CSE 544 Principles of Database Management Systems Lectures 5: Datalog (1)

Announcement

- Deadline for HW1 has passed...
- Project M2 due on Friday
- HW2 released (datalog / Souffle)

Where We Are

Relational query languages:

- SQL
- Relational Algebra
- Relational Calculus (haven't discussed, but you may look it up)
The can express the same class of queries called relational queries

Which are Relational Queries? Which are not? And Why?

Friend (X, Y)

- Find all people X whose number of friends is a prime number

Which are Relational Queries?

Which are not? And Why?

Friend (X, Y)

- Find all people X whose number of No higher math in database friends is a prime number

Which are Relational Queries? Which are not? And Why?

Friend (X, Y)

- Find all people X
whose number of
friends is a prime
number
- Find all people who are friends with everyone who is not a friend of Bob

Which are Relational Queries? Which are not? And Why?

Friend (X, Y)

- Find all people X
whose number of
friends is a prime
number
- Find all people who Yes! (write it in SQL!) are friends with everyone who is not a friend of Bob

Which are Relational Queries? Which are not? And Why?

Friend (X, Y)

- Find all people X whose number of friends is a prime number
- Find all people who
- Partition all people into three sets P1(X), P2(X), P3(X) s.t. any two friends are in different partitions are friends with everyone who is not a friend of Bob

Which are Relational Queries? Which are not? And Why?

Friend(X, Y)

- Find all people X whose number of friends is a prime number
- Find all people who are friends with everyone who is not a friend of Bob
- Partition all people into three sets
P1(X), P2(X), P3(X) s.t. any two friends are in different partitions

No! NP-complete

Which are Relational Queries? Which are not? And Why?

Friend(X,Y)

- Find all people X whose number of friends is a prime number
- Find all people who are friends with everyone who is not a friend of Bob
- Partition all people into three sets
P1(X), P2(X), P3(X) s.t. any two friends are in different partitions
- Find all people who are direct or indirect friends with Alice

Which are Relational Queries? Which are not? And Why?

Friend(X, Y)

- Find all people X whose number of friends is a prime number
- Find all people who are friends with everyone who is not are direct or indirect a frian "Recursive query"; PTIME, yet not expressible in RA

Recursive Queries

- "Find all direct or indirect friends of Alice"
- Computable in PTIME, yet not expressible in RA
- Datalog: extends RA with recursive queries

Datalog

- Designed in the 80's
- Simple, concise, elegant
- Today is a hot topic, beyond databases: network protocols, static program analysis, DB+ML
- Very few open source implementations, and hard to find
- In HW2 we will use Souffle
USE AdventureWorks2008R2;
GO
WITH DirectReports (ManagerID, EmployeeID, Title, DeptID, Level)
AS
(
-- Anchor member definition
SELECT e.ManagerID, e.EmployeeID, e.Title, edh.DepartmentID,
0 AS Level
FROM dbo.MyEmployees AS e
INNER JOIN HumanResources.EmployeeDepartmenthistory AS edh
ON e.EmployeeID = edh.BusinessEntityID AND edh.EndDate IS NULL
WHERE ManagerID IS NULL
UNION ALL
-- Recursive member definition
SELECT e.ManagerID, e.EmployeeID, e.Title, edh.DepartmentID,
Level + 1
FROM dbo.MyEmployees AS e
INNER JOIN HumanResources.EmployeeDepartmenthistory AS edh
ON e.EmployeeID $=$ edh. BusinessEntityID AND edh.EndDate IS NULL
INNER JOIN DirectReports AS d
ON e.ManagerID = d.EmployeeID
)
-- Statement that executes the CTE
SELECT ManagerID, EmployeeID, Title, DeptID, Level
FROM DirectReports
INNER JOIN HumanResources.Department AS dp
ON DirectReports.DeptID $=$ dp.DepartmentID
WHERE dp.GroupName $=\mathrm{N}$ 'Sales and Marketing' O Level $=0$;
GO

Manager(eid) :- Manages(_, eid)

DirectReports(eid, 0) :-
Employee(eid), not Manager(eid)

DirectReports(eid, level+1) :-
DirectReports(mid, level),
Manages(mid, eid)

SQL Query vs Datalog
(which would you rather write?)
(any Java fans out there?)

Outline

- Datalog rules

- Recursion
- Negation, aggregates, stratification
- Semantics
- Naïve and Semi-naïve Evaluation
- Connection to RA - on your own

Actor(id, fname, Iname)
 Casts(pid, mid)
 Schema
 Movie(id, name, year)
 Datalog: Facts and Rules

Facts = tuples in the database
Rules = queries

Actor(id, fname, Iname)
 Casts(pid, mid)
 Movie(id, name, year)
 Datalog: Facts and Rules

Facts = tuples in the database
Actor(344759, 'Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, ‘Ave Maria', 1940).

Rules = queries

Actor(id, fname, Iname)

Casts(pid, mid)

Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database
Actor(344759, 'Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Rules = queries
Q1(y) :- Movie(x,y,z), z=‘1940'.

Actor(id, fname, Iname)

Casts(pid, mid)

Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database
Actor(344759,'Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Rules = queries
Q1(y) :- Movie(x,y,z), z=‘1940'.

