Announcements

• Project groups due on Friday

• First review due on Tuesday (makeup lecture)
 – Run ‘git pull’ to get the ‘review’ subdirectory
 – Place your review there
 – Commit, push (see instructions in hw1.md); no need to tag

• Homework 1 due next Friday
 – Run turnInHw.sh hw1
 – Or manually: ‘git commit...’, ‘git tag...’, ‘git push...’
Database Design

• The relational model is great, but how do I design my database schema?
Outline

• Conceptual db design: entity-relationship model

• Problematic database designs

• Functional dependencies

• Normal forms and schema normalization
Conceptual Schema Design

Conceptual Model:

Relational Model: plus FD’s
(FD = functional dependency)

Normalization: Eliminates anomalies
Entity-Relationship Diagram

Attributes
- name

Entity sets
- Patient

Relationship sets
- patient_of
Entity-Relationship Diagram

Attributes
name

Entity sets
Patient

Relationship sets
patient_of

Doctor

Patient
Entity-Relationship Diagram

Attributes
- name
- pno
- zip

Entity sets
- Patient
 - name
 - pno
 - zip

Doctor
- dno
- specialty
- name

Relationship sets
- patient_of
Entity-Relationship Diagram

Attributes
- name

Entity sets
- Patient

Relationship sets
- patient_of

Entity sets
- Patient
 - name
 - zip

Relationship sets
- patient_of

Entity sets
- Doctor
 - dno
 - specialty
 - name
Entity-Relationship Model

• Typically, each entity has a key

• ER relationships can include multiplicity
 – One-to-one, one-to-many, etc.
 – Indicated with arrows

• Can model multi-way relationships

• Can model subclasses

• And more...
Subclasses to Relations

Product

- name
- category
- price

isa

Software Product

- platforms

isa

Educational Product

- Age Group
Subclasses to Relations

Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>
Subclasses to Relations

Product

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
</tr>
</tbody>
</table>

Sw.Product

<table>
<thead>
<tr>
<th>Name</th>
<th>platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>unix</td>
</tr>
</tbody>
</table>
Subclasses to Relations

<table>
<thead>
<tr>
<th>Product</th>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>99</td>
<td>gadget</td>
<td></td>
</tr>
<tr>
<td>Camera</td>
<td>49</td>
<td>photo</td>
<td></td>
</tr>
<tr>
<td>Toy</td>
<td>39</td>
<td>gadget</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software Product</th>
<th>platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>unix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Educational Product</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>toddler</td>
</tr>
<tr>
<td>Toy</td>
<td>senior</td>
</tr>
</tbody>
</table>
General approach to Translating Diagram into Relations

• Each entity set becomes a relation with a key

• Each relationship set becomes a relation with foreign keys except many-one relationships: just add a fk

• Each isA relationship becomes another relation, with both a key and foreign key
Outline

• Conceptual db design: entity-relationship model
• Problematic database designs
• Functional dependencies
• Normal forms and schema normalization
Relational Schema Design

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>
Anomalies:
- **Redundancy** = repeat data for Fred
- **Update anomalies** = what if Fred moves to “Bellevue”?
- **Deletion anomalies** = what if Joe deletes his phone number?

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>
Relation Decomposition

Break the relation into two:

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>PhoneNumber</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-1234</td>
<td>Seattle</td>
</tr>
<tr>
<td>Fred</td>
<td>123-45-6789</td>
<td>206-555-6543</td>
<td>Seattle</td>
</tr>
<tr>
<td>Joe</td>
<td>987-65-4321</td>
<td>908-555-2121</td>
<td>Westfield</td>
</tr>
</tbody>
</table>

Anomalies have gone:
- No more repeated data
- Easy to move Fred to “Bellevue” (how ?)
- Easy to delete all Joe’s phone numbers (how ?)
Relational Schema Design (or Logical Design)

How do we do this systematically?

