CSE 544

Principles of Database
Management Systems

Fall 2016
Lectures 17-18 - Transactions: recovery

Announcements

* Project presentations next Tuesday

CSE 544 - Fall 2016

References

« Concurrency control and recovery.

Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

 Database management systems.

Ramakrishnan and Gehrke.
Third Ed. Chapters 16 and 18.

CSE 544 - Fall 2016 3

Outline

 Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

* Review of buffer manager and its policies
 Write-ahead log + simple UNDO / REDO recovery

 ARIES method for failure recovery

CSE 544 - Fall 2016

ACID Properties

tomicity: Either all changes performed by transaction
OCCUr or none occurs

onsistency: A transaction as a whole does not violate
Integrity constraints

solation: Transactions appear to execute one after the
other in sequence

urability: If a transaction commits, its changes will
survive failures

CSE 544 - Fall 2016)

What Could Go Wrong?

Concurrent operations

— That’s what we discussed last time (atomicity and isolation
properties)

Failures can occur at any time
— Today (isolation and durability properties)

CSE 544 - Fall 2016

Problem lllustration

Client 1:
START TRANSACTION
INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product

WHERE price <= 0.99

| Crash!

DELETE Product
WHERE price <=0.99
COMMIT

What do we do now?

CSE 544 - Fall 2016 7

Handling Failures

« Types of failures
— Transaction failure
— System failure
— Media failure -> we will not talk about this now

* Required capability: undo and redo

« Challenge: buffer manager
— Changes performed in memory
— Changes written to disk only from time to time

CSE 544 - Fall 2016

Impact of Buffer Manager

Page request from higher-level code

READ/WRITE
Buffer pool

Disk page Main

memory

Free frame

INPUT/OUTPUT

to 1 disk block

CSE 544 - Fall 2016 9

Disk 1 page corresponds

Primitive Operations

. READ(X,t)

— copy value of data item X to transaction local variable t

. WRITE(X,})

— copy transaction local variable t to data item X

. INPUT(X)

— read page containing data item X to memory buffer

. OUTPUT(X)

— write page containing data item X to disk

CSE 544 - Fall 2016

10

Running Example
BEGIN TRANSACTION

READ(A 1),
t = t*2: Initially, A=B=8.
WRITE(A.L) (o ans Aot o
RE AD(B,t); (2) T does not commit and A=B=8.
t:=1"2;

WRITE(B,t)

COMMIT:

11 2015 11

READ(A); t:
o

t*2; WRITE(A,});
READ(B,t); t := t

*2: WRITE(B, 1)

Transaction Buffer pool Disk
Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT

Is this bad ?

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 1§ﬁ

COMMIT

Is this bad ? Yes it's bad: A=16, B=8....
Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 1?2

COMMIT

Is this bad ?

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT i\ﬁ

|s this bad ? Yes it's bad: A=B=16, but not committed
Action t MemA | MemB | Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 38 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT E

Is this bad ?

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 ?ir
OUTPUT(B) 16 16 16 16 16

COMMIT

Is this bad ? No: that's OK
Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 §
OUTPUT(B) 16 16 16 16 16
COMMIT

Typically, OUTPUT is after COMMIT (why?)

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Typically, OUTPUT is after COMMIT (why?)

Action t Mem A | MemB | Disk A | DiskB
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8

t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 ﬁm&
OUTPUT(B) 16 16 16 16 16

Write-Ahead Log

* Log: append-only file containing log records

* For every update, commit, or abort operation
— Write a log record

— Multiple transactions run concurrently, log records are
iInterleaved

« After a system crash, use log to:
— Redo transactions that did commit
— Undo other transactions that didn’t commit

CSE 544 - Fall 2016 21

Log Granularity

Two basic types of log records for update operations

* Physical log records
— Position on a particular page where update occurred
— Both before and after image for undo/redo logs
— Benefits: Idempotent & updates are fast to redo/undo

* Logical log records
— Record only high-level information about the operation
— Benefit: Smaller log
— BUT difficult to implement because crashes can occur in
the middle of an operation

CSE 544 - Fall 2016 22

Buffer Manager Policies

STEAL or NO-STEAL

— Can an update made by an uncommitted transaction overwrite the
most recent committed value of a data item on disk?

FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk before the
transaction commits?

Easiest for recovery: NO-STEAL/FORCE

N
"

Highest performance: STEAL/NO-FORCE

CSE 544 - Fall 2016 23

Outline
Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

Review of buffer manager and its policies
Write-ahead log + simple UNDO / REDO recovery

ARIES method for failure recovery

CSE 544 - Fall 2016

24

UNDO Log

FORCE and STEAL

CSEP544 - Fall 2015

25

Undo Logging

Log records
« <START T>

— transaction T has begun

o« <COMMIT T>
— T has committed

« <ABORT T>
— T has aborted

¢ <T,X,v>
— T has updated element X, and its o/d value was v

CSEP544 - Fall 2015

26

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT

<COMMIT T>

27

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 %
COMMIT

<COMMIT T>

WHAT DO WE DO ?

28

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8 %
OUTPUT(B) 16 16 16 16 16 =
COMMIT <COMMIT T>

WHAT DO WE DO ?

We UNDO by setting B=8 and A=8

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ?

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

What do we do now ?

Nothing: log contains COMMIT

Recovery with Undo Log

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>

<T2,X2,V2§>‘<}/\/\//\/j§

Question1: Which updates
are undone ?

Question 2:
How far back
do we need to
read in the log ?

Question 3:
What happens if there
IS a second crash,

during recovery ?
32

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
! <START T>
INPUT(A) // When must 8
READ(A 8 K we f_orce pages 3
to disk ?
t=t*2 16 8 8
AN
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B.1) 8 16 8 8 8 “)
-
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OU?MDT(A) | 16 16 16 16 8 N
4
ouﬁ_UT(B) g 16 16 16 16 16
COMMIT <COMMIT T>

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A) 8 8 8 8
t=t+2 16 8 8 8
WRITEAL | 16 16 8 8 { <T,A.8> >
INPUT®B) | 16 16 8 8 8
READ(B,) 8 16 8 8 8
f:=t+2 16 8 8 8
WRITE(B) 16 16 8 8 { <T,B,8> >
\/OUTPUT@ 16 16 | 16— 16 8
m/m/ 16 16 16 16
COMMIT | FORCE—{&commiT T>

RULES: log entry before OUTPUT before COMMIT

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must
be written to disk before <COMMIT T>

 Hence: OUTPUTs are done early,
before the transaction commits

CSEP544 - Fall 2015 35

REDO Log

NO-FORCE and NO-STEAL

CSEP544 - Fall 2015

36

Redo Logging

One minor change to the undo log:

« <T,X,v>=T has updated element X, and
its new value is v

CSEP544 - Fall 2015 37

Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

38

Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 el
OUTPUT(B) 16 16 16 16 16 %

How do we recover ?

39

Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 el
OUTPUT(B) 16 16 16 16 16 %

How do we recover ?

We REDO by setting A=16 and B=16

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2> .
<T2. X2. v2> Show actions
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>

<T1,X5y5> |

CSEP544 - Fall 2015 41

during recovery

Action t | MemA | m—"—+a| piskB | REDO Log
/ When must \ <START T>
READ(A 1 3 g\ we f_orce pages /g
to disk ?
t:=t2 16 8 8
Z N\
WRITEAL | 16 16 8 8 <TA,{6>
READ(B,) 8 16 8 8 8
t:=t2 16 16 8 8 8 <A
¢
WRITEBH | 16 16 16 8 8 <TB.16>
COMMIT <COMMIT T>
OUTRUT(A)| 16 16 16 16 8
ouTRUT®B) [¢ 16 16 16 16 16

) |

42

Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A) 8 8 8 8
t=t+2 16 8 8 8
WRITEAL | 16 16 8 8 <T,A,16>
READ(B,) 8 16 8 8 8
t=t+2 16 16 8 8 8
WRITEB,t) | 16 16 16 8 8 <T.B.16>
COMMIT NO-STEAL | | H<commIT ﬁ»
@TPUT(A) 16 6 | 16 | 16— 8
m@/m/ 16 16 16 16