Find Movies made in 1940

Actor(id, fname, Iname)

Casts(pid, mid)

Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database
Actor(344759,'Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Rules = queries
Q1(y) :- Movie(x, y, z), $z={ }^{\prime} 1940$ '.

$$
\begin{aligned}
& \text { Q2(f, I) :- Actor(z,f,I), Casts(z,x), } \\
& \text { Movie(x,y,'1940'). }
\end{aligned}
$$

Actor(id, fname, Iname)

Casts(pid, mid)

Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database
Actor(344759, 'Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Rules = queries
Q1(y) :- Movie(x, y, z), $z==^{\prime} 1940$.

$$
\begin{aligned}
& \text { Q2(f, I) :- Actor(z,f,I), Casts(z,x), } \\
& \text { Movie(x,y,'1940'). }
\end{aligned}
$$

Find Actors who acted in Movies made in 1940

Actor(id, fname, Iname)

Casts(pid, mid)

Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database
Actor(344759,'Douglas’, 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Rules = queries
Q1(y) :- Movie(x,y,z), z=‘1940’.

$$
\begin{aligned}
& \text { Q2(f, I) :- Actor(z,f,l), Casts(z,x), } \\
& \text { Movie(x,y,'1940'). }
\end{aligned}
$$

Actor(id, fname, Iname)

Casts(pid, mid)

Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database
Actor(344759,'Douglas’, 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

$$
\begin{aligned}
& \text { Q3(f,l) :- Actor(z,f,l), } \text { Casts(z,x1), Movie(x1,y1,1910), } \\
& \text { Casts(z,x2), Movie(x2,y2,1940) }
\end{aligned}
$$

Find Actors who acted in a Movie in 1940 and in one in 1910

Actor(id, fname, Iname)

Casts(pid, mid)

Movie(id, name, year)

Datalog: Facts and Rules

Facts = tuples in the database
Actor(344759,'Douglas’, 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Rules = queries
Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, I) :- Actor(z,f,I), Casts(z,x), Movie(x,y,'1940').

$$
\begin{aligned}
& \text { Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910), } \\
& \text { Casts(z,x2), Movie(x2,y2,1940) }
\end{aligned}
$$

Extensional Database Predicates = EDB = Actor, Casts, Movie Intensional Database Predicates = IDB = Q1, Q2, Q3

Datalog: Terminology

$\mathrm{f}, \mathrm{I}=$ head variables
$x, y, z=$ existential variables

More Datalog Terminology

Q(args) :- R1 (args), R2(args),

- $R_{i}\left(\operatorname{args}_{i}\right)$ called an atom, or a relational predicate
- $R_{i}\left(\right.$ args $\left._{i}\right)$ evaluates to true when relation R_{i} contains the tuple described by args ${ }^{2}$.
- Example: Actor(344759, 'Douglas', 'Fowley') is true
- In addition we can also have arithmetic predicates
- Example: z > '1940'.
- Some systems use <-
- Some use AND
Q(args) <- R1(args), R2(args),

Actor(id, fname, Iname)

- Meaning of a datalog rule $=$ a logical statement !
Q1(y) :- Movie(x,y,z), z=‘1940’.

Actor(id, fname, Iname)

Casts(pid, mid)

- Meaning of a datalog rule $=$ a logical statement !
Q1(y) :- Movie(x,y,z), z=‘1940’.
- For all $x, y, z:$ if $(x, y, z) \in$ Movies and $z=' 1940 ’$ then y is in Q1 (i.e. is part of the answer)

Actor(id, fname, Iname)

Casts(pid, mid)
 Moveict ne seemnantics of a Single Rule

- Meaning of a datalog rule $=$ a logical statement !
Q1(y) :- Movie(x,y,z), z=‘1940’.
- For all $x, y, z:$ if $(x, y, z) \in$ Movies and $z=$ ' 1940 ' then y is in Q1 (i.e. is part of the answer)
- $\forall x \forall y \forall z\left[\left(M o v i e(x, y, z)\right.\right.$ and $z={ }^{\prime} 1940$ ') \Rightarrow Q1(y)]

Actor(id, fname, Iname)

Casts(pid, mid)

Moverid ne sexinnantics of a Single Rule

- Meaning of a datalog rule $=$ a logical statement !
Q1(y) :- Movie(x,y,z), z=‘1940’.
- For all $x, y, z:$ if $(x, y, z) \in$ Movies and $z=$ ' 1940 ' then y is in Q1 (i.e. is part of the answer)
- $\forall x \forall y \forall z[(M o v i e(x, y, z)$ and $z=‘ 1940 ’) \Rightarrow$ Q1(y)]
- Logically equivalent:
$\forall y\left[\left(\exists x \exists z \operatorname{Movie}(x, y, z)\right.\right.$ and $\left.z=‘ 1940^{\prime}\right) \Rightarrow$ Q1 (y)]

Actor(id, fname, Iname)

Casts(pid, mid)

Moverid ne sexinnantics of a Single Rule

- Meaning of a datalog rule $=$ a logical statement !
Q1(y) :- Movie(x,y,z), z=‘1940’.
- For all $x, y, z:$ if $(x, y, z) \in$ Movies and $z=$ ' 1940 ' then y is in Q1 (i.e. is part of the answer)
- $\forall x \forall y \forall z[(M o v i e(x, y, z)$ and $z=‘ 1940 ’) \Rightarrow$ Q1(y)]
- Logically equivalent: $\forall y\left[\left(\exists x \exists z \operatorname{Movie}(x, y, z)\right.\right.$ and $\left.z=‘ 1940^{\prime}\right) \Rightarrow$ Q1 (y)]
- Thus, non-head variables are called "existential variables"

Actor(id, fname, Iname)

Casts(pid, mid)

Moverid ne sexinnantics of a Single Rule

- Meaning of a datalog rule $=$ a logical statement !
Q1(y) :- Movie(x,y,z), z=‘1940’.
- For all $x, y, z:$ if $(x, y, z) \in$ Movies and $z=' 1940 ’$ then y is in Q1 (i.e. is part of the answer)
- $\forall x \forall y \forall z[(M o v i e(x, y, z)$ and $z=‘ 1940 ’) \Rightarrow$ Q1(y)]
- Logically equivalent: $\forall y\left[\left(\exists x \exists z \operatorname{Movie}(x, y, z)\right.\right.$ and $\left.z=‘ 1940^{\prime}\right) \Rightarrow$ Q1 (y)]
- Thus, non-head variables are called "existential variables"
- We want the smallest set Q1 with this property (why?)

