CSE 544
Principles of Database Management Systems

Lecture 11 – Optimization Wrap-up
Announcements

• HW3 due on Friday!

• Don’t neglect the project
Will Discuss the Paper

• How good are query optimizers, Really?
Basic Cardinality Estimation

• What are the basic assumptions made in cardinality estimation?

• How is the join size estimated?
Basic Cardinality Estimation

• What are the basic assumptions made in cardinality estimation?
 - uniformity: all values, except for the most-frequent ones, are assumed to have the same number of tuples
 - independence: predicates on attributes (in the same table or from joined tables) are independent
 - principle of inclusion: the domains of the join keys overlap such that the keys from the smaller domain have matches in the larger domain

• How is the join size estimated?

\[
|T_1 \bowtie_{x=y} T_2| = \frac{|T_1||T_2|}{\max(\text{dom}(x), \text{dom}(y))},
\]
Benchmarks

• What are the traditional database benchmarks?

• Why are they poor tools for evaluating cardinality estimators?
Benchmarks

• What are the traditional database benchmarks?
 – TPC with several benchmarks: TPC/H, TPC/DS, ...

• Why are they poor tools for evaluating cardinality estimators?

Figure 4: PostgreSQL cardinality estimates for 4 JOB queries and 3 TPC-H queries
Subplans

• For which subplans does an optimizer need to estimate the cardinality?

\[\sigma_{x=5}(A) \land_{A.bid=B.id} B \land_{B.cid=C.id} C \]

where id = primary key; bid, cid = foreign keys
Subplans

- For which subplans does an optimizer need to estimate the cardinality?

\[\sigma_{x=5}(A) \Join_{A.\text{bid}=B.\text{id}} B \Join_{B.\text{cid}=C.\text{id}} C \]

where id = primary key; bid, cid = foreign keys

- If index on the fk A.bid, then \(A \Join_{A.\text{bid}=B.\text{id}} B \) why??
Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload).
Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes the error distribution of all subexpressions with a particular size (over all queries in the workload).
Samples v.s. Distinct Values

• Estimate $\sigma_{x=5}(A)$
 – Distinct values: $|\sigma_{x=5}(A)| \approx T(A) / V(A,x)$ ($= |A| / \text{Dom}(A.x)$)
 – Sample: keep a sample SA, use Thomson’s estimator:
 $|\sigma_{x=5}(A)| \approx |\sigma_{x=5}(SA)| \ast |A| / |SA|$
 – HyPer and possibly System A use samples

• Discuss pros and cons of sampling-based estimate
Samples v.s. Distinct Values

- Estimate $\sigma_{x=5}(A)$
 - Distinct values: $|\sigma_{x=5}(A)| \approx T(A) / V(A,x)$ ($= |A| / \text{Dom}(A.x)$)
 - Sample: keep a sample SA, use Thomson’s estimator:
 $|\sigma_{x=5}(A)| \approx |\sigma_{x=5}(SA)| \times |A| / |SA|$
 - HyPer and possibly System A use samples

- Discuss pros and cons of sampling-based estimate
 - Pros: very good for single table; correlated attributes; complex predicates ($A.x$ like “%Johnson%”)
 - Cons: return estimate 0 if sample doesn’t contain predicate; do not work for joins (explain in class)
End-Effect on Query Runtime

Do poor cardinality estimators lead to worse runtime?

- Case 1: simple access paths (i.e. indices on keys only)
- Case 2: complex access paths (add indices on fk’s)
End-Effect on Query Runtime

Do poor cardinality estimators lead to worse runtime?

- Case 1: simple access paths (i.e. indices on keys only)
- Case 2: complex access paths (add indices on fk’s)

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)
End-Effect on Query Runtime

Do poor cardinality estimators lead to worse runtime?

- Case 1: simple access paths (i.e. indices on keys only)
- Case 2: complex access paths (add indices on fk’s)

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)
End-Effect on Query Runtime

Do poor cardinality estimators lead to worse runtime?
• Case 1: simple access paths (i.e. indices on keys only)
• Case 2: complex access paths (add indices on fk’s)

Base runtime: query optimized with true cardinalities

Several queries suffered significantly from poor estimates

Figure 7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardinalities (different index configurations)
Cost Model

- Given the estimated cardinality, need to estimate actual cost = weighted sum of I/O cost plus CPU cost (x400)
- What are the main takeaways?
Cost Model

- Given the estimated cardinality, need to estimate actual cost = weighted sum of I/O cost plus CPU cost (x400)
- What are the main takeaways?
Cost Model

• Given the estimated cardinality, need to estimate actual cost = weighted sum of I/O cost plus CPU cost (x400)

• What are the main takeaways?
Cost Model

• Given the estimated cardinality, need to estimate actual cost = weighted sum of I/O cost plus CPU cost (x400)

• What are the main takeaways?

