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Announcements 

•  Project proposals: please sign up for a 15’ meeting on 
Friday 
–  You will present your proposal (5’) 
–  We discuss it (5’) 
–  Additional questions/comments (5’) 

•  Homework 2 is due on Friday 

•  Homework 3 is posted 
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Outline 

•  Architecture of a DBMS 

•  Steps involved in processing a query 

•  Operator implementations 
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Architecture of DBMS 

•  Reading: 
Architecture of a DBMS, chap. 1 and 2 
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Architecture of DBMS 
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Why Multiple Processes 

•  DBMS listens to requests from clients 

•  Each request = one SQL command 

•  Need to handle multiple requests concurrently, 
hence, multiple processes 
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Multiple Processes 
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Process Models 

Discuss pro/cons for each model 

•  Process per DBMS worker 

•  Thread per DBMS worker 

•  Process pool 
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Admission Control 
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What is it? 
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Outline 

•  Architecture of a DBMS 

•  Steps involved in processing a query 

•  Operator implementations 
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Query Optimization 
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Lifecycle of a Query 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 
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Example Database Schema 

Supplier(sno,sname,scity,sstate) 

Part(pno,pname,psize,pcolor) 
Supply(sno,pno,price) 

 
View: Suppliers in Seattle 
CREATE VIEW NearbySupp AS 

SELECT sno, sname 

FROM Supplier 

WHERE scity='Seattle' AND sstate='WA' 
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Example Query 

•  Find the names of all suppliers in Seattle who supply part 
number 2 

SELECT sname FROM NearbySupp 
WHERE sno IN ( SELECT sno 

               FROM Supplies 

               WHERE pno = 2 ) 
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Lifecycle of a Query (1) 

•  Step 0: admission control 
–  User connects to the db with username, password 
–  User sends query in text format 

•  Step 1: Query parsing 
–  Parses query into an internal format 
–  Performs various checks using catalog: 

Correctness, authorization, integrity constraints 

•  Step 2: Query rewrite 
–  View rewriting, flattening, decorrelation, etc. 
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View Rewriting, Flattening 

Original query: 
SELECT sname 
FROM NearbySupp 
WHERE sno IN ( SELECT sno 
               FROM Supplies 
               WHERE pno = 2 ) 
 
Rewritten query: 
SELECT S.sname 
FROM Supplier S, Supplies U 
WHERE S.scity='Seattle' AND S.sstate='WA’ 
AND S.sno = U.sno 
AND U.pno = 2; 
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View rewriting 
 = view inlining 
 = view expansion 

Flattening 
  = unnesting 
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Decorrelation 

SELECT  Q.sno 
FROM Supplier Q 
WHERE  Q.sstate = ‘WA’  
    and not exists 
       (SELECT * 
        FROM Supply P 
        WHERE P.sno = Q.sno 
               and P.price > 100) 
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Supplier(sno,sname,scity,sstate) 
Part(pno,pname,psize,pcolor) 
Supply(sno,pno,price) 



SELECT  Q.sno 
FROM Supplier Q 
WHERE  Q.sstate = ‘WA’  
    and not exists 
       (SELECT * 
        FROM Supply P 
        WHERE P.sno = Q.sno 
               and P.price > 100) 
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Decorrelation 
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Correlation ! 

Supplier(sno,sname,scity,sstate) 
Part(pno,pname,psize,pcolor) 
Supply(sno,pno,price) 
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Decorrelation 

SELECT  Q.sno 
FROM Supplier Q 
WHERE  Q.sstate = ‘WA’  
    and not exists 
       (SELECT * 
        FROM Supply P 
        WHERE P.sno = Q.sno 
               and P.price > 100) 

19 

De-Correlation 

Supplier(sno,sname,scity,sstate) 
Part(pno,pname,psize,pcolor) 
Supply(sno,pno,price) 

