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Announcements

* Project presentations next Tuesday
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Outline

 Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

* Review of buffer manager and its policies
 Write-ahead log + simple UNDO / REDO recovery

 ARIES method for failure recovery
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ACID Properties

tomicity: Either all changes performed by transaction
OCCUr or none occurs

onsistency: A transaction as a whole does not violate
Integrity constraints

solation: Transactions appear to execute one after the
other in sequence

urability: If a transaction commits, its changes will
survive failures
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What Could Go Wrong?

Concurrent operations

— That’s what we discussed last time (atomicity and isolation
properties)

Failures can occur at any time
— Today (isolation and durability properties)
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Problem lllustration

Client 1:
START TRANSACTION
INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product

WHERE price <= 0.99

| Crash!

DELETE Product
WHERE price <=0.99
COMMIT

What do we do now?

CSE 544 - Fall 2016 7



Handling Failures

« Types of failures
— Transaction failure
— System failure
— Media failure -> we will not talk about this now

* Required capability: undo and redo

« Challenge: buffer manager
— Changes performed in memory
— Changes written to disk only from time to time
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Impact of Buffer Manager

Page request from higher-level code

READ/WRITE
Buffer pool

Disk page Main

memory

Free frame

INPUT/OUTPUT

to 1 disk block

CSE 544 - Fall 2016 9

Disk 1 page corresponds




Primitive Operations

. READ(X,t)

— copy value of data item X to transaction local variable t

. WRITE(X,})

— copy transaction local variable t to data item X

. INPUT(X)

— read page containing data item X to memory buffer

. OUTPUT(X)

— write page containing data item X to disk

CSE 544 - Fall 2016
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Running Example
BEGIN TRANSACTION

READ(A 1),
t = t*2: Initially, A=B=8.
WRITE(A.L) (o ans Aot o
RE AD(B,t); (2) T does not commit and A=B=8.
t:=1"2;

WRITE(B,t)

COMMIT:
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READ(A); t:
o

t*2; WRITE(A,});
READ(B,t); t := t

*2: WRITE(B, 1)

Transaction Buffer pool Disk
Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT




Is this bad ?

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 1§ﬁ

COMMIT




Is this bad ? Yes it's bad: A=16, B=8....
Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 1?2

COMMIT




Is this bad ?

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT i\ﬁ




|s this bad ? Yes it's bad: A=B=16, but not committed
Action t MemA | MemB | Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 38 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT E




Is this bad ?

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 ?ir
OUTPUT(B) 16 16 16 16 16

COMMIT




Is this bad ? No: that's OK
Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 §
OUTPUT(B) 16 16 16 16 16
COMMIT




Typically, OUTPUT is after COMMIT (why?)

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16




Typically, OUTPUT is after COMMIT (why?)

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 ﬁm&
OUTPUT(B) 16 16 16 16 16




Write-Ahead Log

* Log: append-only file containing log records

* For every update, commit, or abort operation
— Write a log record

— Multiple transactions run concurrently, log records are
iInterleaved

« After a system crash, use log to:
— Redo transactions that did commit
— Undo other transactions that didn’t commit
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Log Granularity

Two basic types of log records for update operations

* Physical log records
— Position on a particular page where update occurred
— Both before and after image for undo/redo logs
— Benefits: Idempotent & updates are fast to redo/undo

* Logical log records
— Record only high-level information about the operation
— Benefit: Smaller log
— BUT difficult to implement because crashes can occur in
the middle of an operation
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Buffer Manager Policies

STEAL or NO-STEAL

— Can an update made by an uncommitted transaction overwrite the
most recent committed value of a data item on disk?

FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk before the
transaction commits?

Easiest for recovery: NO-STEAL/FORCE

N
"

Highest performance: STEAL/NO-FORCE
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Outline
Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

Review of buffer manager and its policies
Write-ahead log + simple UNDO / REDO recovery

ARIES method for failure recovery

CSE 544 - Fall 2016
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UNDO Log

FORCE and STEAL

CSEP544 - Fall 2015
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Undo Logging

Log records
« <START T>

— transaction T has begun

o« <COMMIT T>
— T has committed

« <ABORT T>
— T has aborted

¢ <T,X,v>
— T has updated element X, and its o/d value was v

CSEP544 - Fall 2015
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Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT

<COMMIT T>
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Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 %
COMMIT

<COMMIT T>

WHAT DO WE DO ?

