
CSE 544
Principles of Database
Management Systems

Lectures 7 and 8
DBMS Architecture and Query Execution

CSE 544 - Winter 2018 1

Announcements

•  Project proposals: please sign up for a 15’ meeting on
Friday
–  You will present your proposal (5’)
–  We discuss it (5’)
–  Additional questions/comments (5’)

•  Homework 2 is due on Friday

•  Homework 3 is posted

CSE 544 - Winter 2018 2

CSE 544 - Winter 2018

Outline

•  Architecture of a DBMS

•  Steps involved in processing a query

•  Operator implementations

3

Architecture of DBMS

•  Reading:
Architecture of a DBMS, chap. 1 and 2

CSE 544 - Winter 2018 4

Architecture of DBMS

CSE 544 - Winter 2018 5

Why Multiple Processes

•  DBMS listens to requests from clients

•  Each request = one SQL command

•  Need to handle multiple requests concurrently,
hence, multiple processes

CSE 544 - Winter 2018 6

Multiple Processes

CSE 544 - Winter 2018 7

Process Models

Discuss pro/cons for each model

•  Process per DBMS worker

•  Thread per DBMS worker

•  Process pool

CSE 544 - Winter 2018 8

Admission Control

CSE 544 - Winter 2018 9

What is it?

CSE 544 - Winter 2018

Outline

•  Architecture of a DBMS

•  Steps involved in processing a query

•  Operator implementations

10

Query Optimization

CSE 544 - Winter 2018 11

Lifecycle of a Query

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

12

CSE 544 - Winter 2018

Example Database Schema

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

View: Suppliers in Seattle
CREATE VIEW NearbySupp AS

SELECT sno, sname

FROM Supplier

WHERE scity='Seattle' AND sstate='WA'

13

CSE 544 - Winter 2018

Example Query

•  Find the names of all suppliers in Seattle who supply part
number 2

SELECT sname FROM NearbySupp
WHERE sno IN (SELECT sno

 FROM Supplies

 WHERE pno = 2)

14

CSE 544 - Winter 2018

Lifecycle of a Query (1)

•  Step 0: admission control
–  User connects to the db with username, password
–  User sends query in text format

•  Step 1: Query parsing
–  Parses query into an internal format
–  Performs various checks using catalog:

Correctness, authorization, integrity constraints

•  Step 2: Query rewrite
–  View rewriting, flattening, decorrelation, etc.

15

CSE 544 - Winter 2018

View Rewriting, Flattening

Original query:
SELECT sname
FROM NearbySupp
WHERE sno IN (SELECT sno
 FROM Supplies
 WHERE pno = 2)

Rewritten query:
SELECT S.sname
FROM Supplier S, Supplies U
WHERE S.scity='Seattle' AND S.sstate='WA’
AND S.sno = U.sno
AND U.pno = 2;

16

View rewriting
 = view inlining
 = view expansion

Flattening
 = unnesting

CSE 544 - Winter 2018

Decorrelation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and not exists
 (SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100)

17

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and not exists
 (SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100)

CSE 544 - Winter 2018

Decorrelation

18

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

CSE 544 - Winter 2018

Decorrelation

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and not exists
 (SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100)

19

De-Correlation

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and Q.sno not in
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

Decorrelation

20

Un-nesting

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and Q.sno not in
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

(SELECT Q.sno
 FROM Supplier Q
 WHERE Q.sstate = ‘WA’)
 EXCEPT
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

EXCEPT = set difference

CSE 544 - Winter 2018

CSE 544 - Winter 2018

Decorrelation

Supply

σsstate=‘WA’

Supplier

σPrice > 100

21

−

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Finally…

πsno πsno

(SELECT Q.sno
 FROM Supplier Q
 WHERE Q.sstate = ‘WA’)
 EXCEPT
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

CSE 544 - Winter 2018

Lifecycle of a Query (2)

•  Step 3: Query optimization
–  Find an efficient query plan for executing the query
–  We will spend next lecture on this topic

•  A query plan is
–  Logical query plan: an extended relational algebra tree
–  Physical query plan: with additional annotations at each node

22

CSE 544 - Winter 2018

Extended Algebra Operators

•  Union ∪, intersection ∩, difference -
•  Selection σ
•  Projection π
•  Join
•  Duplicate elimination δ
•  Grouping and aggregation γ
•  Sorting τ
•  Rename ρ

23

Bag semantics!