Outline

- Datalog rules
- Recursion
- Semantics
- Negation, aggregates, stratification
- Naïve and Semi-naïve Evaluation
- Connection to RA - on your own

Datalog program

- A datalog program consists of several rules
- Importantly, rules may be recursive!
- Usually there is one distinguished predicate that's the output
- We will show an example first, then give the general semantics.

Example

Example

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

What does it compute?

Example

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

What does it compute?

Example

$\mathrm{R}=$

1	2
2	1
2	3
1	4
3	4
4	5

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

First iteration:
$\mathrm{T}=$

Second rule
generates nothing
(because T is empty)

Example

$\mathrm{R}=$

1	2
2	1
2	3
1	4
3	4
4	5

Initially:
T is empty.

1	2
2	1
2	3
1	4
3	4
4	5

Second iteration:
First iteration:
$\mathrm{T}=$

Example

$\mathrm{R}=$

1	2
2	1
2	3
1	4
3	4
4	5

$T(x, y):-R(x, y)$
What does

$$
\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
$$ it compute?

1	2
2	1
2	3
1	4
3	4
4	5

Example

$\mathrm{R}=$

1	2
2	1
2	3
1	4
3	4
4	5

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-R(x, z), T(z, y)
\end{aligned}
$$

What does it compute?

1	2
2	1
2	3
1	4
3	4
4	5

Second iteration:

$T=$| 1 | 2 |
| :--- | :--- |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |
| 4 | 5 |
| 1 | 1 |
| 2 | 2 |
| 1 | 3 |
| 2 | 4 |
| 1 | 5 |
| 3 | 5 |

Third iteration:
T =
1 2 2 1 2 3 1 4 3 4 4 Fourth iteration T $=$ (same 1 1 2 2 1 3 2 4 1 5 3 5 2 5

Three Equivalent Programs

 R encodes a graph| R= |
| :--- |
| 1 |
| 2 |
| 2 |
| 1 |

$$
\begin{array}{l|l|}
\hline \begin{array}{l}
\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{array} & \text { Right linear } \\
\begin{array}{ll}
\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) & \\
\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{z}, \mathrm{y})
\end{array} & \text { Left linear } \\
\hline \begin{array}{ll}
\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) & \\
\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{array} & \text { Non-linear } \\
\hline
\end{array}
$$

Question: which terminates in fewest iterations?

Outline

- Datalog rules
- Recursion
- Semantics
- Negation, aggregates, stratification
- Naïve and Semi-naïve Evaluation
- Connection to RA - on your own

1. Fixpoint Semantics

- Start: $\mathrm{IDB}_{0}=$ empty relations; $\mathrm{t}=0$ Repeat:

```
    IDB 
```

 \(\mathrm{t}=\mathrm{t}+1\)
 Until $I D B_{t}=I D B_{t-1}$

- Remark: since rules are monotone: $\emptyset=\mathrm{IDB}_{0} \subseteq \mathrm{IDB}_{1} \subseteq \mathrm{IDB}_{2} \subseteq \ldots$
- A datalog program w/o functions (+, *, ...) always terminates. (In what time?)

2. Minimal Model Semantics:

- Return the IDB that

1) For every rule, \forall vars [(Body(EDB,IDB) \Rightarrow Head(IDB)]
2) Is the smallest IDB satisfying (1)

- Theorem: there exists a smallest IDB satisfying (1)

Example

1. Fixpoint semantics:

- Start: $\mathrm{T}_{0}=\varnothing ; \mathrm{t}=0$
$\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y})$
$\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})$

Repeat:

$$
\begin{aligned}
& T_{t+1}(x, y)=R(x, y) \cup \Pi_{x y}\left(R(x, z) \bowtie T_{t}(z, y)\right) \\
& t=t+1
\end{aligned}
$$

Until $T_{t}=T_{t-1}$
2. Minimal model semantics: smallest T s.t.

- $\forall x \forall y[(R(x, y) \Rightarrow T(x, y)] \wedge$
$\forall x \forall y \forall z[(R(x, z) \wedge T(z, y)) \Rightarrow T(x, y)]$

Datalog Semantics

- The fixpoint semantics tells us how to compute a datalog query
- The minimal model semantics is more declarative: only says what we get
- The two semantics are equivalent meaning: you get the same thing

Outline

- Datalog rules
- Recursion
- Semantics
- Negation, aggregates, stratification
- Naïve and Semi-naïve Evaluation
- Connection to RA - on your own

Extensions

- Aggregates, negation
- Stratified datalog

Aggregates

- No commonly agreed syntax
- Each implementation uses it's own

Aggregates in Souffle

General syntax in Logicblox:

$$
Q(x, y, z, v) \quad:-\quad \operatorname{Body} 1(x, y, z), v=\operatorname{sum}(w):\{\operatorname{Body} 2(x, y, z, w)\}
$$

Meaning (in SQL)

```
select x,y,z, sum(w) as v
from R1, R2, ...
where ...
group by x,y,z
```


ParentChild(p,c)

Example

For each person, compute the total number of descendants
/* We use Souffle syntax (as in the homework) */ /* for each person, compute his/her descendants */

ParentChild(p,c)

Example

For each person, compute the total number of descendants
/* We use Souffle syntax (as in the homework) */ /* for each person, compute his/her descendants */
$D(x, y)$:- ParentChild (x, y).
$D(x, z)$:- $D(x, y)$, ParentChild (y, z).

ParentChild(p,c)

Example

For each person, compute the total number of descendants
/* We use Souffle syntax (as in the homework) */ /* for each person, compute his/her descendants */
D(x,y) :- ParentChild (x,y).
$D(x, z):-D(x, y)$, ParentChild (y, z).
${ }^{*}$ For each person, count the number of descendants */

ParentChild(p,c)

Example

For each person, compute the total number of descendants
/* We use Souffle syntax (as in the homework) */ /* for each person, compute his/her descendants */
$D(x, y)$:- ParentChild (x, y).
$D(x, z):-D(x, y)$, ParentChild (y, z).
/* For each person, count the number of descendants */ $N(x, m):-D\left(x, _\right), m=\operatorname{sum}(1):\{D(x, y)\}$.

