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Management Systems 

Lecture 11 – Optimization Wrap-up 
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Announcments 

•  HW3 due on Friday! 

•  Don’t neglect the project 
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Will Discuss the Paper 

•  How good are query optimizers, Really? 
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Basic Cardinality Estimation 

•  What are the basic assumptions made in cardinality 
estimation? 

•  How is the join size estimated? 
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Basic Cardinality Estimation 

•  What are the basic assumptions made in cardinality 
estimation? 

•  How is the join size estimated? 

CSE 544 - Winter 2018 5 



Benchmarks 

•  What are the traditional database benchmarks? 
–  TPC with several benchmarks: TPC/H, TPC/DS, ... 

•  Why are they poor tools for evaluating cardinality 
estimators? 
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Subplans 

•  For which subplans does an optimizer need to estimate 
the cardinality? 
 
σx=5(A) ⨝A.bid=B.id B ⨝B.cid=C.id C  
 
where id = primary key;   bid, cid = foreign keys 
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Subplans 

•  For which subplans does an optimizer need to estimate 
the cardinality? 
 
σx=5(A) ⨝A.bid=B.id B ⨝B.cid=C.id C  
 
where id = primary key;   bid, cid = foreign keys 

•  σx=5(A) 
σx=5(A) ⨝A.bid=B.id B 
B ⨝B.cid=C.id C 
σx=5(A) ⨝A.bid=B.id B ⨝B.cid=C.id C  
If index on the fk A.bid, then A ⨝A.bid=B.id B  why??  
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Discuss Main Graph 
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Discuss Main Graph 
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Sample-based Sample-based?? 



Samples v.s. Distinct Values 

•  Estimate σx=5(A) 
–  Distinct values:  |σx=5(A)| ≈ T(A) / V(A,x)   (= |A| / Dom(A.x)) 
–  Sample: keep a sample SA, use Thomson’s estimator: 

 |σx=5(A)| ≈ |σx=5(SA)| * |A| / |SA| 
–  HyPer and possibly System A use samples 

•  Discuss pros and cons of sampling-based estimate 
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Samples v.s. Distinct Values 

•  Estimate σx=5(A) 
–  Distinct values:  |σx=5(A)| ≈ T(A) / V(A,x)   (= |A| / Dom(A.x)) 
–  Sample: keep a sample SA, use Thomson’s estimator: 

 |σx=5(A)| ≈ |σx=5(SA)| * |A| / |SA| 
–  HyPer and possibly System A use samples 

•  Discuss pros and cons of sampling-based estimate 
–  Pros: very good for single table; correlated attributes; complex 

predicates (A.x like “%Johnson%”) 
–  Cons: return estimate 0 if sample doesn’t contain predicate; do 

not work for joins (explain in class) 
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End-Effect on Query Runtime 

Do poor cardinality estimators lead to worse runtime? 
•  Case 1: simple access paths (i.e. indices on keys only) 
•  Case 2: complex access paths (add indices on fk’s) 
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End-Effect on Query Runtime 

Do poor cardinality estimators lead to worse runtime? 
•  Case 1: simple access paths (i.e. indices on keys only) 
•  Case 2: complex access paths (add indices on fk’s) 
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Base runtime: 
query optimized 

with true cardinalities 

Several queries suffered 
significantly from poor 

estimates 



Cost Model 

•  Given the estimated cardinality, need to estimate actual 
cost = weighted sum of I/O cost plus CPU cost (x400) 

•  What are the main takeaways? 
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Cost Model 

•  Given the estimated cardinality, need to estimate actual 
cost = weighted sum of I/O cost plus CPU cost (x400) 

•  What are the main takeaways? 
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w/ postgres’ 
estimator w/ true 

cardinalities 



Cost Model 

•  Given the estimated cardinality, need to estimate actual 
cost = weighted sum of I/O cost plus CPU cost (x400) 

•  What are the main takeaways? 