CSE 544 - Winter 2018

Logical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

24

CSE 544 - Winter 2018

Query Block

•  Most optimizers operate on individual query blocks

•  A query block is an SQL query with no nesting
–  Exactly one

•  SELECT clause
•  FROM clause

–  At most one
•  WHERE clause
•  GROUP BY clause
•  HAVING clause

25

CSE 544 - Winter 2018

Typical Plan For Block

π fields

γ fields, sum/count/min/max(fields)

σhaving-condition

σwhere-condition

join condition

… …
26

SELECT-PROJECT-JOIN
Query

CSE 544 - Winter 2018

Physical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (Index lookup)

(Nested loop)

(On the fly)

(On the fly)

27

Physical plan=
Logical plan
+ choice of algorithms
+ choice of access path

Algorithm

Access path

CSE 544 - Winter 2018

Final Step in Query Processing

•  Step 4: Query execution
–  How to synchronize operators?
–  How to pass data between operators?

•  Standard approach:
–  Iterator interface and
–  Pipelined execution or
–  Intermediate result materialization

28

Implementing Query Operators with
the Iterator Interface

Each operator implements three methods:

•  open()

•  next()

•  close()

CSE 544 - Winter 2018 29

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Iterator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Iterator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
	
	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Iterator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Iterator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,	Operator	 	

							child)	{this.p	=	p;	
						this.child=child;	child.open();	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,	Operator	 	

							child)	{this.p	=	p;	
						this.child=child;	child.open();	
		}			
		Tuple	next	()	{	
	
	
	
	
	
	
	
	
		}			
	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,	Operator	 	

							child)	{this.p	=	p;	
						this.child=child;	child.open();	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				Tuple	r	=	null;	
				while	(!found)	{	
							r	=	child.next();	
							if	(r	==	null)	break;	
							found	=	p(r);	
				}	
	
		}			
	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,	Operator	 	

							child)	{this.p	=	p;	
						this.child=child;	child.open();	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				Tuple	r	=	null;	
				while	(!found)	{	
							r	=	child.next();	
							if	(r	==	null)	break;	
							found	=	p(r);	
				}	
				return	r;	
		}			
			
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,	Operator	 	

							child)	{this.p	=	p;	
						this.child=child;	child.open();	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				Tuple	r	=	null;	
				while	(!found)	{	
							r	=	child.next();	
							if	(r	==	null)	break;	
							found	=	p(r);	
				}	
				return	r;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators with
the Iterator Interface

39

	
	
Operator	q	=	parse(“SELECT	...”);	
q	=	optimize(q);	
	
q.open();	
while	(true)	{		
		Tuple	t	=	q.next();	
		if	(t	==	null)	break;	
		else	printOnScreen(t);	
}	
q.close();	

Query plan execution
interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

Pipelining

CSE 544 - Winter 2018 40

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 41

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 42

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) open()

open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 43

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) open()

open()

open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 44

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) open()

open()

open()

open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 45

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) open()

open()

open()

open() open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 46

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 47

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) next()

next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 48

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) next()

next()

next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 49

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) next()

next()

next()

next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 50

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) next()

next()

next()

next() next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 51

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) next()

next()

next()

next()
next()

next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 544 - Winter 2018 52

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss hash-join
in class

Pipelining

CSE 544 - Winter 2018 53

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss hash-join
in class

Tuples from
here are
pipelined

Pipelining

CSE 544 - Winter 2018 54

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss hash-join
in class

Tuples from
here are
pipelined

Tuples from
here are
“blocked”

Blocked Execution

CSE 544 - Winter 2018 55

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss merge-join
in class

Blocked Execution

CSE 544 - Winter 2018 56

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Blocked Blocked

Discuss merge-join
in class

CSE 544 - Winter 2018

Pipelined Execution

•  Applies parent operator to tuples directly as they are
produced by child operators