Current cost model

Increase CPU weight x50

Just use a simple formula

Figure 8: Predicted cost vs. runtime for different cost models
Structural Query Optimization

• Studied by the theory community, little implementation
• Most critical for “aggregate push-down”

```
select count(*) from Author, Publication;
-- takes forever! But should take 2-3 seconds (why?)
```
Conjunctive Queries

• Definition:
 \[Q(X) :- R_1(X_1), R_2(X_2), ..., R_m(X_m) \]

• Same as a single datalog rule

• Terminology:
 – Atoms
 – Head variables
 – Existential variables

• CQ = denotes the set of conjunctive queries
Examples

• Example of CQ

\[
q(x,y) = \exists z. (R(x,z) \land \exists u. (R(z,u) \land R(u,y)))
\]

\[
q(x) = \exists z. \exists u. (R(x,z) \land R(z,u) \land R(u,y))
\]

• Examples of non-CQ:

\[
q(x,y) = S(x,y) \land \forall z. (R(x,z) \rightarrow R(y,z))
\]

\[
q(x) = T(x) \lor \exists z. S(x,z)
\]
Types of CQ

• **Full** CQ: head variables are all variables
 \[Q(x, y, z, u) :- R(x, y), S(y, z), T(z, u) \]

• **Boolean** CQ: no head variables
 \[Q() :- R(x, y), S(y, z), T(z, u) \]

• With or without **self-joins**:
 \[Q(x, u) :- R(x, y), S(y, z), R(z, u) \]
 \[Q(x, u) :- R(x, y), S(y, z), T(z, u) \]
Extensions

• With **inequalities** $CQ^<$:
 $$Q(x) :- R(x,y), S(y,z), T(z,u), y < u$$

• With **disequalities** CQ^\neq:
 $$Q(x) :- R(x,y), S(y,z), T(z,u), y \neq u$$

• With **aggregates**:
 $$Q(x, \text{count(*)}) : - R(x,y), S(y,z), T(z,u)$$
 $$Q(x, \text{sum(u)}) : - R(x,y), S(y,z), T(z,u)$$
Question in Class

- $Q(x,w) :- R(x,y), S(y,z), T(z,u), K(u,v), L(v,w)$

- Assume $|R| = |S| = |T| = |K| = |L| = N$

- What is the complexity of Q?
Question in Class

• $Q(x,w) :- R(x,y), S(y,z), T(z,u), K(u,v), L(v,w)$

• Assume $|R| = |S| = |T| = |K| = |L| = N$

• What is the complexity of Q?

• What is the complexity of this plan?
Question in Class

- $Q(x,w) : - R(x,y), S(y,z), T(z,u), K(u,v), L(v,w)$
- Assume $|R| = |S| = |T| = |K| = |L| = N$
- What is the complexity of Q?
- What is the complexity of this plan?
- Can you find a more efficient plan?
Question in Class

- Push projections down:
 What about this complexity?

- Can we still improve?
Semijoin Optimizations REVIEW

- In parallel databases: often combined with Bloom Filters (pp. 747 in the textbook)

- Magic sets for datalog were invented after semi-join reductions, and the connection became clear only later

- Some complex semi-join reductions for non-recursive SQL optimizations are sometimes called “magic sets”
SemijoinReducer

• Given a query:

\[Q = R_1 \Join R_2 \Join \ldots \Join R_n \]

• A **semijoin reducer** for \(Q \) is

\[
\begin{align*}
R_{i1} &= R_{i1} \Join R_{j1} \\
R_{i2} &= R_{i2} \Join R_{j2} \\
\ldots \ldots \\
R_{ip} &= R_{ip} \Join R_{jp}
\end{align*}
\]

such that the query is equivalent to:

\[Q = R_{k1} \Join R_{k2} \Join \ldots \Join R_{kn} \]

• A **full reducer** is such that no dangling tuples remain
Example

• Example:

$$Q = R(A,B) \Join S(B,C)$$

• A semijoin reducer is:

$$R_1(A,B) = R(A,B) \Join S(B,C)$$

• The rewritten query is:

$$Q = R_1(A,B) \Join S(B,C)$$
Semijoin Reducer

• More complex example:
 \[Q(y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b') \]