• Start with some relational schema

• Find out its *functional dependencies* (FDs)

• Use FDs to *normalize* the relational schema
Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

\[A_1, A_2, \ldots, A_n \]

then they must also agree on the attributes

\[B_1, B_2, \ldots, B_m \]

Formally:

\[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]
Functional Dependencies (FDs)

Definition
\[A_1, \ldots, A_m \rightarrow B_1, \ldots, B_n \] holds in \(R \) if:

\[\forall t, t' \in R, \]

\[(t.A_1 = t'.A_1 \land \ldots \land t.A_m = t'.A_m \rightarrow t.B_1 = t'.B_1 \land \ldots \land t.B_n = t'.B_n) \]

<table>
<thead>
<tr>
<th></th>
<th>(A_1)</th>
<th>(\ldots)</th>
<th>(A_m)</th>
<th>(B_1)</th>
<th>(\ldots)</th>
<th>(B_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If \(t, t' \) agree here, then \(t, t' \) agree here.
Example

An FD holds, or does not hold on an instance:

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

EmpID \rightarrow Name, Phone, Position

Position \rightarrow Phone

but not Phone \rightarrow Position
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

Position ➔ **Phone**
Example

<table>
<thead>
<tr>
<th>EmpID</th>
<th>Name</th>
<th>Phone</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0045</td>
<td>Smith</td>
<td>1234</td>
<td>Clerk</td>
</tr>
<tr>
<td>E3542</td>
<td>Mike</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E1111</td>
<td>Smith</td>
<td>9876</td>
<td>Salesrep</td>
</tr>
<tr>
<td>E9999</td>
<td>Mary</td>
<td>1234</td>
<td>Lawyer</td>
</tr>
</tbody>
</table>

But not Phone → Position
Example

Which FD’s hold?

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>department</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>49</td>
</tr>
<tr>
<td>Tweaker</td>
<td>Gadget</td>
<td>Green</td>
<td>Toys</td>
<td>99</td>
</tr>
</tbody>
</table>
Buzzwords

• FD holds or does not hold on an instance

• If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD

• If we say that R satisfies an FD, we are stating a constraint on R
An Interesting Observation

If all these FDs are true:

- name \rightarrow color
- category \rightarrow department
- color, category \rightarrow price

Then this FD also holds:

- name, category \rightarrow price

Find out from application domain some FDs, Compute all FD’s implied by them
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The **closure** is the set of attributes B, denoted $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \rightarrow B$
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The **closure** is the set of attributes B, denoted $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \rightarrow B$

Example:
1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The closure is the set of attributes B, denoted $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \rightarrow B$

Example:
1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Closures:

$name^+ = \{\text{name, color}\}$
Closure of a set of Attributes

Given a set of attributes \(A_1, \ldots, A_n \)

The closure is the set of attributes \(B \), denoted \(\{A_1, \ldots, A_n\}^+ \), s.t. \(A_1, \ldots, A_n \rightarrow B \)

Example:
1. name \(\rightarrow \) color
2. category \(\rightarrow \) department
3. color, category \(\rightarrow \) price

Closures:
\[\text{name}^+ = \{\text{name, color}\} \]
\[\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\} \]
Closure of a set of Attributes

Given a set of attributes A_1, \ldots, A_n

The **closure** is the set of attributes B, denoted $\{A_1, \ldots, A_n\}^+$, s.t. $A_1, \ldots, A_n \Rightarrow B$

Example:

1. name \Rightarrow color
2. category \Rightarrow department
3. color, category \Rightarrow price

Closures:

- $\text{name}^+ = \{\text{name}, \text{color}\}$
- $\{\text{name, category}\}^+ = \{\text{name, category, color, department, price}\}$
- $\text{color}^+ = \{\text{color}\}$
Keys

• A **superkey** is a set of attributes A_1, \ldots, A_n s.t. for any other attribute B, we have $A_1, \ldots, A_n \rightarrow B$

• A **key** is a minimal superkey (no subset is a superkey)
Computing (Super)Keys

- For all sets X, compute X^+
- If $X^+ = \{\text{all attributes}\}$, then X is a superkey
- Try reducing to the minimal X’s to get the key
Example

Product(name, price, category, color)

name, category \rightarrow price
category \rightarrow color

What is the key?
Example

Product(name, price, category, color)

(name, category) → price
category → color

What is the key?