•  Benefits

–  No operator synchronization issues
–  Saves cost of writing intermediate data to disk
–  Saves cost of reading intermediate data from disk
–  Good resource utilizations on single processor

•  This approach is used whenever possible

57

CSE 544 - Winter 2018

Pipelined Execution

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (Index lookup)

(Nested loop)

(On the fly)

(On the fly)

58

CSE 544 - Winter 2018

Intermediate Tuple Materialization

•  Writes the results of an operator to an intermediate table
on disk

•  Necessary for some operator implementations
•  When operator needs to examine the same tuples

multiple times

59

CSE 544 - Winter 2018

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan: write to T2)

(On the fly)

σ pno=2

(Scan: write to T1)

Intermediate Tuple Materialization

60

Lifecycle of a Query

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

61

CSE 544 - Winter 2018

Outline

•  Architecture of a DBMS

•  Steps involved in processing a query

•  Operator implementations

62

Multiple Processes

CSE 544 - Winter 2018 63

64

The Mechanics of Disk

Mechanical characteristics:
•  Rotation speed (5400RPM)
•  Number of platters (1-30)
•  Number of tracks (<=10000)
•  Number of bytes/track(105)

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
 disk block
Once in memory:
 page
Typically: 4k or 8k or 16k

65

Disk Access Characteristics

•  Disk latency
–  Time between when command is issued and when data is in

memory
–  Equals = seek time + rotational latency

•  Seek time = time for the head to reach cylinder
–  10ms – 40ms

•  Rotational latency = time for the sector to rotate
•  Rotation time = 10ms
•  Average latency = 10ms/2

•  Transfer time = typically 40MB/s

Basic factoid: disks always read/write an entire block at a time

66

Buffer Management in a DBMS

•  Data must be in RAM for DBMS to operate on it!
•  Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

67

Buffer Manager

Needs to decide on page replacement policy

•  LRU
•  Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the
DBMS to assume that the
needed data is in main memory.

68

Arranging Pages on Disk

A disk is organized into blocks (a.k.a. pages)
•  blocks on same track, followed by
•  blocks on same cylinder, followed by
•  blocks on adjacent cylinder

A file should (ideally) consists of sequential blocks on disk,
to minimize seek and rotational delay.

For a sequential scan, pre-fetching several pages at a time
is a big win!

CSE 544 - Winter 2018

69

Issues

•  Managing free blocks

•  File Organization

•  Represent the records inside the blocks

•  Represent attributes inside the records

CSE 544 - Winter 2018

70

Managing Free Blocks

•  Linked list of free blocks

•  Or bit map

CSE 544 - Winter 2018

71

File Organization

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
Data
page

Data
page

Full pages

Pages with some free space

72

File Organization

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header

73

Page Formats

Issues to consider
•  1 page = fixed size (e.g. 8KB)
•  Records:

–  Fixed length
–  Variable length

•  Record id = RID
–  Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?

74

Page Formats

Fixed-length records: packed representation

Rec 1 Rec 2 Rec N

Free space N

Problems ?

One page

75

Page Formats

Free
space

Slot directory

Variable-length records

76

Record Formats: Fixed Length

•  Information about field types same for all records
in a file; stored in system catalogs.

•  Finding i’th field requires scan of record.
•  Note the importance of schema information!

Base address (B)

L1 L2 L3 L4

pid name descr maker

Address = B+L1+L2

Product(pid, name, descr, maker)

77

Record Header

L1 L2 L3 L4

To schema
length

timestamp (e.g. for MVCC)

Need the header because:
•  The schema may change

for a while new+old may coexist
•  Records from different relations may coexist

header

pid name descr maker

78

Variable Length Records

L1 L2 L3 L4

Other header information

length

Place the fixed fields first: F1
Then the variable length fields: F2, F3, F4
Null values take 2 bytes only
Sometimes they take 0 bytes (when at the end)

header pid name descr maker

79

BLOB

•  Binary large objects
•  Supported by modern database systems
•  E.g. images, sounds, etc.
•  Storage: attempt to cluster blocks together

CLOB = character large object
•  Supports only restricted operations

File Organizations

•  Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

•  Sorted Files Best if records must be retrieved in
some order, or only a `range’ of records is needed.