28



Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8 %
OUTPUT(B) 16 16 16 16 16 =
COMMIT <COMMIT T>

WHAT DO WE DO ?

We UNDO by setting B=8 and A=8




Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ?




Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ?

Nothing: log contains COMMIT




Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>

<T2,X2,V2§>‘<}/\/\//\/j§

Question1: Which updates
are undone ?

Question 2:
How far back
do we need to
read in the log ?

Question 3:
What happens if there
IS a second crash,

during recovery ?
32



Action t Mem A | Mem B | Disk A | Disk B UNDO Log
! <START T>
INPUT(A) // When must 8
READ(A 8 K we f_orce pages 3
to disk ?
t=t*2 16 8 8
AN
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B.1) 8 16 8 8 8 “)
-
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OU?MDT(A) | 16 16 16 16 8 N
4
ouﬁ_UT(B) g 16 16 16 16 16
COMMIT <COMMIT T>




Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A) 8 8 8 8
t=t+2 16 8 8 8
WRITEAL | 16 16 8 8 { <T,A.8> >
INPUT®B) | 16 16 8 8 8
READ(B, ) 8 16 8 8 8
f:=t+2 16 8 8 8
WRITE(B ) 16 16 8 8 { <T,B,8> >
\/OUTPUT@ 16 16 | 16— 16 8
m/m/ 16 16 16 16
COMMIT | FORCE—{&commiT T>

RULES: log entry before OUTPUT before COMMIT




Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must
be written to disk before <COMMIT T>

 Hence: OUTPUTs are done early,
before the transaction commits
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REDO Log

NO-FORCE and NO-STEAL

CSEP544 - Fall 2015
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Redo Logging

One minor change to the undo log:

« <T,X,v>=T has updated element X, and
its new value is v

CSEP544 - Fall 2015 37



Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
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Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 el
OUTPUT(B) 16 16 16 16 16 %

How do we recover ?
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Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 el
OUTPUT(B) 16 16 16 16 16 %

How do we recover ?

We REDO by setting A=16 and B=16




Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2> .
<T2. X2. v2> Show actions
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>

<T1,X5y5> |

CSEP544 - Fall 2015 41
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Action t | MemA | m—"—+a| piskB | REDO Log
/ When must \ <START T>
READ(A 1 3 g\ we f_orce pages /g
to disk ?
t:=t2 16 8 8
Z N\
WRITEAL | 16 16 8 8 <TA,{6>
READ(B, ) 8 16 8 8 8
t:=t2 16 16 8 8 8 <A
¢
WRITEBH | 16 16 16 8 8 <TB.16>
COMMIT <COMMIT T>
OUTRUT(A)| 16 16 16 16 8
ouTRUT®B) [¢ 16 16 16 16 16

) |
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Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A) 8 8 8 8
t=t+2 16 8 8 8
WRITEAL | 16 16 8 8 <T,A,16>
READ(B, ) 8 16 8 8 8
t=t+2 16 16 8 8 8
WRITEB,t) | 16 16 16 8 8 <T.B.16>
COMMIT NO-STEAL | |  H<commIT ﬁ»
@TPUT(A) 16 6 | 16 | 16— 8
m@/m/ 16 16 16 16

RULE: OUTPUT after COMMIT
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Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

NO-STEAL

 Hence: OUTPUTs are done /ate
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Comparison Undo/Redo

* Undo logging: OUTPUT must be
done early:

— Inefficient

* Redo logging: OUTPUT must be
done late:

— Inflexible

CSEP544 - Fall 2015
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Outline

 Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

* Review of buffer manager and its policies
 Write-ahead log + simple UNDO / REDO recovery

 ARIES method for failure recovery

CSE 544 - Fall 2016
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ARIES

CSEP544 - Fall 2015
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Aries

ARIES pieces together several techniques into a
comprehensive algorithm

Developed at IBM Almaden, by Mohan
IBM botched the patent, so everyone uses it now

Several variations, e.g. for distributed transactions
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Granularity in ARIES

* Physiological logging
— Log records refer to a single page
— But record logical operation within the page

» Page-oriented logging for REDO
— Necessary since can crash in middle of complex operation
« Logical logging for UNDO

— Enables tuple-level locking!