SELECT  Q.sno 
FROM Supplier Q 
WHERE  Q.sstate = ‘WA’ 
    and Q.sno not in 
       (SELECT P.sno 
        FROM Supply P 
        WHERE P.price > 100) 



Decorrelation 
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Un-nesting 

SELECT  Q.sno 
FROM Supplier Q 
WHERE  Q.sstate = ‘WA’ 
    and Q.sno not in 
       (SELECT P.sno 
        FROM Supply P 
        WHERE P.price > 100) 

(SELECT  Q.sno 
 FROM Supplier Q 
 WHERE  Q.sstate = ‘WA’) 
    EXCEPT 
 (SELECT P.sno 
   FROM Supply P 
   WHERE P.price > 100) 

Supplier(sno,sname,scity,sstate) 
Part(pno,pname,psize,pcolor) 
Supply(sno,pno,price) 

EXCEPT = set difference 
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Decorrelation 

Supply 

σsstate=‘WA’ 

Supplier 

σPrice > 100 
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− 

Supplier(sno,sname,scity,sstate) 
Part(pno,pname,psize,pcolor) 
Supply(sno,pno,price) 

Finally… 

πsno πsno 

(SELECT  Q.sno 
 FROM Supplier Q 
 WHERE  Q.sstate = ‘WA’) 
    EXCEPT 
 (SELECT P.sno 
   FROM Supply P 
   WHERE P.price > 100) 
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Lifecycle of a Query (2) 

•  Step 3: Query optimization 
–  Find an efficient query plan for executing the query 
–  We will spend next lecture on this topic 

•  A query plan is 
–  Logical query plan: an extended relational algebra tree  
–  Physical query plan: with additional annotations at each node 
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Extended Algebra Operators 

•  Union ∪, intersection ∩, difference -  
•  Selection  σ
•  Projection π
•  Join  
•  Duplicate elimination δ
•  Grouping and aggregation γ
•  Sorting τ
•  Rename ρ

23 

Bag semantics! 
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Logical Query Plan 

Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

24 



CSE 544 - Winter 2018  

Query Block 

•  Most optimizers operate on individual query blocks 

•  A query block is an SQL query with no nesting 
–  Exactly one 

•  SELECT clause 
•  FROM clause 

–  At most one 
•  WHERE clause 
•  GROUP BY clause 
•  HAVING clause 
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Typical Plan For Block 

π fields 

γ fields, sum/count/min/max(fields) 

σhaving-condition 

σwhere-condition 

join condition 

… … 
26 

SELECT-PROJECT-JOIN 
Query 
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Physical Query Plan 

Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (Index lookup) 

(Nested loop) 

(On the fly) 

(On the fly) 

27 

Physical plan= 
Logical plan 
+ choice of algorithms 
+ choice of access path 

Algorithm 

Access path 
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Final Step in Query Processing 

•  Step 4: Query execution 
–  How to synchronize operators? 
–  How to pass data between operators? 

•  Standard approach: 
–  Iterator interface and 
–  Pipelined execution or 
–  Intermediate result materialization 

28 



Implementing Query Operators with 
the Iterator Interface 

Each operator implements three methods: 

•  open() 

•  next() 

•  close() 
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interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Iterator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator 

Implementing Query Operators 
with the Iterator Interface 
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Implementing Query Operators 
with the Iterator Interface 
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Implementing Query Operators with 
the Iterator Interface 
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Operator	q	=	parse(“SELECT	...”);	
q	=	optimize(q);	
	
q.open();	
while	(true)	{		
		Tuple	t	=	q.next();	
		if	(t	==	null)	break;	
		else	printOnScreen(t);	
}	
q.close();	

Query plan execution 
interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	



Pipelining 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) 

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close 
for nested loop join 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) open() 

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close 
for nested loop join 
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Suppliers Supplies 
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Suppliers Supplies 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) open() 

open() 

open() 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) next() 

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close 
for nested loop join 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 
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next() 

next() 

next() next() 
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Suppliers Supplies 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Hash Join) 