•  Indexes Data structures to organize records via trees
or hashing.
–  Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields
–  Updates are much faster than in sorted files.

80

Multiple Processes

CSE 544 - Winter 2018 81

CSE 544 - Winter 2018

Cost Parameters

•  In database systems the data is on disk

•  Parameters:
–  B(R) = # of blocks (i.e., pages) for relation R
–  T(R) = # of tuples in relation R
–  V(R, a) = # of distinct values of attribute a
–  M = # pages available in main memory

•  Cost = total number of I/Os

•  Convention: writing the final result to disk is not included
82

CSE 544 - Winter 2018

One-pass Algorithms

Selection σ(R), projection Π(R)
•  Both are tuple-at-a-time algorithms
•  Cost: B(R), the cost of scanning the relation

Input buffer Output buffer Unary
operator

83

CSE 544 - Winter 2018

Main Memory Join Algorithms

Three standard main memory algorithms:
•  Hash join
•  Nested loop join
•  Sort-merge join

Review in class

84

CSE 544 - Winter 2018

One Pass Hash Join

Hash join: R ⋈ S
•  Scan R, build buckets in main memory
•  Then scan S, probe hash table to join

•  Cost: B(R) + B(S)

•  One pass algorithm when B(R) <= M

85

CSE 544 - Winter 2018

Nested Loop Joins

•  Tuple-based nested loop R ⋈ S
•  R is the outer relation, S is the inner relation

•  Cost: B(R) + T(R) B(S)

for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)

86

CSE 544 - Winter 2018

Page-at-a-time Refinement

•  Cost: B(R) + B(R)B(S)

for each page of tuples r in R do
 for each page of tuples s in S do

 for all pairs of tuples
 if r and s join then output (r,s)

87

CSE 544 - Winter 2018

Nested Loop Joins

•  We can be much more clever

•  How would you compute the join in the following cases ?
What is the cost ?

–  B(R) = 1000, B(S) = 2, M = 4

–  B(R) = 1000, B(S) = 3, M = 4

–  B(R) = 1000, B(S) = 6, M = 4

88

CSE 544 - Winter 2018

for each (M-2) pages ps of S do
 for each page pr of R do
 for each tuple s in ps
 for each tuple r in pr do
 if r and s join then output(r,s)

Nested Loop Joins

•  Block Nested Loop Join
•  Group of (M-2) pages of S is called a “block”

89

Main memory
hash-join

ps ⋈ pr

CSE 544 - Winter 2018

Nested Loop Joins

. . .
. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

90

CSE 544 - Winter 2018

Nested Loop Joins

Cost of block-based nested loop join

•  Read S once: B(S)

•  Outer loop runs B(S)/(M-2) times,
each iteration reads the entire R: B(S)B(R)/(M-2)

•  Total cost: B(S) + B(S)B(R)/(M-2)

Notice: it is better to iterate over the smaller relation first

91

CSE 544 - Winter 2018

Sort-Merge Join

Sort-merge join: R ⋈ S
•  Scan R and sort in main memory
•  Scan S and sort in main memory
•  Merge R and S

•  Cost: B(R) + B(S)
•  One pass algorithm when B(S) + B(R) <= M
•  Typically, this is NOT a one pass algorithm

92

CSE 544 - Winter 2018

Example

Grouping:
 Product(name, department, quantity)
γdepartment, sum(quantity) (Product) à Answer(department, sum)

In class: describe a one-pass algorithms. Cost=?

93

CSE 544 - Winter 2018

Outline

•  Steps involved in processing a query
–  Logical query plan
–  Physical query plan
–  Query execution overview

•  Operator implementations
–  One pass algorithms
–  Two-pass algorithms
–  Index-based algorithms

94

CSE 544 - Winter 2018

Two-Pass Algorithms

•  When data is larger than main memory, need two or
more passes

•  Two key techniques
–  Hashing
–  Sorting

95

CSE 544 - Winter 2018

Two Pass Algorithms
Based on Hashing

•  Idea: partition a relation R into buckets, on disk
•  Each bucket has size approx. B(R)/M

M main memory buffers Disk Disk

Relation R
OUTPUT

2 INPUT

1

hash function
h M-1

Partitions

1

2

M-1
. . .