ParentChild(p,c)

Example

For each person, compute the total number of descendants
/* We use Souffle syntax (as in the homework) */ /* for each person, compute his/her descendants */
$D(x, y)$:- ParentChild (x, y).
$D(x, z):-D(x, y)$, ParentChild (y, z).
/* For each person, count the number of descendants */
$N(x, m):-D\left(x, _\right), m=\operatorname{sum}(1):\{D(x, y)\}$.
/* Find the number of descendants of Alice */

ParentChild(p,c)

Example

For each person, compute the total number of descendants
/* We use Souffle syntax (as in the homework) */ /* for each person, compute his/her descendants */
$D(x, y)$:- ParentChild (x, y).
$D(x, z):-D(x, y)$, ParentChild (y, z).
/* For each person, count the number of descendants */
$N(x, m):-D\left(x, _\right), m=\operatorname{sum}(1):\{D(x, y)\}$.
/* Find the number of descendants of Alice */
Q(d) :- N("Alice",d).

Negation: use "!"

Find all descendants of Alice, who are not descendants of Bob
/* for each person, compute his/her descendants */
$D(x, y)$:- ParentChild (x, y).
$D(x, z):-D(x, y)$, ParentChild (y, z).
/* Compute the answer: notice the negation */
Q(x) :- D("Alice",x), !D("Bob",x).

Safe Datalog Rules

Here are unsafe datalog rules. What's "unsafe" about them ?
U1 (x,y) :- ParentChild("Alice",x), y != "Bob"

U2(x) :- ParentChild("Alice",x), !ParentChild(x,y)

Safe Datalog Rules

Here are unsafe datalog rules. What's "unsafe" about them ?
U1 (x,y) :- ParentChild("Alice",x), y != "Bob"

Holds for every y other than "Bob" $\mathrm{U} 1=$ infinite!

U2(x) :- ParentChild("Alice", x), !ParentChild(x, y)

Safe Datalog Rules

Here are unsafe datalog rules. What's "unsafe" about them ?
U1(x,y) :- ParentChild("Alice",x), y != "Bob"

Holds for every y other than "Bob" $\mathrm{U} 1=$ infinite!

U2(x) :- ParentChild("Alice",x), !ParentChild(x,y)

Safe Datalog Rules

Here are unsafe datalog rules. What's "unsafe" about them ?
U1(x,y) :- ParentChild("Alice",x), y != "Bob"

Holds for every y other than "Bob" U1 = infinite!

U2(x) :- ParentChild("Alice",x), !ParentChild(x,y)

Want Alice's childless children, but we get all children x (because there exists some y that x is not parent of y)
A datalog rule is safe if every variable appears in some positive relational atom

Stratified Datalog

- Recursion does not cope well with aggregates or negation
- Example: what does this mean?

$$
\begin{aligned}
& A():-!B() . \\
& B():-!A() .
\end{aligned}
$$

Stratified Datalog

- Recursion does not cope well with aggregates or negation
- Example: what does this mean?

$$
\begin{aligned}
& A():-!B() . \\
& B():-!A() .
\end{aligned}
$$

- A datalog program is stratified if it can be partitioned into strata s.t., for all n, only IDB predicates defined in strata $1,2, \ldots, \mathrm{n}$ may appear under ! or agg in stratum $\mathrm{n}+1$.
- Souffle (and others) accepts only stratified datalog.

Stratified Datalog

```
D(x,y) :- ParentChild(x,y).
    D(x,z) :- D(x,y), ParentChild(y,z).
N[x] = m :- agg<<m = count()>> D(x,y).
Q(d) :- N["Alice"]=d.
```


Stratum 1

May use D
in an agg because was defined in previous stratum

Stratified Datalog

Stratified Datalog

Stratified Datalog

- If we don't use aggregates or negation, then the datalog program is already stratified
- If we do use aggregates or negation, it is usually quite natural to write the program in a stratified way

Outline

- Datalog rules
- Recursion
- Semantics
- Negation, aggregates, stratification - Naïve and Semi-naïve Evaluation
- Connection to RA - on your own

Datalog Evaluation Algorithms

- Needs to preserve the efficiency of query optimizers, while extending them to recursion
- Two general strategies:
- Naïve datalog evaluation
- Semi-naïve datalog evaluation
- Some powerful optimizations:
- Magic sets (next lecture)

Naïve Datalog Evaluation Algorithm

Datalog program:

$\mathrm{P}_{\mathrm{i} 1}$:- body $_{1}$
$\mathrm{P}_{\mathrm{i} 2}$:- body $_{2}$

....

Naïve Datalog Evaluation Algorithm

Datalog program:

$\mathrm{P}_{\mathrm{i} 1}:-\operatorname{body}_{1}$
$\mathrm{P}_{\mathrm{i} 2}:-\operatorname{body}_{2}$
\ldots

\[\)| $P_{1}:-\operatorname{body}_{11} \cup \operatorname{body}_{12} \cup \ldots$ |
| :--- |
| $P_{2}:-\operatorname{body}_{21} \cup \operatorname{body}_{22} \cup \ldots$ |
| \ldots |

\]

Group by
IDB predicate

Naïve Datalog Evaluation Algorithm

Datalog program:

$\mathrm{P}_{\mathrm{in}}:-\operatorname{body}_{1}$
$\mathrm{P}_{\mathrm{i} 2}:-\operatorname{body}_{2}$
\ldots

\rightarrow	$P_{1}:-\operatorname{body}_{11} \cup \operatorname{body}_{12} \cup \ldots$ $P_{2}:-\operatorname{body}_{21} \cup \operatorname{body}_{22} \cup \ldots$ \ldots
Group by	
IDB predicate	

	$\mathrm{P}_{1}:-\mathrm{SPJU}_{1}$ $\mathrm{P}_{2}:-\mathrm{SPJU}_{2}$ \ldots.
Each rule is a Select-Project-Join-Union query	