(On the fly) 

(On the fly) 

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss hash-join 
in class 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Hash Join) 

(On the fly) 

(On the fly) 

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss hash-join 
in class 

Tuples from 
here are 
pipelined 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Hash Join) 

(On the fly) 

(On the fly) 

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss hash-join 
in class 

Tuples from 
here are 
pipelined 

Tuples from 
here are 
“blocked” 



Blocked Execution 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Merge Join) 

(On the fly) 

(On the fly) 

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss merge-join 
in class 
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Suppliers Supplies 

sno = sno 

σscity=‘Seattle’ and sstate=‘WA’ and pno=2 

πsname 

(File scan) (File scan) 

(Merge Join) 

(On the fly) 

(On the fly) 

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Blocked Blocked 

Discuss merge-join 
in class 
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Pipelined Execution 

•  Applies parent operator to tuples directly as they are 
produced by child operators 

  
•  Benefits 

–  No operator synchronization issues 
–  Saves cost of writing intermediate data to disk 
–  Saves cost of reading intermediate data from disk 
–  Good resource utilizations on single processor 

•  This approach is used whenever possible 

57 
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Pipelined Execution 

Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (Index lookup) 

(Nested loop) 

(On the fly) 

(On the fly) 
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Intermediate Tuple Materialization 

•  Writes the results of an operator to an intermediate table 
on disk 

•  Necessary for some operator implementations 
•  When operator needs to examine the same tuples 

multiple times 
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Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan: write to T2) 

(On the fly) 

σ pno=2 

(Scan: write to T1) 

Intermediate Tuple Materialization 
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Lifecycle of a Query 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 
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Outline 

•  Architecture of a DBMS 

•  Steps involved in processing a query 

•  Operator implementations 
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Multiple Processes 
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The Mechanics of Disk 

Mechanical characteristics: 
•  Rotation speed (5400RPM) 
•  Number of platters (1-30) 
•  Number of tracks (<=10000) 
•  Number of bytes/track(105) 

Platters 

Spindle 
Disk head 

Arm movement 

Arm assembly 

Tracks 

Sector 

Cylinder 

Unit of read or write: 
       disk block 
Once in memory: 
        page 
Typically: 4k or 8k or 16k 
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Disk Access Characteristics 

•  Disk latency 
–  Time between when command is issued and when data is in 

memory 
–  Equals = seek time + rotational latency 

•  Seek time = time for the head to reach cylinder 
–  10ms – 40ms 

•  Rotational latency = time for the sector to rotate 
•  Rotation time = 10ms 
•  Average latency = 10ms/2 

•  Transfer time = typically 40MB/s 

Basic factoid: disks always read/write an entire block at a time 
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Buffer Management in a DBMS 

•  Data must be in RAM for DBMS to operate on it! 
•  Table of <frame#, pageid> pairs is maintained 

DB 

MAIN MEMORY 

DISK 

disk page 

free frame 

Page Requests from Higher Levels 

BUFFER POOL 

choice of frame dictated 
by replacement policy 
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Buffer Manager 

Needs to decide on page replacement policy 

•  LRU 
•  Clock algorithm 
 
Both work well in OS, but not always in DB 
 
Enables the higher levels of the  
DBMS to assume that the 
needed data is in main memory. 
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Arranging Pages on Disk 

A disk is organized into blocks  (a.k.a. pages) 
•  blocks on same track, followed by 
•  blocks on same cylinder, followed by 
•  blocks on adjacent cylinder 

A file should (ideally) consists of sequential blocks on disk, 
to minimize seek and rotational delay. 

