $R(X)$ with the following property:
- Let $X^{\prime} \subseteq X$ be the set of join variables (meaning: they occur in at least one other atom)
- There exists some other atom $S(Y)$ such that $X^{\prime} \subseteq Y$
- The GYO algorithm (Graham,Yu,Özsoyoğlu) for testing if Q is acyclic:
- While Q has an ear $R(X)$, remove the atom $R(X)$ from the query
- If all atoms were removed, then Q is acyclic
- If atoms remain but there is no ear, then Q is cyclic
- Show example in class

Tree Decomposition

Def Tree decomposition is $(T, x), \chi: N o d e s(T) \rightarrow 2^{\operatorname{Vars}(Q)}$ s.t.:
(1) $\forall A \in \operatorname{Atoms}(Q) \quad \exists t \in \operatorname{Nodes}(T), \operatorname{Vars}(A) \subseteq x(t)$
(2) $\forall x \in \operatorname{Vars}(Q),\{t \mid x \in x(t)\}$ is connected

$$
\begin{aligned}
Q(x, \ldots, m) & =R(x, y) \wedge A(y, s) \wedge B(x, s) \wedge S(y, z, u) \wedge T(y, z, w) \wedge C(z, w, t) \wedge D(w, t, y) \\
& \wedge E(t, y, z) \wedge K(z, v) \wedge F(z, v) \wedge L(v, m)
\end{aligned}
$$

Tree Decomposition

Def Tree decomposition is $(T, x), \chi: N o d e s(T) \rightarrow 2^{\operatorname{Vars}(Q)}$ s.t.:
(1) $\forall A \in \operatorname{Atoms}(Q) \quad \exists t \in \operatorname{Nodes}(T), \operatorname{Vars}(A) \subseteq x(t)$
(2) $\forall x \in \operatorname{Vars}(Q),\{t \mid x \in x(t)\}$ is connected

$$
\begin{aligned}
Q(x, \ldots, m) & =R(x, y) \wedge A(y, s) \wedge B(x, s) \wedge S(y, z, u) \wedge T(y, z, w) \wedge C(z, w, t) \wedge D(w, t, y) \\
& \wedge E(t, y, z) \wedge K(z, v) \wedge F(z, v) \wedge L(v, m)
\end{aligned}
$$

Tree Decomposition

Def Tree decomposition is $(T, X), X: \operatorname{Nodes}(T) \rightarrow 2^{\operatorname{Vars}(Q)}$ s.t.:
(1) $\forall A \in \operatorname{Atoms}(Q) \quad \exists t \in \operatorname{Nodes}(T), \operatorname{Vars}(A) \subseteq x(t)$
(2) $\forall x \in \operatorname{Vars}(Q)$, $\{t \mid x \in x(t)\}$ is connected

$$
\begin{aligned}
Q(x, \ldots, m) & =R(x, y) \wedge A(y, s) \wedge B(x, s) \wedge S(y, z, u) \wedge T(y, z, w) \wedge C(z, w, t) \wedge D(w, t, y) \\
& \wedge E(t, y, z) \wedge K(z, v) \wedge F(z, v) \wedge L(v, m)
\end{aligned}
$$

Tree Decomposition

Def Tree decomposition is $(T, X), X: N o d e s(T) \rightarrow 2^{\operatorname{Vars}(Q)}$ s.t.:
(1) $\forall A \in \operatorname{Atoms}(Q) \exists t \in \operatorname{Nodes}(T), \operatorname{Vars}(A) \subseteq x(t)$
(2) $\forall x \in \operatorname{Vars}(Q)$, $\{t \mid x \in x(t)\}$ is connected

Tree-width

$\operatorname{Def} \operatorname{tw}(\mathrm{Q})=\min _{T} \max _{\mathrm{t} \in \operatorname{Nodes}(\mathrm{T})}\left|\operatorname{Vars}\left(\mathrm{Q}_{\mathrm{t}}\right)\right|-1$

$\operatorname{tw}(Q)=3$
$R(x, y), x, y, S$
$A(y, s), B(x, s)$
$T(y, z, w) ; \mathrm{Z}(\mathrm{z}, \mathrm{w}, \mathrm{t})$
D(w,t,y),E(t,y,z)
Naïve iteration for Q_{t} : Runtime for $\mathrm{Q}: \mathrm{O}\left(\mathrm{N}^{\mathrm{tw}(\mathrm{Q})+1}+\mid\right.$ Output $\left.\mid\right)$

Generalized Hypertree Width

$\operatorname{Def} \operatorname{ghtw}(Q)=\min _{T} \max _{t \in \operatorname{Nodes}(T)} \rho\left(Q_{t}\right)$

$\rho=$ edge covering number

$\operatorname{ghtw}(Q)=2$

Fractional Hypertree Width

$\operatorname{Def} \operatorname{fhtw}(Q)=\min _{T} \max _{t \in \operatorname{Nodes}(T)} \rho^{*}\left(Q_{t}\right)$

$\rho^{*}=$ Fractional edge covering
fhtw $(Q)=3 / 2$ number
E.g. LFTJ algorithm for Q_{t} Runtime for $\mathrm{Q}: ~ \mathrm{O}\left(\mathrm{N}^{\text {fhtw }(Q)+}+\mid\right.$ Output|)

Best Algorithm

- Choose optimal tree T for Q
- Compute full $C Q Q_{t}$ for all $t \in \operatorname{Nodes}(T)$
- Run Yannakakis algorithm on the join tree

Total time $=\mathrm{O}\left(\mathrm{N}^{\mathrm{fhtw}(\mathrm{Q})}+\mid\right.$ Output $\left.\mid\right)$