Naïve Datalog Evaluation
 Algorithm

Datalog program:

$\mathrm{P}_{\mathrm{i1}}:-$ body $_{1}$
$\mathrm{P}_{\mathrm{i} 2}:-$ body $_{2}$
\ldots

\[\)| $P_{1}:-\operatorname{body}_{11} \cup \operatorname{body}_{12} \cup \ldots$ |
| :--- |
| $P_{2}:-\operatorname{body}_{21} \cup \operatorname{body}_{22} \cup \ldots$ |
| $\ldots .$ |

\]

Group by
IDB predicate

\boldsymbol{Z}	$\mathrm{P}_{1}:-\mathrm{SPJU}_{1}$ $\mathrm{P}_{2}:-\mathrm{SPJU}_{2}$ \ldots
Each rule is a Select-Project-Join-Union query	

Naïve datalog evaluation algorithm:

$$
\begin{aligned}
& P_{1}=P_{2}=\ldots=\emptyset \\
& \text { Loop } \\
& \quad \text { NewP }_{1}=\text { SPJU }_{1} ; \operatorname{NewP}_{2}=\text { SPJU }_{2} ; \ldots \\
& \text { if }\left(\text { NewP }_{1}=P_{1} \text { and } \operatorname{NewP}_{2}=P_{2} \text { and } \ldots\right) \\
& \quad \text { then exit } \\
& P_{1}=\text { NewP }_{1} ; P_{2}=\operatorname{NewP}_{2} ; \ldots
\end{aligned}
$$

Endloop

Naïve Datalog Evaluation
 Algorithm

Datalog program:

$\mathrm{P}_{\mathrm{i1}}:-\operatorname{body}_{1}$
$\mathrm{P}_{\mathrm{i} 2}:-\operatorname{body}_{2}$
\ldots

\[\)| $P_{1}:-\operatorname{body}_{11} \cup \operatorname{body}_{12} \cup \ldots$ |
| :--- |
| $P_{2}:-\operatorname{body}_{21} \cup \operatorname{body}_{22} \cup \ldots$ |
| \ldots |

\]

Group by
IDB predicate

$\boldsymbol{\rightarrow}$	$\mathrm{P}_{1}:-\mathrm{SPJU}_{1}$ $\mathrm{P}_{2}:-\mathrm{SPJU}_{2}$ \ldots.
Each rule is a	
Select-Project-Join-Union query	

Naïve datalog evaluation algorithm:

$$
P_{1}=P_{2}=\ldots=\varnothing
$$

Loop

$$
\begin{aligned}
& \operatorname{NewP}_{1}=\text { SPJU }_{1} ; \operatorname{NewP}_{2}=\operatorname{SPJU}_{2} ; \ldots \\
& \text { if }\left(\operatorname{NewP}_{1}=P_{1} \text { and } \operatorname{NewP}_{2}=P_{2} \text { and } \ldots\right) \\
& \quad \text { then exit } \\
& P_{1}=\operatorname{NewP}_{1} ; P_{2}=\operatorname{NewP}_{2} ; \ldots
\end{aligned}
$$

Endloop

$$
\text { Example: } \begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-R(x, z), T(z, y)
\end{aligned}
$$

Naïve Datalog Evaluation
 Algorithm

Datalog program:

$P_{i 1}:-\operatorname{bod}_{1}$
$P_{\mathrm{i} 2}:-\operatorname{body}_{2}$
\ldots

\[\)| $P_{1}:-\operatorname{body}_{11} \cup \operatorname{body}_{12} \cup \ldots$ |
| :--- |
| $P_{2}:-\operatorname{body}_{21} \cup \operatorname{body}_{22} \cup \ldots$ |
| $\ldots .$ |

\]

Group by
IDB predicate

$\boldsymbol{\rightarrow}$	$\mathrm{P}_{1}:-\mathrm{SPJU}_{1}$ $\mathrm{P}_{2}:-\mathrm{SPJU}_{2}$ \ldots.
Each rule is a	
Select-Project-Join-Union query	

Naïve datalog evaluation algorithm:

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{P}_{2}=\ldots=\emptyset \\
& \text { Loop }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{NewP}_{1}=\text { SPJU }_{1} ; \operatorname{NewP}_{2}=\text { SPJU }_{2} ; \ldots \\
& \text { if }\left(\operatorname{NewP}_{1}=P_{1} \text { and } \operatorname{NewP}_{2}=P_{2} \text { and } \ldots\right) \\
& \quad \text { then exit } \\
& P_{1}=\operatorname{NewP}_{1} ; P_{2}=\operatorname{NewP}_{2} ; \ldots
\end{aligned}
$$

Endloop

Example:
T(x,y) :- R(x,y)
T(x,y) :- R(x,y)
T(x,y) :- R(x,z),T(z,y)
T(x,y) :- R(x,z),T(z,y)
$\boldsymbol{\rightarrow} \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \cup \Pi_{\mathrm{xy}}(\mathrm{R}(\mathrm{x}, \mathrm{z}) \bowtie \mathrm{T}(\mathrm{z}, \mathrm{y}))$

Naïve Datalog Evaluation Datalog program:
 Algorithm

$P_{i 1}:-\operatorname{bod}_{1}$
$P_{i 2}:-\operatorname{body}_{2}$
\ldots

\[\)| $P_{1}:-\operatorname{body}_{11} \cup \operatorname{body}_{12} \cup \ldots$ |
| :--- |
| $P_{2}:-\operatorname{body}_{21} \cup \operatorname{body}_{22} \cup \ldots$ |
| \ldots |

\]

Group by
IDB predicate

$\boldsymbol{7}$	$\mathrm{P}_{1}:-\mathrm{SPJU}_{1}$ $\mathrm{P}_{2}:-\mathrm{SPJU}_{2}$ \ldots.
Each rule is a	
Select-Project-Join-Union query	