For a sequential scan, pre-fetching several pages at a time 
is a big win! 
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Issues 

•  Managing free blocks 

•  File Organization 

•  Represent the records inside the blocks 

•  Represent attributes inside the records 
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Managing Free Blocks 

•  Linked list of free blocks 

•  Or bit map 
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File Organization 

Header 
page 

Data   
page 

Data   
page 

Data   
page 

Data   
page 

Data   
page 

Data   
page 

Linked list of pages: 
Data   
page 

Data   
page 

 
 
 

Full pages 

 
 
 

Pages with some free space 
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File Organization 

Data   
page 

Data   
page 

Data   
page 

Better: directory of pages 

Directory 

Header 
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Page Formats 

Issues to consider 
•  1 page = fixed size (e.g. 8KB) 
•  Records: 

–  Fixed length 
–  Variable length 

•  Record id = RID 
–  Typically RID = (PageID, SlotNumber) 

Why do we need RID’s in a relational DBMS ? 
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Page Formats 

Fixed-length records: packed representation 

Rec 1 Rec 2 Rec N 

Free space N 

Problems ? 

One page 
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Page Formats 

Free 
space 

 
 
 
Slot directory 

Variable-length records 
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Record Formats:  Fixed Length 

•  Information about field types same for all records 
in a file; stored in system catalogs. 

•  Finding i’th field requires scan of record. 
•  Note the importance of schema information! 

Base address (B) 

L1 L2 L3 L4 

pid name descr maker 

Address = B+L1+L2 

Product(pid, name, descr, maker) 
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Record Header 

L1 L2 L3 L4 

To schema 
length 

timestamp (e.g. for MVCC) 

Need the header because: 
•  The schema may change 

for a while new+old may coexist 
•  Records from different relations may coexist 

header 

pid name descr maker 



78 

Variable Length Records 

L1 L2 L3 L4 

Other header information 

length 

Place the fixed fields first:  F1 
Then the variable length fields: F2, F3, F4 
Null values take 2 bytes only 
Sometimes they take 0 bytes (when at the end) 

header pid name descr maker 
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BLOB 

•  Binary large objects 
•  Supported by modern database systems 
•  E.g. images, sounds, etc. 
•  Storage: attempt to cluster blocks together 

CLOB = character large object 
•  Supports only restricted operations 



File Organizations 

•  Heap (random order) files: Suitable when typical 
access is a file scan retrieving all records. 

•  Sorted Files Best if records must be retrieved in 
some order, or only a `range’ of records is needed. 

•  Indexes Data structures to organize records via trees 
or hashing.   
–  Like sorted files, they speed up searches for a subset of 

records, based on values in certain (“search key”) fields 
–  Updates are much faster than in sorted files. 
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Multiple Processes 
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Cost Parameters 

•  In database systems the data is on disk 

•  Parameters: 
–  B(R) = # of blocks (i.e., pages) for relation R 
–  T(R) = # of tuples in relation R 
–  V(R, a) = # of distinct values of attribute a 
–  M = # pages available in main memory 

•  Cost = total number of I/Os 

•  Convention: writing the final result to disk is not included 
82 
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One-pass Algorithms 

Selection σ(R), projection Π(R) 
•  Both are tuple-at-a-time algorithms 
•  Cost: B(R), the cost of scanning the relation 

Input buffer Output buffer Unary 
operator 
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Main Memory Join Algorithms 

Three standard main memory algorithms: 
•  Hash join 
•  Nested loop join 
•  Sort-merge join 

Review in class 
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One Pass Hash Join 

Hash join:  R ⋈ S 
•  Scan R, build buckets in main memory 
•  Then scan S, probe hash table to join 

•  Cost: B(R) + B(S) 

•  One pass algorithm when B(R) <= M 
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Nested Loop Joins 

•  Tuple-based nested loop R ⋈ S 
•  R is the outer relation, S is the inner relation 

 

•  Cost: B(R) + T(R) B(S) 

for each tuple r in R do 
   for each tuple s in S do 
       if r and s join then output (r,s) 
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Page-at-a-time Refinement 

•  Cost: B(R) + B(R)B(S) 

for each page of tuples r in R do 
   for each page of tuples s in S do 

  for all pairs of tuples 
   if r and s join then output (r,s) 
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Nested Loop Joins 

•  We can be much more clever 

•  How would you compute the join in the following cases ? 
What is the cost ? 