— Why physical logging for REDO and logical logging for UNDO?
(answer at the end of the lecture)
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ARIES Method

Recovery from a system crash is done in 3 passes:

1. Analysis pass
— Figure out what was going on at time of crash
— List of dirty pages and active transactions
2. Redo pass (repeating history principle)
— Redo all operations, even for transactions that will not commit
— Get back to state at the moment of the crash

3. Undo pass
— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo
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ARIES Recovery Manager

* A redo/undo log

* Physiological logging
— Physical logging for REDO
— Logical logging for UNDO

 Efficient checkpointing Why do we
do checkpointing?
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ARIES Recovery Manager

Log entries:
« <START T> --when T begins
« Update: <T,X,u,v>
— T updates X, old value=u, new value=v
— In practice: undo only and redo only entries

e <COMMIT T> or <ABORT T>
« CLR’s —we'll talk about them later.

CSEP544 - Fall 2015
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ARIES Recovery Manager

Rule:

o If T modifies X, then <T,X,u,v> must be written to disk
before OUTPUT(X)

We are free to OUTPUT early or late

CSEP544 - Fall 2015
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LSN = Log Sequence Number

 LSN = identifier of a log entry

— Log entries belonging to the same TXN are linked

» Each page contains a pageLSN:

— LSN of log record for latest update to that page

CSEP544 - Fall 2015
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ARIES Data Structures

 Active Transactions Table

— Lists all active TXN's

— For each TXN: lastLSN = its most recent update LSN
* Dirty Page Table

— Lists all dirty pages

— For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

 Write Ahead Log
— LSN, prevLSN = previous LSN for same txn
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WT100(P7)
WTZOO(P5)
WTZOO(PG)
WT100(P5)

ARIES Data Structures

Dirty pages

pagelD recLSN
P5 102
P6 103
P7 101

Active transactions

transiD lastLSN
T100 104
T200 103

Log (WAL)
LSN | prevLSN |transIiD | pagelD |Log entry
101 |- T100 P7
102 |- T200 P5
103 | 102 T200 P6
104 | 101 7100 P5
Buffer Pool
P8 P2
P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101




ARIES Normal Operation

T writes page P
 What do we do ?

CSEP544 - Fall 2015
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ARIES Normal Operation

T writes page P
 What do we do ?

* Write <T,P,u,v> in the Log
 prevLSN=lastLSN
 pageLSN=LSN

* lastLSN=LSN

* recLSN=if isNull then LSN

CSEP544 - Fall 2015
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ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
 What do we do ?

Buffer manager wants INPUT(P)
 What do we do ?

CSEP544 - Fall 2015
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ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* Flush log up to pageLSN

« Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

« Create entry in Dirty Pages table
recLSN = NULL

CSEP544 - Fall 2015
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ARIES Normal Operation

Transaction T starts
e What do we do ?

Transaction T commits/aborts
e What do we do ?

CSEP544 - Fall 2015
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ARIES Normal Operation

Transaction T starts
« Write <START T> in the log

* New entry T in Active TXN,;
lastLSN = null

Transaction T commits/aborts
« Write <COMMIT T> in the log
* Flush log up to this entry

CSEP544 - Fall 2015
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Checkpoints

Write into the log

 Entire active transactions table
« Entire dirty pages table

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

CSEP544 - Fall 2015 63




ARIES Recovery

1. Analysis pass
— Figure out what was going on at time of crash
— List of dirty pages and active transactions
2. Redo pass (repeating history principle)
— Redo all operations, even for transactions that will not commit
— Get back to state at the moment of the crash

3. Undo pass

— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo
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ARIES Method lllustration

Start of oldest First update ‘ . ‘
in—progress potentially Checkpoint End of Log
transaction lost during crash
llll| llllllllllllllllllllllllllll I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII l- Log (tillle _-":
= Analysis
el Redo
- v

Undo

Yure 3: The Three Passes of ARIES Restart

First undo and first redo log entry might be
INn reverse order

[Figure 3 from Franklin97]
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1. Analysis Phase

+ Goal
— Determine point in log (firstLSN) where to start REDO

— Determine set of dirty pages when crashed
» Conservative estimate of dirty pages

— ldentify active transactions when crashed

* Approach
— Rebuild active transactions table and dirty pages table

— Reprocess the log from the checkpoint
* Only update the two data structures

— Compute: firstLSN = smallest of all recoveryLSN

CSEP544 - Fall 2015
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1. Analysis Phase