21 

w/ postgres’ 
estimator w/ true 

cardinalities 

Current cost model 

Increase CPU weight x50 

Just use a simple formula 



Structural Query Optimization 

•  Studied by the theory community, little implementation 
•  Most critical for “aggregate push-down” 

 
select count(*) from Author, Publication; 
-- takes forever!  But should take 2-3 seconds (why?) 
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Conjunctive Queries 

•  Definition: 
 Q(X) :- R1(X1), R2(X2), ..., Rm(Xm) 

•  Same as a single datalog rule 
•  Terminology: 

–  Atoms 
–  Head variables 
–  Existential variables 

•  CQ = denotes the set of conjunctive queries 
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Examples 

•  Example of CQ 

•  Examples of non-CQ: 

q(x,y) = ∃z.(R(x,z) ∧ ∃u.(R(z,u) ∧ R(u,y))) 
 
q(x) = ∃z.∃u.(R(x,z) ∧ R(z,u) ∧ R(u,y)) 

q(x,y) = S(x,y)∧∀z.(R(x,z) à R(y,z))  
 
q(x) = T(x) ∨ ∃z.S(x,z) 



Types of CQ 

•  Full CQ: head variables are all variables 
 Q(x,y,z,u) :- R(x,y),S(y,z),T(z,u) 

•  Boolean CQ: no head variables 
 Q() :- R(x,y),S(y,z),T(z,u) 

•  With or without self-joins: 
 Q(x,u) :- R(x,y),S(y,z),R(z,u) 
 Q(x,u) :- R(x,y),S(y,z),T(z,u) 
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Extensions 

•  With inequalities CQ<: 
 Q(x) :- R(x,y),S(y,z),T(z,u),y<u 

•  With disequalities CQ≠: 
 Q(x) :- R(x,y),S(y,z),T(z,u),y≠u 

•  With aggregates: 
 Q(x,count(*)) :- R(x,y),S(y,z),T(z,u) 
 Q(x, sum(u)) :- R(x,y),S(y,z),T(z,u) 
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Question in Class 

•  Q(x,w) :- R(x,y),S(y,z),T(z,u),K(u,v),L(v,w) 

•  Assume |R|=|S|=|T|=|K|=|L| = N 

•  What is the complexity of Q? 
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Question in Class 

•  Q(x,w) :- R(x,y),S(y,z),T(z,u),K(u,v),L(v,w) 

•  Assume |R|=|S|=|T|=|K|=|L| = N 

•  What is the complexity of Q? 

•  What is the complexity of this plan? 
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Question in Class 

•  Q(x,w) :- R(x,y),S(y,z),T(z,u),K(u,v),L(v,w) 

•  Assume |R|=|S|=|T|=|K|=|L| = N 

•  What is the complexity of Q? 

•  What is the complexity of this plan? 

•  Can you find a more efficient plan? 
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Question in Class 

•  Push projections down: 
What about this complexity? 

•  Can we still improve? 

⨝ 

T(z,u) 

R(x,y) 

⨝ 

K(u,v) 

⨝ 
S(y,z) 

⨝ 

L(v,w) 

Πxw 

Πxz 

Πxu 

Πxu 



Semijoin Optimizations REVIEW 

•  In parallel databases: often combined with Bloom Filters 
(pp. 747 in the textbook) 

•  Magic sets for datalog were invented after semi-join 
reductions, and the connection became clear only later 

•  Some complex semi-join reductions for non-recursive 
SQL optimizations are sometimes called “magic sets” 
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Semijoin Reducer 

•  Given a query: 

•  A semijoin reducer for Q is  
 
 
 
such that the query is equivalent to: 

•  A full reducer is such that no dangling tuples remain 

Q =  Rk1  ⨝ Rk2 ⨝ . . . ⨝ Rkn  

Ri1  = Ri1 ⋉  Rj1 
Ri2  = Ri2 ⋉  Rj2 

. . . . . 
Rip  = Rip ⋉  Rjp 

CSE 544 - Winter 2018 

Q =  R1  ⨝ R2 ⨝ . . . ⨝ Rn 
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Example 

•  Example: 

•  A semijoin reducer is: 

•  The rewritten query is: 

Q = R(A,B) ⨝ S(B,C) 

R1(A,B) = R(A,B) ⋉ S(B,C) 

Q = R1(A,B) ⨝ S(B,C) 
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Semijoin Reducer 

•  More complex example: 

•  Find a full reducer 
Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)  
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Semijoin Reducer 

•  More complex example: 

•  Find a full reducer 
Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)  

K(u,’b’) 

T(z,u) 

S(y,z) 

R(‘a’, y) 
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Semijoin Reducer 

•  More complex example: 

•  Find a full reducer 
Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’)  

S’(y,z) :- S(y,z) ⋉ R(‘a’, y) 
T’(z,u) :- T(z,u) ⋉ S’(y,z) 
K’(u) :-  K(u,’b’) ⋉ T’(z,u) 
T’’(z,u) :- T’(z,u) ⋉ K’(u) 
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u) 
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z) 

K(u,’b’) 

T(z,u) 

S(y,z) 

R(‘a’, y) 
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Semijoin Reducer 

•  More complex example: 