Naïve datalog evaluation algorithm:

$$
\begin{aligned}
& P_{1}=P_{2}=\ldots=\varnothing \\
& \text { Loop }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{NewP}_{1}=\text { SPJU }_{1} ; \operatorname{NewP}_{2}=\operatorname{SPJU}_{2} ; \ldots \\
& \text { if }\left(\operatorname{NewP}_{1}=P_{1} \text { and } \operatorname{NewP}_{2}=P_{2} \text { and } \ldots\right) \\
& \quad \text { then exit } \\
& P_{1}=\operatorname{NewP}_{1} ; P_{2}=\operatorname{NewP}_{2} ; \ldots
\end{aligned}
$$

Endloop

Example:
 $$
\begin{aligned} & \hline T(x, y):-R(x, y) \\ & T(x, y):-R(x, z), T(z, y) \end{aligned}
$$
 $\boldsymbol{\nabla} T(x, y):-R(x, y) \cup \Pi_{x y}(R(x, z) \bowtie T(z, y))$

```
T=\varnothing
Loop
    NewT(x,y) = R(x,y) U \Pi}\mp@subsup{\Pi}{xy}{}(R(x,z)\bowtieT(z,y)
    if (NewT = T)
        then exit
    T = NewT
Endloop
```


Discussion

- A naïve datalog algorithm always terminates (why?)
- Assuming no functions (+, *, ...)
- A datalog program always runs in PTIME in the size of the database (why?)

Problem with the Naïve Algorithm

- The same facts are discovered over and over again
- The semi-naïve algorithm tries to reduce the number of facts discovered multiple times

Background: Incremental View Maintenace

Let V be a view computed by one datalog rule (no recursion)

$$
\mathrm{V} \text { :- body }
$$

If (some of) the relations are updated:

$$
R_{1} \leftarrow R_{1} \cup \Delta R_{1}, R_{1} \leftarrow R_{2} \cup \Delta R_{2}, \ldots
$$

Then the view is also modified as follows:

$$
V \leftarrow V \cup \Delta V
$$

Incremental view maintenance:

Background: Incremental View Maintenace

Example 1:

$\mathrm{V}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{S}(\mathrm{z}, \mathrm{y})$ If $\mathrm{R} \leftarrow \mathrm{R} \cup \Delta \mathrm{R}$ then what is $\Delta \mathrm{V}(\mathrm{x}, \mathrm{y})$?

Background: Incremental View Maintenace

Example 1:

$V(x, y):-R(x, z), S(z, y) \quad$ If $R \leftarrow R \cup \Delta R$ then what is $\Delta V(x, y)$?

$$
\Delta V(x, y):-\Delta R(x, z), S(z, y)
$$

Background: Incremental View Maintenace

Example 2:

$V(x, y):-R(x, z), S(z, y)$
If $R \leftarrow R \cup \Delta R$ and $S \leftarrow S \cup \Delta S$ then what is $\Delta V(x, y)$?

Background: Incremental View Maintenace

Example 2:

$V(x, y):-R(x, z), S(z, y)$
If $R \leftarrow R \cup \Delta R$ and $S \leftarrow S \cup \Delta S$ then what is $\Delta V(x, y)$?

$$
\begin{aligned}
& \Delta \mathrm{V}(\mathrm{x}, \mathrm{y}):-\Delta \mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{S}(\mathrm{z}, \mathrm{y}) \\
& \Delta \mathrm{V}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \Delta \mathrm{S}(\mathrm{z}, \mathrm{y}) \\
& \Delta \mathrm{V}(\mathrm{x}, \mathrm{y}):-\Delta \mathrm{R}(\mathrm{x}, \mathrm{z}), \Delta \mathrm{S}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

Background: Incremental View Maintenace

Example 3:

$\mathrm{V}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})$
If $T \leftarrow T \cup \Delta T$
then what is $\Delta V(x, y)$?

Background: Incremental View Maintenace

Example 3:

$$
V(x, y):-T(x, z), T(z, y)
$$

If $T \leftarrow T \cup \Delta T$
then what is $\Delta V(x, y)$?

$$
\begin{array}{|l}
\Delta V(x, y):-\Delta T(x, z), T(z, y) \\
\Delta V(x, y) \\
\Delta V(x, y):-\Delta T(x, z), \Delta T(z, y) \\
\Delta \mathrm{T}(\mathrm{z}), \Delta \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{array}
$$

Semi-naïve Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part.
Each P_{i} defined by non-recursive-SPJU ${ }_{i}$ and (recursive-)SPJU ${ }_{i}$.
$\mathrm{P}_{1}=\Delta \mathrm{P}_{1}=$ non-recursive-SPJU ${ }_{1}, \mathrm{P}_{2}=\Delta \mathrm{P}_{2}=$ non-recursive-SPJU $2, \ldots$
Loop

$$
\begin{aligned}
& \Delta \mathrm{P}_{1}=\Delta \mathrm{SPJU}_{1}-\mathrm{P}_{1} ; \Delta \mathrm{P}_{2}=\Delta \mathrm{SPJU}_{2}-\mathrm{P}_{2} ; \ldots \\
& \text { if }\left(\Delta \mathrm{P}_{1}=\emptyset \text { and } \Delta \mathrm{P}_{2}=\emptyset \text { and } \ldots\right) \\
& \quad \text { then break } \\
& \mathrm{P}_{1}=\mathrm{P}_{1} \cup \Delta \mathrm{P}_{1} ; \mathrm{P}_{2}=\mathrm{P}_{2} \cup \Delta \mathrm{P}_{2} ; \ldots
\end{aligned}
$$