(name, category) + = { name, category, price, color }
What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
Key or Keys?

Can we have more than one key?
Key or Keys?

Can we have more than one key?

A \rightarrow B
B \rightarrow C
C \rightarrow A

what are the keys here?
Key or Keys?

Can we have more than one key?

A → B
B → C
C → A

AB → C
BC → A

A → BC
B → AC

what are the keys here?
Eliminating Anomalies

Main idea:

• $X \rightarrow A$ is OK if X is a (super)key

• $X \rightarrow A$ is not OK otherwise
 – Need to decompose the table, but how?
There are no “bad” FDs:

Definition. A relation R is in BCNF if:
Whenever \(X \rightarrow B \) is a non-trivial dependency, then \(X \) is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:
\[\forall X, \text{ either } X^+ = X \text{ or } X^+ = \{\text{all attributes}\} \]
BCNF Decomposition Algorithm

Normalize(R)

find X s.t.: X ≠ X⁺ and X⁺ ≠ [all attributes]

if (not found) then “R is in BCNF”

let Y = X⁺ - X; Z = [all attributes] - X⁺

decompose R into R1(X ∪ Y) and R2(X ∪ Z)

Normalize(R1); Normalize(R2);

Y
X
Z

X⁺
Example

The only key is: \{SSN, PhoneNumber\}
Hence \(SSN \rightarrow \text{Name, City}\) is a “bad” dependency

In other words:
\(SSN^+ = SSN, \text{Name, City}\) and is neither SSN nor All Attributes
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

Find X s.t.: $X \neq X^+$ and $X^+ \neq \{\text{all attributes}\}$
Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
Phone(SSN, phoneNumber)

Find X s.t.: X \neq X^+ and X^+ \neq [all attributes]
Find X s.t.: $X \neq X^+$ and $X^+ \neq [\text{all attributes}]$

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

Iteration 1: Person: $SSN^+ = SSN, name, age, hairColor$
Decompose into: $P(SSN, name, age, hairColor)$
$Phone(SSN, phoneNumber)$

Iteration 2: P: age$^+ = age, hairColor$
Decompose: People(SSN, name, age)
Hair(age, hairColor)
Phone(SSN, phoneNumber)
Find X s.t.: X ≠ X^+ and X^+ ≠ [all attributes]

Example BCNF Decomposition

Person(name, SSN, age, hairColor, phoneNumber)

SSN \rightarrow name, age
age \rightarrow hairColor

Iteration 1: Person: \ SSN^+ = SSN, name, age, hairColor
Decompose into: \(P(\text{SSN, name, age, hairColor}) \)
\(\text{Phone(SSN, phoneNumber)} \)

Iteration 2: \(P: \text{age}^+ = \text{age, hairColor} \)
Decompose: \(\text{People(SSN, name, age)} \)
\(\text{Hair(age, hairColor)} \)
\(\text{Phone(SSN, phoneNumber)} \)

Note the keys!
Example: BCNF

\[R(A, B, C, D) \]

\[A \rightarrow B \]
\[B \rightarrow C \]
Example: BCNF

Recall: find X s.t. $X \subset X^+ \subset \text{[all-attrs]}$

$R(A,B,C,D)$

$A \rightarrow B$

$B \rightarrow C$
Example: BCNF

\[\text{R}(A,B,C,D) \]

\[A^+ = ABC \neq ABCD \]
Example: BCNF

\[R(A, B, C, D) \]

\[A^+ = ABC \neq ABCD \]

\[R_1(A, B, C) \]

\[R_2(A, D) \]
Example: BCNF

\[R(A,B,C,D) \]
\[A^+ = ABC \neq ABCD \]

\[R_1(A,B,C) \]
\[B^+ = BC \neq ABC \]

\[R_2(A,D) \]

\[A \rightarrow B \]
\[B \rightarrow C \]
Example: BCNF

What are the keys?