•  Find a full reducer 

•  Finally, compute: 

Q(y,z,u) = R(‘a’, y), S(y,z), T(z,u), K(u,’b’) 

S’(y,z) :- S(y,z) ⋉ R(‘a’, y) 
T’(z,u) :- T(z,u) ⋉ S’(y,z) 
K’(u) :-  K(u,’b’) ⋉ T’(z,u) 
T’’(z,u) :- T’(z,u) ⋉ K’(u) 
S’’(y,z) :- S’(y,z) ⋉ T’’(z,u) 
R’’(y) :- R(‘a’,y) ⋉ S’’(y,z) 

Q(y,z,u) = R’’(y), S’’(y,z), T’’(z,u), K’’(u)  

K(u,’b’) 

T(z,u) 

S(y,z) 

R(‘a’, y) 



Practice at Home... 

•  Find semi-join reducer for 
R(x,y),S(y,z),T(z,u),K(u,v),L(v,w) 
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Not All Queries Have Full Reducers 

•  Example:  

•  Can write many different semi-join reducers 

•  But no full reducer of length O(1) exists 

Q = R(A,B) ⨝ S(B,C) ⨝ T(A,C) 



Acyclic Queries 

•  Fix a Conjunctive Query without self-joins 

•  Q is acyclic if its atoms can be organized in a tree 
such that for every variable the set of nodes that 
contain that variable form a connected component 
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R(x,y) 

S(y,z,u) 

T(y,z,w) 

K(z,v) 

L(v,m) 

R(x,y) 

S(y,z) 
T(z,x) 

Acyclic R(x,y),S(y,z),T(z,x) 
is cyclic 



Yannakakis Algorithm 

•  Given: acyclic query Q 
•  Compute Q on any database in time O(|Input|+|Output|) 

•  Step 1: semi-join reduction 
–  Pick any root node x in the tree decomposition of Q 
–  Do a semi-join reduction sweep from the leaves to x 
–  Do a semi-join reduction sweep from x to the leaves 

•  Step 2: compute the joins bottom up, with early 
projections 
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Examples in Class 

R(x,y),S(y,z,u),T(y,z,w),K(z,v),L(v,m) 
•  Boolean query: Q() :- ... 

•  Non-boolean: Q(x,m) :- ... 

•  With aggregate: Q(x,sum(m)) :- ... 

•  And also:  Q(x,count(*)) :- ... 

R(x,y) 

S(y,z,u) 

T(y,z,w) 

K(z,v) 

L(v,m) 

In all cases: runtime = O(|R|+|S|+...+|L| +  |Output|) 



Testing if Q is Acyclic 

•  An ear of Q is an atom R(X) with the following property: 
–  Let X’ ⊆ X  be the set of join variables (meaning: they occur in at 

least one other atom) 
–  There exists some other atom S(Y) such that X’ ⊆ Y 

•  The GYO algorithm (Graham,Yu,Özsoyoğlu) for testing if 
Q is acyclic: 
–  While Q has an ear R(X), remove the atom R(X) from the query 
–  If all atoms were removed, then Q is acyclic 
–  If atoms remain but there is no ear, then Q is cyclic 

•  Show example in class 
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Tree Decomposition 

x,y,s 

y,z,u 

y,z,w,t 

z,v v,m 

44 DAGSTUHL 2017 

Def  Tree decomposition is (T, χ), χ:Nodes(T)à2Vars(Q) s.t.: 
(1) ∀A∈Atoms(Q)  ∃t∈ Nodes(T),  Vars(A) ⊆ χ(t) 
(2) ∀x∈Vars(Q), {t | x ∈χ(t)} is connected 

Q(x,...,m) = R(x,y)∧A(y,s)∧B(x,s)∧S(y,z,u)∧T(y,z,w)∧C(z,w,t)∧D(w,t,y) 
                ∧E(t,y,z)∧K(z,v)∧F(z,v)∧L(v,m) 



Tree Decomposition 

x,y,s 

y,z,u 

y,z,w,t 

z,v v,m 

45 DAGSTUHL 2017 

full CQ: Qt(x,y,s) = 
R(x,y)∧A(y,s)∧B(x,s) 

Def  Tree decomposition is (T, χ), χ:Nodes(T)à2Vars(Q) s.t.: 
(1) ∀A∈Atoms(Q)  ∃t∈ Nodes(T),  Vars(A) ⊆ χ(t) 
(2) ∀x∈Vars(Q), {t | x ∈χ(t)} is connected 