1

2

B(R)

•  Does each bucket fit in main memory ?
– Yes if B(R)/M <= M, i.e. B(R) <= M2

96

CSE 544 - Winter 2018

Hash Based Algorithms for γ

•  Recall: γ(R) = grouping and aggregation

•  Step 1. Partition R into buckets
•  Step 2. Apply γ to each bucket

•  Cost: 3B(R)
•  Assumption: B(R) <= M2

97

CSE 544 - Winter 2018

Partitioned (Grace) Hash Join

R ⋈ S
•  Step 1:

–  Hash S into M-1 buckets
–  Send all buckets to disk

•  Step 2
–  Hash R into M-1 buckets
–  Send all buckets to disk

•  Step 3
–  Join every pair of buckets

98

•  Partition both relations using hash fn h
•  R tuples in partition i will only match S tuples in partition i.

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash function
h M-1

Partitions

1

2

M-1
. . .

Partitioned Hash Join

99 CSE 544 - Winter 2018

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

Partitioned Hash Join

•  Read in partition of R, hash it using h2 (≠ h)
–  Build phase

•  Scan matching partition of S, search for matches
–  Probe phase

100 CSE 544 - Winter 2018

CSE 544 - Winter 2018

Partitioned Hash Join

•  Cost: 3B(R) + 3B(S)
•  Assumption: min(B(R), B(S)) <= M2

101

CSE 544 - Winter 2018

Hybrid Hash Join Algorithm

•  Assume we have extra memory available

•  Partition S into k buckets
t buckets S1 , …, St stay in memory
k-t buckets St+1, …, Sk to disk

•  Partition R into k buckets
–  First t buckets join immediately with S
–  Rest k-t buckets go to disk

•  Finally, join k-t pairs of buckets:
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk)

102

CSE 544 - Winter 2018

Hybrid Hash Join Algorithm

•  How to choose k and t ?
–  The first t buckets must fin in M: t/k * B(S) ≤ M
–  Need room for k-t additional pages: k-t ≤ M
–  Thus: t/k * B(S) + k-t ≤ M

•  Assuming t/k * B(S) ≫ k-t: t/k = M/B(S)

103

CSE 544 - Winter 2018

Hybrid Hash Join Algorithm

•  How many I/Os ?

•  Cost of partitioned hash join: 3B(R) + 3B(S)

•  Hybrid join saves 2 I/Os for a t/k fraction of buckets
•  Hybrid join saves 2t/k(B(R) + B(S)) I/Os

•  Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

104

CSE 544 - Winter 2018

External Sorting

•  Problem: Sort a file of size B with memory M

•  Where we need this:
–  ORDER BY in SQL queries
–  Several physical operators
–  Bulk loading of B+-tree indexes.

•  Will discuss only 2-pass sorting, for when B < M2

105

CSE 544 - Winter 2018

External Merge-Sort: Step 1

•  Phase one: load M pages in memory, sort

Disk Disk

.

Size M pages

Main memory

Runs of length M
#Runs = B(R)/M

106

CSE 544 - Winter 2018

External Merge-Sort: Step 2

•  Merge M – 1 runs into a new run
•  Result: runs of length M (M – 1)≈ M2

Disk Disk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

If B <= M2 then we are done

Main memory

107

CSE 544 - Winter 2018

External Merge-Sort

•  Cost:
–  Read+write+read = 3B(R)
–  Assumption: B(R) <= M2

•  Other considerations
–  In general, a lot of optimizations are possible

108

CSE 544 - Winter 2018

Two-Pass Algorithms
Based on Sorting

Grouping: γa, sum(b) (R)

Sort, then compute the sum(b) for each group of a’s
•  Step 1: sort chunks of size M, write

–  cost 2B(R)

•  Step 2: merge M-1 runs, combining groups by addition
–  cost B(R)