R(A,B,C,D)

A⁺ = ABC ≠ ABCD

R₁(A,B,C)
B⁺ = BC ≠ ABC

R₁₁(B,C)

R₁₂(A,B)

R₂(A,D)

What are the keys?

What happens if in R we first pick B⁺? Or AB⁺?
Decompositions in General

\[R(A_1, ..., A_n, B_1, ..., B_m, C_1, ..., C_p) \]

\[S_1(A_1, ..., A_n, B_1, ..., B_m) \quad \text{and} \quad S_2(A_1, ..., A_n, C_1, ..., C_p) \]

\[S_1 = \text{projection of } R \text{ on } A_1, ..., A_n, B_1, ..., B_m \]
\[S_2 = \text{projection of } R \text{ on } A_1, ..., A_n, C_1, ..., C_p \]
Lossless Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

![Diagram showing the decomposition of the table into two smaller tables](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Lossy Decomposition

What is lossy here?

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Lossy Decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gizmo</td>
<td>Gadget</td>
</tr>
<tr>
<td>OneClick</td>
<td>Camera</td>
</tr>
<tr>
<td>Gizmo</td>
<td>Camera</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.99</td>
<td>Gadget</td>
</tr>
<tr>
<td>24.99</td>
<td>Camera</td>
</tr>
<tr>
<td>19.99</td>
<td>Camera</td>
</tr>
</tbody>
</table>
Decomposition in General

Let:

\[S_1 = \text{projection of } R \text{ on } A_1, \ldots, A_n, B_1, \ldots, B_m \]
\[S_2 = \text{projection of } R \text{ on } A_1, \ldots, A_n, C_1, \ldots, C_p \]

The decomposition is called **lossless** if \(R = S_1 \bowtie S_2 \)

Fact: If \(A_1, \ldots, A_n \rightarrow B_1, \ldots, B_m \) then the decomposition is lossless

It follows that every BCNF decomposition is lossless
Testing for Lossless Join

If we decompose R into $\Pi_{S_1}(R)$, $\Pi_{S_2}(R)$, $\Pi_{S_3}(R)$, ... is it true that $S_1 \bowtie S_2 \bowtie S_3 \bowtie ... = R$?

That is true if we can show that:

$R \subseteq S_1 \bowtie S_2 \bowtie S_3 \bowtie ...$ always holds (why?)

$R \supseteq S_1 \bowtie S_2 \bowtie S_3 \bowtie ...$ neet to check
The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

$R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$S1 = \Pi_{AD}(R)$, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence $R \subseteq S1 \bowtie S2 \bowtie S3$

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$
Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

\[
R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)
\]

R satisfies: \(A \rightarrow B, B \rightarrow C, CD \rightarrow A\)

S1 = \(\Pi_{AD}(R)\), S2 = \(\Pi_{AC}(R)\), S3 = \(\Pi_{BCD}(R)\),

hence \(R \subseteq S1 \bowtie S2 \bowtie S3\)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3\)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3\) Is it also in R?
The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

$R(A, B, C, D) = S_1(A, D) \bowtie S_2(A, C) \bowtie S_3(B, C, D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$S_1 = \Pi_{AD}(R)$, $S_2 = \Pi_{AC}(R)$, $S_3 = \Pi_{BCD}(R)$,

hence $R \subseteq S_1 \bowtie S_2 \bowtie S_3$

Need to check: $R \supseteq S_1 \bowtie S_2 \bowtie S_3$

Suppose $(a, b, c, d) \in S_1 \bowtie S_2 \bowtie S_3$ is it also in R?

R must contain the following tuples:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
</tbody>
</table>

Why?