Q(x,...,m) = R(x,y)∧A(y,s)∧B(x,s)∧S(y,z,u)∧T(y,z,w)∧C(z,w,t)∧D(w,t,y) 
                ∧E(t,y,z)∧K(z,v)∧F(z,v)∧L(v,m) 



Tree Decomposition 

R(x,y), 
A(y,s),B(x,s) 

S(y,z,u) 

T(y,z,w),C(z,w,t) 
D(w,t,y),E(t,y,z) 

K(z,v),F(z,v) L(v,m) 
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Def  Tree decomposition is (T, χ), χ:Nodes(T)à2Vars(Q) s.t.: 
(1) ∀A∈Atoms(Q)  ∃t∈ Nodes(T),  Vars(A) ⊆ χ(t) 
(2) ∀x∈Vars(Q), {t | x ∈χ(t)} is connected 

Q(x,...,m) = R(x,y)∧A(y,s)∧B(x,s)∧S(y,z,u)∧T(y,z,w)∧C(z,w,t)∧D(w,t,y) 
                ∧E(t,y,z)∧K(z,v)∧F(z,v)∧L(v,m) 

full CQ: Qt(x,y,s) = 
R(x,y)∧A(y,s)∧B(x,s) 



Tree Decomposition 

R(x,y), 
A(y,s),B(x,s) 

S(y,z,u) 

T(y,z,w),C(z,w,t) 
D(w,t,y),E(t,y,z) 

K(z,v),F(z,v) L(v,m) 

Computing Q(D): 
(1) Compute all full CQ’s Qt 
(2) Run Yannakakis’ on the join tree 
Time O(N?? + |Output|) 

Def  Tree decomposition is (T, χ), χ:Nodes(T)à2Vars(Q) s.t.: 
(1) ∀A∈Atoms(Q)  ∃t∈ Nodes(T),  Vars(A) ⊆ χ(t) 
(2) ∀x∈Vars(Q), {t | x ∈χ(t)} is connected 

Q(x,...,m) = R(x,y)∧A(y,s)∧B(x,s)∧S(y,z,u)∧T(y,z,w)∧C(z,w,t)∧D(w,t,y) 
                ∧E(t,y,z)∧K(z,v)∧F(z,v)∧L(v,m) 

full CQ: Qt(x,y,s) = 
R(x,y)∧A(y,s)∧B(x,s) 



Tree-width 

R(x,y), 
A(y,s),B(x,s) 

S(y,z,u) 

T(y,z,w),C(z,w,t) 
D(w,t,y),E(t,y,z) 

K(z,v),F(z,v) L(v,m) 

x,y,s 

y,z,u 

y,z,w,t 

z,v v,m 

Naïve iteration for Qt: 
Runtime for Q: O(Ntw(Q)+1 + |Output|) 

Def tw(Q) = minT maxt ∈Nodes(T) |Vars(Qt)| - 1 

tw(Q) = 3 



Generalized Hypertree Width 

R(x,y), 
A(y,s),B(x,s) 

S(y,z,u) 

T(y,z,w),C(z,w,t) 
D(w,t,y),E(t,y,z) 

K(z,v),F(z,v) L(v,m) 

ρ=2 

ρ=1 ρ=2 
ρ=1 ρ=1 

Nested loop join for Qt: 
Runtime for Q: O(Nghtw(Q)+ |Output|) 

Def ghtw(Q) = minT maxt ∈Nodes(T) ρ(Qt) 

ghtw(Q) = 2 

ρ = edge covering 
number  



Fractional Hypertree Width 

E.g. LFTJ algorithm for Qt 
Runtime for Q: O(Nfhtw(Q)+ |Output|) 

R(x,y), 
A(y,s),B(x,s) 

S(y,z,u) 

T(y,z,w),C(z,w,t) 
D(w,t,y),E(t,y,z) 

K(z,v),F(z,v) L(v,m) 

ρ*=3/2 

ρ*=1 ρ*=4/3 
ρ*=1 ρ*=1 

1/2 

1/2 1/2 

1/3 1/3 

1/3 1/3 

1 0 

1 

1 

Def fhtw(Q) = minT maxt ∈Nodes(T) ρ*(Qt) 

fhtw(Q) = 3/2 

ρ* = Fractional 
edge covering 

number  



Best Algorithm 

•  Choose optimal tree T for Q 
•  Compute full CQ Qt  for all t ∈Nodes(T) 
•  Run Yannakakis algorithm on the join tree 

Total time = O(Nfhtw(Q)+ |Output|) 

51 DAGSTUHL 2017 