• Find a full reducer
Semijoin Reducer

• More complex example:

\[Q(y, z, u) = R('a', y), S(y, z), T(z, u), K(u, 'b') \]

• Find a full reducer
Semijoin Reducer

- More complex example:

\[
Q(y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b')
\]

- Find a full reducer

\[
\begin{align*}
S'(y,z) & : - S(y,z) \bowtie R('a', y) \\
T'(z,u) & : - T(z,u) \bowtie S'(y,z) \\
K'(u) & : - K(u,'b') \bowtie T'(z,u) \\
T''(z,u) & : - T'(z,u) \bowtie K'(u) \\
S''(y,z) & : - S'(y,z) \bowtie T''(z,u) \\
R''(y) & : - R('a', y) \bowtie S''(y,z)
\end{align*}
\]
Semijoin Reducer

- More complex example:

 \[Q(y,z,u) = R('a', y), S(y,z), T(z,u), K(u,'b') \]

- Find a full reducer:

 \[
 \begin{align*}
 S'(y,z) & :- S(y,z) \bowtie R('a', y) \\
 T'(z,u) & :- T(z,u) \bowtie S'(y,z) \\
 K'(u) & :- K(u,'b') \bowtie T'(z,u) \\
 T''(z,u) & :- T'(z,u) \bowtie K'(u) \\
 S''(y,z) & :- S'(y,z) \bowtie T''(z,u) \\
 R''(y) & :- R('a',y) \bowtie S''(y,z)
 \end{align*}
 \]

- Finally, compute:

 \[Q(y,z,u) = R''(y), S''(y,z), T''(z,u), K''(u) \]
Practice at Home...

• Find semi-join reducer for
 \(R(x,y), S(y,z), T(z,u), K(u,v), L(v,w) \)
Not All Queries Have Full Reducers

• Example:

\[Q = R(A,B) \bowtie S(B,C) \bowtie T(A,C) \]

• Can write many different semi-join reducers

• But no full reducer of length \(O(1) \) exists
Acyclic Queries

- Fix a Conjunctive Query without self-joins

- Q is **acyclic** if its atoms can be organized in a tree such that for every variable the set of nodes that contain that variable form a connected component
Yannakakis Algorithm

• Given: acyclic query Q
• Compute Q on any database in time $O(|\text{Input}| + |\text{Output}|)$

• Step 1: semi-join reduction
 – Pick any root node x in the tree decomposition of Q
 – Do a semi-join reduction sweep from the leaves to x
 – Do a semi-join reduction sweep from x to the leaves

• Step 2: compute the joins bottom up, with early projections
Examples in Class

R(x,y), S(y,z,u), T(y,z,w), K(z,v), L(v,m)

- Boolean query: Q() :- ...

- Non-boolean: Q(x,m) :- ...

- With aggregate: Q(x,sum(m)) :- ...

- And also: Q(x,count(∗)) :- ...

In all cases: runtime = O(|R|+|S|+...+|L| + |Output|)
Testing if Q is Acyclic

• An **ear** of Q is an atom R(X) with the following property:
 – Let \(X' \subseteq X \) be the set of join variables (meaning: they occur in at least one other atom)
 – There exists some other atom S(Y) such that \(X' \subseteq Y \)

• The GYO algorithm (Graham,Yu, Özsoyoğlu) for testing if Q is acyclic:
 – While Q has an ear R(X), remove the atom R(X) from the query
 – If all atoms were removed, then Q is acyclic
 – If atoms remain but there is no ear, then Q is cyclic

• Show example in class
Tree Decomposition

Def Tree decomposition is \((T, \chi)\), \(\chi:\text{Nodes}(T) \rightarrow 2^{\text{Vars}(Q)}\) s.t.:

1. \(\forall A \in \text{Atoms}(Q) \exists t \in \text{Nodes}(T), \text{Vars}(A) \subseteq \chi(t)\)
2. \(\forall x \in \text{Vars}(Q), \{t | x \in \chi(t)\}\) is connected

\[
Q(x,\ldots,m) = R(x,y) \land A(y,s) \land B(x,s) \land S(y,z,u) \land T(y,z,w) \land C(z,w,t) \land D(w,t,y) \\
\land E(t,y,z) \land K(z,v) \land F(z,v) \land L(v,m)
\]
Tree Decomposition

Def Tree decomposition is \((T, \chi)\), \(\chi:\text{Nodes}(T) \to 2^{\text{Vars}(Q)}\) s.t.:

1. \(\forall A \in \text{Atoms}(Q) \quad \exists t \in \text{Nodes}(T), \quad \text{Vars}(A) \subseteq \chi(t)\)
2. \(\forall x \in \text{Vars}(Q), \quad \{t \mid x \in \chi(t)\} \) is connected

Q\((x,\ldots,m) = R(x,y) \land A(y,s) \land B(x,s) \land S(y,z,u) \land T(y,z,w) \land C(z,w,t) \land D(w,t,y) \land E(t,y,z) \land K(z,v) \land F(z,v) \land L(v,m)\)

full CQ: \(Q_t(x,y,s) = R(x,y) \land A(y,s) \land B(x,s)\)
Tree Decomposition

Def *Tree decomposition* is \((T, \chi)\), \(\chi: \text{Nodes}(T) \rightarrow 2^{	ext{Vars}(Q)}\) s.t.:

1. \(\forall A \in \text{Atoms}(Q) \exists t \in \text{Nodes}(T), \ \text{Vars}(A) \subseteq \chi(t)\)
2. \(\forall x \in \text{Vars}(Q), \ \{t \mid x \in \chi(t)\}\) is connected

\[Q(x, \ldots, m) = R(x,y) \land A(y,s) \land B(x,s) \land S(y,z,u) \land T(y,z,w) \land C(z,w,t) \land D(w,t,y) \land E(t,y,z) \land K(z,v) \land F(z,v) \land L(v,m)\]

full CQ: \(Q_t(x,y,s) = R(x,y) \land A(y,s) \land B(x,s)\)
Tree Decomposition

Def *Tree decomposition* is \((T, \chi)\), \(\chi: \text{Nodes}(T) \rightarrow 2^\text{Vars(Q)}\) s.t.:

1. \(\forall A \in \text{Atoms}(Q) \exists t \in \text{Nodes}(T), \ \text{Vars}(A) \subseteq \chi(t)\)
2. \(\forall x \in \text{Vars}(Q), \ \{t \mid x \in \chi(t)\}\) is connected

\[
Q(x,\ldots,m) = R(x,y) \land A(y,s) \land B(x,s) \land S(y,z,u) \land T(y,z,w) \land C(z,w,t) \land D(w,t,y) \land E(t,y,z) \land K(z,v) \land F(z,v) \land L(v,m)
\]

Computing \(Q(D)\):

1. Compute all full CQ’s \(Q_t\)
2. Run Yannakakis’ on the join tree

Time \(O(\text{N}?? + |\text{Output}|)\)
Tree-width

\[\text{Def } \text{tw}(Q) = \min_T \max_{t \in \text{Nodes}(T)} |\text{Vars}(Q_t)| - 1 \]

\[\text{tw}(Q) = 3 \]

Naïve iteration for \(Q_t \):
Runtime for \(Q \): \(O(N^{\text{tw}(Q)+1} + |\text{Output}|) \)
Generalized Hypertree Width

Definition
$\text{ghtw}(Q) = \min_T \max_{t \in \text{Nodes}(T)} \rho(Q_t)$

- $\rho = 2$
 - $R(x,y)$
 - $A(y,s), B(x,s)$
 - $S(y,z,u)$
 - $T(y,z,w), C(z,w,t)$
 - $D(w,t,y), E(t,y,z)$

- $\rho = 1$
 - $K(z,v), F(z,v)$
 - $L(v,m)$

$\text{ghtw}(Q) = 2$

$\rho = 2$

Nested loop join for Q_t:

Runtime for Q:
$O(\text{ghtw}(Q) + |\text{Output}|)$
Fractional Hypertree Width

Def \(fhtw(Q) = \min_T \max_{t \in \text{Nodes}(T)} \rho^*(Q_t) \)

- \(\rho^* = \frac{3}{2} \)
- \(fhtw(Q) = \frac{3}{2} \)
- \(\rho^* = \frac{4}{3} \)
- \(\rho^* = 1 \)
- \(\rho^* = 1 \)
- \(\rho^* = 1 \)

E.g. LFTJ algorithm for \(Q_t \)
Runtime for \(Q \): \(O(N^{fhtw(Q)} + |\text{Output}|) \)
Best Algorithm

• Choose *optimal tree* T for Q
• Compute full CQ Q_t for all $t \in \text{Nodes}(T)$
• Run Yannakakis algorithm on the join tree

Total time = $O(N^{\text{fhtw}(Q)} + |\text{Output}|)$