•  Total cost: 3B(R), Assumption: B(R) <= M2

109

CSE 544 - Winter 2018

Two-Pass Algorithms
Based on Sorting

Join R ⋈ S

•  Start by creating initial runs of length M, for R and S:

–  Cost: 2B(R)+2B(S)

•  Merge (and join) M1 runs from R, M2 runs from S:
–  Cost: B(R)+B(S)

•  Total cost: 3B(R)+3B(S)
•  Assumption:

–  R has M1=B(R)/M runs, S has M2=B(S)/M runs
–  M1 + M2 ≤ M
–  Hence: B(R)+B(S)≤ M2

110

Index

•  An additional file, that allows fast access to records in the
data file given a search key

•  The index contains (key, value) pairs:
–  The key = an attribute value (e.g., student ID or name)
–  The value = a pointer to the record

•  Could have many indexes for one table

111

Key = means here search key

CSE 544 - Winter 2018

Example 1:
Index on ID

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

112

10

20

50

200

220

240

420

800

CSE 544 - Winter 2018

Data File Student

Student

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID

113

Example 2:
Index on fName

CSE 544 - Winter 2018

Index Student_fName
on Student.fName

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

Index Organization

We need a way to represent indexes after loading into
memory so that they can be used
Several ways to do this:
•  Hash table
•  B+ trees – most popular

–  They are search trees, but they are not binary instead have
higher fanout

–  Will discuss them briefly next
•  Specialized indexes: bit maps, R-trees, inverted index

CSE 544 - Winter 2018 114

115

Review: Index Classification

•  Clustered/unclustered
–  Clustered = records close in index are close in data

•  Option 1: Data inside data file is sorted on disk
•  Option 2: Store data directly inside the index (no separate files)

–  Unclustered = records close in index may be far in data
•  Primary/secondary

–  Meaning 1:
•  Primary = is over attributes that include the primary key
•  Secondary = otherwise

–  Meaning 2: means the same as clustered/unclustered
•  Organization B+ tree or Hash table

CSE 544 - Winter 2018

Clustered vs Unclustered

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

116 CSE 544 - Winter 2018

Every table can have only one clustered and many unclustered indexes

CSE 544 - Winter 2018

Index Based Selection

•  Selection on equality: σa=v(R)

•  V(R, a) = # of distinct values of attribute a

•  Clustered index on a: cost B(R)/V(R,a)

•  Unclustered index on a: cost T(R)/V(R,a)

•  Note: we ignored the I/O cost for the index pages (why?)

117

CSE 544 - Winter 2018

Index Based Selection

•  Example:

•  Table scan (assuming R is clustered)
–  B(R) = 2,000 I/Os

•  Index based selection
–  If index is clustered: B(R)/V(R,a) = 100 I/Os
–  If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

•  Lesson
–  Don’t build unclustered indexes when V(R,a) is small !

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

118

CSE 544 - Winter 2018

Index Based Selection

•  Example:

•  Table scan (assuming R is clustered)
–  B(R) = 2,000 I/Os

•  Index based selection
–  If index is clustered: B(R)/V(R,a) = 100 I/Os
–  If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

•  Lesson
–  Don’t build unclustered indexes when V(R,a) is small !

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of sa=v(R) = ?

119

The 2% rule!

Note: the “2”
in 2% decreases
yearly (why?)

CSE 544 - Winter 2018

Index Nested Loop Join

R ⋈ S

•  Assume S has an index on the join attribute
•  Iterate over R, for each tuple fetch corresponding tuple(s)

from S

•  Cost:
–  Assuming R is clustered
–  If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
–  If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

120

CSE 544 - Winter 2018

Summary of External
Join Algorithms

•  Block Nested Loop Join: B(R) + B(R)*B(S)/M

•  Hybrid Hash Join: (3-2M/B(S))(B(R) + B(S))
Assuming t/k * B(S) >> k-t

•  Sort-Merge Join: 3B(R)+3B(S)
Assuming B(R)+B(S) <= M2

•  Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)
Assuming R is clustered and S has clustered index on a

121