Endloop
Example:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

```
T= \DeltaT = ? (non-recursive rule)
Loop
    \DeltaT(x,y) = ? (recursive }\Delta\mathrm{ -rule)
    if ( }\Delta\textrm{T}=\emptyset
        then break
    T = TU\DeltaT

\section*{Semi-naïve Evaluation Algorithm}

Separate the Datalog program into the non-recursive, and the recursive part. Each \(P_{i}\) defined by non-recursive-SPJU \({ }_{i}\) and (recursive-)SPJU \({ }_{i}\).
\(\mathrm{P}_{1}=\Delta \mathrm{P}_{1}=\) non-recursive-SPJU \({ }_{1}, \mathrm{P}_{2}=\Delta \mathrm{P}_{2}=\) non-recursive-SPJU \(2, \ldots\) Loop
\[
\begin{aligned}
& \Delta \mathrm{P}_{1}=\Delta \mathrm{SPJU}_{1}-\mathrm{P}_{1} ; \Delta \mathrm{P}_{2}=\Delta \mathrm{SPJU}_{2}-\mathrm{P}_{2} ; \ldots \\
& \text { if }\left(\Delta \mathrm{P}_{1}=\emptyset \text { and } \Delta \mathrm{P}_{2}=\emptyset \text { and } \ldots\right) \\
& \quad \text { then break } \\
& \mathrm{P}_{1}=\mathrm{P}_{1} \cup \Delta \mathrm{P}_{1} ; \mathrm{P}_{2}=\mathrm{P}_{2} \cup \Delta \mathrm{P}_{2} ; \ldots
\end{aligned}
\]

\section*{Endloop}

Example:

\[
\begin{aligned}
& T(x, y)=R(x, y), \quad \Delta T(x, y)=R(x, y) \\
& \text { Loop } \\
& \Delta T(x, y)=(R(x, z) \bowtie \Delta T(z, y))-R(x, y) \\
& \text { if }(\Delta T=\emptyset) \\
& \text { then break } \\
& T=T \cup \Delta T
\end{aligned}
\]

\section*{Semi-naïve Evaluation Algorithm}

Separate the Datalog program into the non-recursive, and the recursive part. Each \(P_{i}\) defined by non-recursive-SPJU \({ }_{i}\) and (recursive-)SPJU \({ }_{i}\).
\(\mathrm{P}_{1}=\Delta \mathrm{P}_{1}=\) non-recursive-SPJU \({ }_{1}, \mathrm{P}_{2}=\Delta \mathrm{P}_{2}=\) non-recursive-SPJU \(2, \ldots\) Loop
\[
\begin{aligned}
& \Delta \mathrm{P}_{1}=\Delta \mathrm{SPJU}_{1}-\mathrm{P}_{1} ; \Delta \mathrm{P}_{2}=\Delta \mathrm{SPJU}_{2}-\mathrm{P}_{2} ; \ldots \\
& \text { if }\left(\Delta \mathrm{P}_{1}=\emptyset \text { and } \Delta \mathrm{P}_{2}=\emptyset \text { and } \ldots\right) \\
& \quad \text { then break } \\
& \mathrm{P}_{1}=\mathrm{P}_{1} \cup \Delta \mathrm{P}_{1} ; \mathrm{P}_{2}=\mathrm{P}_{2} \cup \Delta \mathrm{P}_{2} ; \ldots
\end{aligned}
\]

Endloop

Example: \(\begin{aligned} & T(x, y): R(x, y) \\ & T(x, y)=R(x, z), T(z, y)\end{aligned}\)
Note: for any linear datalog programs, the semi-naïve algorithm has only one \(\Delta\)-rule for each rule!
\[
\begin{aligned}
& T(x, y)=R(x, y), \quad \Delta T(x, y)=R(x, y) \\
& \text { Loop } \\
& \Delta T(x, y)=(R(x, z) \bowtie \Delta T(z, y))-R(x, y) \\
& \text { if }(\Delta T=\emptyset) \\
& \text { then break } \\
& T=T U \Delta T \\
& \text { Endloop }
\end{aligned}
\]

\section*{Example}




\section*{Example}


First iteration:
\[
\begin{aligned}
& T(x, y)=R(x, y), \Delta T(x, y)=R(x, y) \\
& \text { Loop } \\
& \Delta T(x, y)= \\
& \quad(R(x, z) \bowtie \Delta T(z, y))-R(x, y) \\
& \text { if }(\Delta T=\emptyset) \text { break } \\
& T=T \cup \Delta T
\end{aligned}
\]

\section*{Endloop}

Second iteration:



\section*{Example}

\[
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y})=\mathrm{R}(\mathrm{x}, \mathrm{y}), \Delta \mathrm{T}(\mathrm{x}, \mathrm{y})=\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \text { Loop } \\
& \Delta \mathrm{T}(\mathrm{x}, \mathrm{y})= \\
& (\mathrm{R}(\mathrm{x}, \mathrm{z}) \bowtie \Delta \mathrm{T}(\mathrm{z}, \mathrm{y}))-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \text { if }(\Delta \mathrm{T}=\emptyset) \text { break } \\
& \mathrm{T}=\mathrm{T} u \Delta \mathrm{~T}
\end{aligned}
\]

\section*{Endloop}

First iteration: Second iteration: Third iteration:

\(\Delta T=\)
paths of length 4
\begin{tabular}{|l|l|}
\hline 1 & 2 \\
\hline 1 & 4 \\
\hline 2 & 1 \\
\hline 2 & 3 \\
\hline 2 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1 & 2 \\
\hline 1 & 4 \\
\hline 2 & 1 \\
\hline 2 & 3 \\
\hline 3 & 4 \\
\hline 4 & 5 \\
\hline 1 & 1 \\
\hline 1 & 3 \\
\hline 1 & 5 \\
\hline 2 & 2 \\
\hline 2 & 4 \\
\hline 3 & 5 \\
\hline 2 & 5 \\
\hline
\end{tabular}
\(\square\)

\section*{Discussion of Semi-Naïve Algorithm}
- Avoids re-computing some tuples, but not all tuples
- Easy to implement, no disadvantage over naïve
- A rule is called linear if its body contains only one recursive IDB predicate:
- A linear rule always results in a single incremental rule
- A non-linear rule may result in multiple incremental rules

\section*{Outline}
- Datalog rules
- Recursion
- Semantics
- Negation, aggregates, stratification
- Naïve and Semi-naïve Evaluation
- Connection to RA - on your own

\section*{Datalog v.s. RA (and SQL)}
- "Pure" datalog has recursion, but no negation, aggregates: all queries are monotone; impractical
- Datalog without recursion, plus negation and aggregates expresses the same queries as RA: next slides
\(R(A, B, C)\)

\section*{RA to Datalog by Examples}

\section*{Union:}
\(R(A, B, C) \cup S(D, E, F)\)
\[
\begin{aligned}
U(x, y, z) & :-R(x, y, z) \\
U(x, y, z) & :-S(x, y, z)
\end{aligned}
\]
\(R(A, B, C)\)
S(D,E,F)
T(G,H)

\section*{RA to Datalog by Examples}

Intersection:
\(R(A, B, C) \cap S(D, E, F)\)
\(I(x, y, z):-R(x, y, z), S(x, y, z)\)

\section*{RA to Datalog by Examples}

Selection: \(\sigma_{x>100}\) and \(y=\) 'foo' \((R)\)
\(L(x, y, z):-R(x, y, z), x>100, y=' f o o '\)

Selection: \(\sigma_{x>100}\) or \(y=\) 'foo' \((R)\)
\(L(x, y, z):-R(x, y, z), x>100\)
\(L(x, y, z):-R(x, y, z), y=' f o o \prime\)
\(R(A, B, C)\)
S(D,E,F)
T(G,H)

\section*{RA to Datalog by Examples}

\section*{Equi-join: \(R \bowtie_{\text {R.A=S.D and R.B=S.E }} S\)}
\[
J(x, y, z, q):-R(x, y, z), S(x, y, q)
\]
\(R(A, B, C)\)
S(D,E,F)
T(G,H)

\section*{RA to Datalog by Examples}

\section*{Projection: \(\quad \Pi_{A}(R)\)}
\[
P(x):-R(x, y, z)
\]

\section*{\(R(A, B, C)\) \\ S(D,E,F) \\ T(G,H) \\ RA to Datalog by Examples}

To express difference, we add negation \(R-S\)
\[
D(x, y, z):-R(x, y, z), \text { NOT } S(x, y, z)
\]

\title{
\(R(A, B, C)\) \\ S(D,E,F) \\ T(G,H) \\ \\ Examples
} \\ \\ Examples
}

Translate: \(\Pi_{A}\left(\sigma_{B=3}(R)\right)\)
\(A(a):-R\left(a, 3, \_\right)\)

Underscore used to denote an "anonymous variable" Each such variable is unique
\(R(A, B, C)\)

\section*{Examples}

Translate: \(\Pi_{A}\left(\sigma_{B=3}(R) \bowtie_{R . A=S . D} \sigma_{E=5}(S)\right)\)
\(A(a):-R\left(a, 3, \_\right), S\left(a, 5, \_\right)\)

These are different "_"s

Friend(name1, name2)
Enemy(name1, name2)

\section*{More Examples w/o Recursion}

Find Joe's friends, and Joe's friends of friends.
\[
\begin{aligned}
& \text { A(x) :- Friend('Joe', x) } \\
& \text { A(x) :- Friend('Joe', z), Friend(z, x) }
\end{aligned}
\]

Friend(name1, name2)
Enemy(name1, name2)

\section*{More Examples w/o Recursion}

Find all of Joe's friends who do not have any friends except for Joe:
```