–  B(R) = 1000, B(S) = 2, M = 4 

–  B(R) = 1000, B(S) = 3, M = 4 

–  B(R) = 1000, B(S) = 6, M = 4 
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for each (M-2) pages ps of S do 
   for each page pr of R do 
         for each tuple s in ps 
              for each tuple r in pr do 
                   if r and s join then output(r,s) 

Nested Loop Joins 

•  Block Nested Loop Join 
•  Group of (M-2) pages of S is called a “block” 

89 

Main memory 
hash-join 

ps ⋈ pr 
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Nested Loop Joins 

. . . 
. . . 

R & S 
Hash table for block of S 

(M-2 pages) 

Input buffer for R Output buffer 

. . . 

Join Result 
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Nested Loop Joins 

Cost of block-based nested loop join 

•  Read S once:    B(S) 

•  Outer loop runs B(S)/(M-2) times, 
each iteration reads the entire R:  B(S)B(R)/(M-2) 

•  Total cost:     B(S)  +  B(S)B(R)/(M-2) 

 
Notice: it is better to iterate over the smaller relation first 
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Sort-Merge Join 

Sort-merge join:  R ⋈ S 
•  Scan R and sort in main memory 
•  Scan S and sort in main memory 
•  Merge R and S 

•  Cost: B(R) + B(S) 
•  One pass algorithm when B(S) + B(R) <= M 
•  Typically, this is NOT a one pass algorithm 
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Example 

Grouping: 
 Product(name, department, quantity) 
γdepartment, sum(quantity) (Product) à Answer(department, sum) 

 
In class: describe a one-pass algorithms.  Cost=? 
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Outline 

•  Steps involved in processing a query 
–  Logical query plan 
–  Physical query plan 
–  Query execution overview 

•  Operator implementations 
–  One pass algorithms 
–  Two-pass algorithms 
–  Index-based algorithms 
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Two-Pass Algorithms 

•  When data is larger than main memory, need two or 
more passes 

•  Two key techniques 
–  Hashing  
–  Sorting 
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Two Pass Algorithms 
Based on Hashing 

•  Idea: partition a relation R into buckets, on disk 
•  Each bucket has size approx. B(R)/M 

M main memory buffers Disk Disk 

Relation R 
OUTPUT 

2 INPUT 

1 

hash function 
h M-1 

Partitions 

1 

2 

M-1 
. . . 

1 

2 

B(R) 

•  Does each bucket fit in main memory ? 
– Yes if B(R)/M <= M,   i.e. B(R) <= M2 
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Hash Based Algorithms for  γ

•  Recall:  γ(R) = grouping and aggregation 

•  Step 1. Partition R into buckets 
•  Step 2. Apply γ to each bucket 

•  Cost: 3B(R) 
•  Assumption: B(R) <= M2 
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Partitioned (Grace) Hash Join 

R ⋈ S 
•  Step 1: 

–  Hash S into M-1 buckets 
–  Send all buckets to disk 

•  Step 2 
–  Hash R into M-1 buckets 
–  Send all buckets to disk 

•  Step 3 
–  Join every pair of buckets 

98 



•  Partition both relations using hash fn h 
•  R tuples in partition i will only match S tuples in partition i. 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash function 
h M-1 

Partitions 

1 

2 

M-1 
. . . 