$(a, d) \in S_1 = \Pi_{AD}(R)$
Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

\[
R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)
\]

\(R\) satisfies: \(A \rightarrow B, B \rightarrow C, CD \rightarrow A\)

\(S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R),\)
hence \(R \subseteq S1 \bowtie S2 \bowtie S3\)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3\)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3\) Is it also in \(R\)?

\(R\) must contain the following tuples:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
</tr>
</tbody>
</table>

Why?

\((a,d) \in S1 = \Pi_{AD}(R)\)
\((a,c) \in S2 = \Pi_{BD}(R)\)
Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

\[R(A,B,C,D) = S1(A,D) \Join S2(A,C) \Join S3(B,C,D) \]

\(R \) satisfies: \(A \rightarrow B, B \rightarrow C, CD \rightarrow A \)

\(S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R), \)

hence \(R \subseteq S1 \Join S2 \Join S3 \)

Need to check: \(R \supseteq S1 \Join S2 \Join S3 \)

Suppose \((a,b,c,d) \in S1 \Join S2 \Join S3 \) Is it also in \(R \)?

\(R \) must contain the following tuples:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Why?

- \((a,d) \in S1 = \Pi_{AD}(R)\)
- \((a,c) \in S2 = \Pi_{BD}(R)\)
- \((b,c,d) \in S3 = \Pi_{BCD}(R)\)
Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

\[R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D) \]

R satisfies: \(A \rightarrow B, \ B \rightarrow C, \ CD \rightarrow A \)

\[S1 = \Pi_{AD}(R), \ S2 = \Pi_{AC}(R), \ S3 = \Pi_{BCD}(R), \]

hence \(R \subseteq S1 \bowtie S2 \bowtie S3 \)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3 \)

Suppose \((a,b,c,d) \in S1 \bowtie S2 \bowtie S3\) Is it also in \(R\)?

\(R \) must contain the following tuples:

“Chase” them (apply FDs):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Why?

- \((a,d) \in S1 = \Pi_{AD}(R)\)
- \((a,c) \in S2 = \Pi_{BD}(R)\)
- \((b,c,d) \in S3 = \Pi_{BCD}(R)\)
Example from textbook Ch. 3.4.2

The Chase Test for Lossless Join

\[R(A, B, C, D) = S1(A, D) \bowtie S2(A, C) \bowtie S3(B, C, D) \]

\(R \) satisfies: \(A \rightarrow B, B \rightarrow C, CD \rightarrow A \)

\(S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R) \),

hence \(R \subseteq S1 \bowtie S2 \bowtie S3 \)

Need to check: \(R \supseteq S1 \bowtie S2 \bowtie S3 \)

Suppose \((a, b, c, d) \in S1 \bowtie S2 \bowtie S3 \) Is it also in \(R \)?

\(R \) must contain the following tuples:

“Chase” them (apply FDs):

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
a & b1 & c1 & d \\
a & b1 & c & d2 \\
a3 & b & c & d \\
\end{array}
\]

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
a & b1 & c & d \\
a & b2 & c & d2 \\
a3 & b & c & d \\
\end{array}
\]

Why?

\((a, d) \in S1 = \Pi_{AD}(R) \)

\((a, c) \in S2 = \Pi_{BD}(R) \)

\((b, c, d) \in S3 = \Pi_{BCD}(R) \)
The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: A → B, B → C, CD → A

S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R),
hence R ⊆ S1 ⋈ S2 ⋈ S3

Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b1</td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c</td>
<td>d2</td>
</tr>
<tr>
<td>a3</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Hence R contains (a,b,c,d)
Schema Refinements
= Normal Forms

• 1st Normal Form = all tables are flat
• 2nd Normal Form = obsolete
• Boyce Codd Normal Form = no bad FDs
• 3rd Normal Form = see book
 – BCNF is lossless but can cause loss of ability to check some FDs
 – 3NF fixes that (is lossless and dependency-preserving), but some tables might not be in BCNF – i.e., they may have redundancy anomalies