Log

Checkpoint (crash)

Dirty
pages

Active
txn

|

\L >
] Where do we start
firstLSN= 77" the REDO phase ?

pagelD

recLSN

pagelD

transiD

lastLSN

transiD




1. Analysis Phase

Log

Checkpoint

y

(crash)

firstLSN=min(

Dirty
pages

Active
txn

|

pagelD

recLSN | pagelD

transiD

lastLSN

transiD




1. Analysis Phase

LOg Cthprlnt (crash)
firstLSN

Dlrty pagelD |recLSN |pagelD eplay [g;gg.'o"j};;[s‘ﬁ'gggga']
pages nistory | | | |
A N
- translD |lastLSN |transtDh ( | f---—-——-—--p-——-—-——-pr—-————
Active transID | lastLSN | transID |
I I

txn




2. Redo Phase

Main principle: replay history

* Process Log forward, starting from firstLSN
 Read every log record, sequentially

* Redo actions are not recorded in the log
 Needs the Dirty Page Table

CSEP544 - Fall 2015
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2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
* Re-do the action P=u and WRITE(P)
« But which actions can we skip, for efficiency ?

CSEP544 - Fall 2015
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2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
« If Pis notin Dirty Page then no update

* |f recLSN > LSN, then no update

* Read page from disk:
If pageLSN > LSN, then no update

» Otherwise perform update

CSEP544 - Fall 2015
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2. Redo Phase: Detalls

What happens if system crashes during REDO ?

CSEP544 - Fall 2015
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2. Redo Phase: Detalls

What happens if system crashes during REDO ?

We REDO again! Each REDO operation is idempotent:
doing it twice is the as as doing it once.
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3. Undo Phase

« Cannot “unplay” history, in the same way as we “replay”
history

« WHY NOT ? Time to answer this question®©
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3. Undo Phase

Cannot “unplay” history, in the same way as we “replay’
history

WHY NOT ? Time to answer this question©
Need to support ROLLBACK!
Selective undo, for one transaction only

— Cannot simply undo physical actions

— E.g. Txn updates a record on a page, another Txn updates
another record on the same page: don’'t undo the latter

— E.g. Txn updates a B*-tree, causing rebalancing, other Txn do
other update: don’t undo the latter!

Hence, logical undo v.s. physical redo
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3. Undo Phase

Main principle: “logical” undo

Start from end of Log, move backwards
Read only affected log entries

Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

CLRs are redone, but never undone

CSEP544 - Fall 2015
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3. Undo Phase: Detalls

 “Loser transactions” =
— Uncommitted transactions in Active Transactions Table
— Or transactions to be rolled back

« ToUndo = set of lastLSN of loser transactions
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3. Undo Phase: Detalls

While ToUndo not empty:
* Choose most recent (largest) LSN in ToUndo

« If LSN = regular record <T,P,u,v>:

— Undo v

— Write a CLR where CLR.undoNextLSN = LSN.prevLSN
 If LSN = CLR record:

— Don’t undo!

e if CLR.undoNextLSN not null, insertin ToUndo
otherwise, write <END TRANSACTION> in log

CSEP544 - Fall 2015
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3. Undo Phase: Detalils

o A

Write Write  Write sz CLR FOR CLR FOR Gt CLR FOR
page 1 page 1 page 1 g~ LSN 30 LSN 20 ‘<ggg# LSN 10
Log (time —®=) % % G
J()(l’ ll]](l ---------------------------------------------------------------- s LLLLLLLLLLL L] Y |[sesssssssssssagjssssssasssy ’ ------
: | — % 2 %
LLSN: 10 20 10 Restart 40 50 Restart 60

L g

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]
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3. Undo Phase: Detalls

What happens if system crashes during UNDOQO ?

CSEP544 - Fall 2015
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3. Undo Phase: Detalls

What happens if system crashes during UNDO ?

We do not UNDO again ! Instead, each CLR is a REDO
record: we simply redo the undo
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Physical v.s. Logical Loging

Why are redo records physical ?

Why are undo records logical ?

CSEP544 - Fall 2015
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Physical v.s. Logical Loging

Why are redo records physical ?
« Simplicity: replaying history is easy, and idempotent

Why are undo records logical ?

« Required for transaction rollback: this not “undoing
history”, but selective undo

CSEP544 - Fall 2015
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