Partitioned Hash Join 
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Partitions 
of R & S 

Input buffer 
for Ri 

Hash table for partition 
Si ( < M-1 pages) 

B main memory buffers Disk 

Output  
 buffer 

Disk 

Join Result 

hash 
fn 
h2 

h2 

Partitioned Hash Join 

•  Read in partition of R, hash it using h2 (≠ h) 
–  Build phase 

•  Scan matching partition of S, search for matches 
–  Probe phase 
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Partitioned Hash Join 

•  Cost: 3B(R) + 3B(S) 
•  Assumption: min(B(R), B(S)) <= M2 
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Hybrid Hash Join Algorithm 

•  Assume we have extra memory available 

•  Partition S into k buckets 
t buckets S1 , …, St stay in memory 
k-t buckets St+1, …, Sk to disk 

•  Partition R into k buckets 
–  First t buckets join immediately with S  
–  Rest k-t buckets go to disk 

•  Finally, join k-t pairs of buckets: 
(Rt+1,St+1), (Rt+2,St+2), …, (Rk,Sk) 
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Hybrid Hash Join Algorithm 

•  How to choose k and t ? 
–  The first t buckets must fin in M:   t/k * B(S) ≤ M 
–  Need room for k-t additional pages:  k-t ≤ M 
–  Thus:      t/k * B(S) + k-t ≤ M 

•  Assuming t/k * B(S) ≫ k-t:     t/k = M/B(S) 
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Hybrid Hash Join Algorithm 

•  How many I/Os ? 

•  Cost of partitioned hash join: 3B(R) + 3B(S) 

•  Hybrid join saves 2 I/Os for a t/k fraction of buckets 
•  Hybrid join saves   2t/k(B(R) + B(S))   I/Os 

•  Cost: (3-2t/k)(B(R) + B(S)) =  (3-2M/B(S))(B(R) + B(S))  
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External Sorting 

•  Problem: Sort a file of size B with memory M 

•  Where we need this:  
–  ORDER BY in SQL queries 
–  Several physical operators 
–  Bulk loading of B+-tree indexes.  

•  Will discuss only 2-pass sorting, for when B < M2 
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External Merge-Sort: Step 1 

•  Phase one: load M pages in memory, sort 

Disk Disk 

. . . . . . 

 
Size M pages 

Main memory 

Runs of length M 
#Runs = B(R)/M 
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External Merge-Sort: Step 2 

•  Merge M – 1 runs into a new run 
•  Result: runs of length M (M – 1)≈ M2 

Disk Disk 

. . 

. 
. . . 

Input M 

Input 1 

Input 2 
. . . . 

Output 

If B <= M2  then we are done 

Main memory 
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External Merge-Sort 

•  Cost: 
–  Read+write+read = 3B(R) 
–  Assumption: B(R) <= M2 

•  Other considerations 
–  In general, a lot of optimizations are possible 
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Two-Pass Algorithms 
Based on Sorting 

Grouping: γa, sum(b) (R) 
 
Sort, then compute the sum(b) for each group of a’s 
•  Step 1: sort chunks of size M, write 

–  cost 2B(R) 

•  Step 2: merge M-1 runs, combining groups by addition 
–  cost B(R) 

•  Total cost: 3B(R), Assumption: B(R) <= M2 
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Two-Pass Algorithms 
Based on Sorting 

Join R ⋈ S 
 
•  Start by creating initial runs of length M, for R and S: 

–  Cost: 2B(R)+2B(S) 

•  Merge (and join) M1 runs from R, M2 runs from S: 
–  Cost: B(R)+B(S) 

•  Total cost: 3B(R)+3B(S) 
•  Assumption: 

–  R has M1=B(R)/M runs,  S has M2=B(S)/M runs 
–  M1 + M2 ≤ M 
–  Hence: B(R)+B(S)≤ M2  
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Index 

•  An additional file, that allows fast access to records in the 
data file given a search key 

•  The index contains (key, value) pairs: 
–  The key = an attribute value (e.g., student ID or name) 
–  The value = a pointer to the record 

•  Could have many indexes for one table 

111 

Key = means here search key 
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Example 1: 
Index on ID 