JoeFriends(x) :- Friend('Joe',x)
NonAns(x) :- JoeFriends(x), Friend(x,y), y != `Joe`
A(x) :- JoeFriends(x), NOT NonAns(x)

```

\section*{Friend(name1, name2)}

Enemy(name1, name2)

\section*{More Examples w/o Recursion}

Find all people such that all their enemies' enemies are their friends
- Q: if someone doesn't have any enemies nor friends, do we want them in the answer?
- A: Yes!
```

Everyone(x) :- Friend(x,y)
Everyone(x) :- Friend(y,x)
Everyone(x) :- Enemy(x,y)
Everyone(x) :- Enemy(y,x)
NonAns(x) :- Enemy(x,y),Enemy(y,z), NOT Friend(x,z)
A(x) :- Everyone(x), NOT NonAns(x)

```

\section*{Friend(name1, name2)}

Enemy(name1, name2)

\section*{More Examples w/o Recursion}

Find all persons \(x\) that have a friend all of whose enemies are x's enemies.
```

Everyone(x) :- Friend(x,y)
NonAns(x) :- Friend(x,y) Enemy(y,z), NOT Enemy(x,z)
A(x) :- Everyone(x), NOT NonAns(x)

```

\section*{More Examples w/ Recursion}
- Two people are in the same generation if they are siblings, or if they have parents in the same generation
- Find all persons in the same generation with Alice

\section*{More Examples w/ Recursion}
- Find all persons in the same generation with Alice
- Let's compute \(\mathrm{SG}(\mathrm{x}, \mathrm{y})=\) " \(\mathrm{x}, \mathrm{y}\) are in the same generation"
```

SG(x,y) :- ParentChild(p,x), ParentChild(p,y)
SG(x,y) :- ParentChild(p,x), ParentChild(q,y), SG(p,q)
Answer(x) :- SG("Alice", x)

```

\section*{Datalog Summary}
- EDB (base relations) and IDB (derived relations)
- Datalog program = set of rules
- Datalog is recursive
- Some reminders about semantics:
- Multiple atoms in a rule mean join (or intersection)
- Variables with the same name are join variables
- Multiple rules with same head mean union

\section*{Datalog and SQL}
- Stratified data (w/ recursion, w/o +, \({ }^{*}, \ldots\) ): expresses precisely* queries in PTIME
- Cannot find a Hamiltonian cycle (why?)
- SQL has also been extended to express recursive queries:
- Use a recursive "with" clause, also CTE (Common Table Expression)
- Often with bizarre restrictions...
- ... Just use datalog```