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

112 

10 

20 

50 

200 

220 

240 

420 

800 
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Data File Student 

Student 

10 Tom Hanks 

20 Amy Hanks 

50 … … 

200 … 

220 

240 

420 

800 
950 

… 

Index Student_ID on Student.ID 
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Example 2: 
Index on fName 
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Index Student_fName  
on Student.fName 

Student 

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

Amy 

Ann 

Bob 

Cho 

… 

… 

… 

… 

… 

… 

Tom 

10 Tom Hanks 

20 Amy Hanks 

50 … … 

200 … 

220 

240 

420 

800 

Data File Student 



Index Organization 

We need a way to represent indexes after loading into 
memory so that they can be used 
Several ways to do this: 
•  Hash table 
•  B+ trees – most popular 

–  They are search trees, but they are not binary instead have 
higher fanout 

–  Will discuss them briefly next 
•  Specialized indexes: bit maps, R-trees, inverted index 
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Review: Index Classification 

•  Clustered/unclustered 
–  Clustered = records close in index are close in data 

•  Option 1: Data inside data file is sorted on disk 
•  Option 2: Store data directly inside the index (no separate files) 

–  Unclustered = records close in index may be far in data 
•  Primary/secondary 

–  Meaning 1: 
•  Primary = is over attributes that include the primary key 
•  Secondary = otherwise 

–  Meaning 2: means the same as clustered/unclustered 
•  Organization B+ tree or Hash table 
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Clustered vs Unclustered 

Data entries 
(Index File) 
(Data file) 

Data Records 

Data entries 

Data Records 

CLUSTERED UNCLUSTERED 

B+ Tree B+ Tree 
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Every table can have only one clustered and many unclustered indexes 
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Index Based Selection 

•  Selection on equality: σa=v(R) 

•  V(R, a) = # of distinct values of attribute a 

•  Clustered index on a:  cost B(R)/V(R,a) 

•  Unclustered index on a: cost T(R)/V(R,a) 

•  Note: we ignored the I/O cost for the index pages (why?) 
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Index Based Selection 

•  Example: 

•  Table scan (assuming R is clustered) 
–  B(R) = 2,000 I/Os 

•  Index based selection 
–  If index is clustered: B(R)/V(R,a) = 100 I/Os 
–  If index is unclustered: T(R)/V(R,a) = 5,000 I/Os 

•  Lesson 
–  Don’t build unclustered indexes when V(R,a) is small ! 

B(R) = 2000 
T(R) = 100,000 
V(R, a) = 20 

cost of sa=v(R) = ? 
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Index Based Selection 

•  Example: 

•  Table scan (assuming R is clustered) 
–  B(R) = 2,000 I/Os 

•  Index based selection 
–  If index is clustered: B(R)/V(R,a) = 100 I/Os 
–  If index is unclustered: T(R)/V(R,a) = 5,000 I/Os 

•  Lesson 
–  Don’t build unclustered indexes when V(R,a) is small ! 

B(R) = 2000 
T(R) = 100,000 
V(R, a) = 20 

cost of sa=v(R) = ? 
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The 2% rule! 

Note: the “2” 
in 2% decreases 
yearly (why?) 
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Index Nested Loop Join 

R ⋈ S 

•  Assume S has an index on the join attribute 
•  Iterate over R, for each tuple fetch corresponding tuple(s) 

from S 

•  Cost: 
–  Assuming R is clustered 
–  If index on S is clustered:  B(R) + T(R)B(S)/V(S,a) 
–  If index on S is unclustered: B(R) + T(R)T(S)/V(S,a) 
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Summary of External 
Join Algorithms 

•  Block Nested Loop Join: B(R) + B(R)*B(S)/M 

•  Hybrid Hash Join: (3-2M/B(S))(B(R) + B(S))  
Assuming t/k * B(S) >> k-t 

•  Sort-Merge Join: 3B(R)+3B(S) 
Assuming B(R)+B(S) <= M2 

•  Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a) 
Assuming R is clustered and S has clustered index on a 
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