RULE: OUTPUT after COMMIT

43

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

NO-STEAL

 Hence: OUTPUTs are done /ate

CSEP544 - Fall 2015 44

Comparison Undo/Redo

* Undo logging: OUTPUT must be
done early:

— Inefficient

* Redo logging: OUTPUT must be
done late:

— Inflexible

CSEP544 - Fall 2015

45

Outline

 Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

* Review of buffer manager and its policies
 Write-ahead log + simple UNDO / REDO recovery

 ARIES method for failure recovery

CSE 544 - Fall 2016

46

ARIES

CSEP544 - Fall 2015

47

Aries

ARIES pieces together several techniques into a
comprehensive algorithm

Developed at IBM Almaden, by Mohan
IBM botched the patent, so everyone uses it now

Several variations, e.g. for distributed transactions

CSEP544 - Fall 2015 48

Granularity in ARIES

* Physiological logging
— Log records refer to a single page
— But record logical operation within the page

» Page-oriented logging for REDO
— Necessary since can crash in middle of complex operation
« Logical logging for UNDO

— Enables tuple-level locking!

— Why physical logging for REDO and logical logging for UNDO?
(answer at the end of the lecture)

CSE 544 - Fall 2016 49

ARIES Method

Recovery from a system crash is done in 3 passes:

1. Analysis pass
— Figure out what was going on at time of crash
— List of dirty pages and active transactions
2. Redo pass (repeating history principle)
— Redo all operations, even for transactions that will not commit
— Get back to state at the moment of the crash

3. Undo pass
— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo

CSE 544 - Fall 2016 50

ARIES Recovery Manager

* A redo/undo log

* Physiological logging
— Physical logging for REDO
— Logical logging for UNDO

 Efficient checkpointing Why do we
do checkpointing?

CSEP544 - Fall 2015 51

ARIES Recovery Manager

Log entries:
« <START T> --when T begins
« Update: <T,X,u,v>
— T updates X, old value=u, new value=v
— In practice: undo only and redo only entries

e <COMMIT T> or <ABORT T>
« CLR’s —we'll talk about them later.

CSEP544 - Fall 2015

52

ARIES Recovery Manager

Rule:

o If T modifies X, then <T,X,u,v> must be written to disk
before OUTPUT(X)

We are free to OUTPUT early or late

CSEP544 - Fall 2015

53

LSN = Log Sequence Number

 LSN = identifier of a log entry

— Log entries belonging to the same TXN are linked

» Each page contains a pageLSN:

— LSN of log record for latest update to that page

CSEP544 - Fall 2015

54

ARIES Data Structures

 Active Transactions Table

— Lists all active TXN's

— For each TXN: lastLSN = its most recent update LSN
* Dirty Page Table

— Lists all dirty pages

— For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

 Write Ahead Log
— LSN, prevLSN = previous LSN for same txn

CSEP544 - Fall 2015 95

WT100(P7)
WTZOO(P5)
WTZOO(PG)
WT100(P5)

ARIES Data Structures

Dirty pages

pagelD recLSN
P5 102
P6 103
P7 101

Active transactions

transiD lastLSN
T100 104
T200 103

Log (WAL)
LSN | prevLSN |transIiD | pagelD |Log entry
101 |- T100 P7
102 |- T200 P5
103 | 102 T200 P6
104 | 101 7100 P5
Buffer Pool
P8 P2
P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101

ARIES Normal Operation

T writes page P
 What do we do ?

CSEP544 - Fall 2015

Y

ARIES Normal Operation

T writes page P
 What do we do ?

* Write <T,P,u,v> in the Log
 prevLSN=lastLSN
 pageLSN=LSN

* lastLSN=LSN

* recLSN=if isNull then LSN

CSEP544 - Fall 2015

58

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
 What do we do ?

Buffer manager wants INPUT(P)
 What do we do ?

CSEP544 - Fall 2015

59

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* Flush log up to pageLSN

« Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

« Create entry in Dirty Pages table
recLSN = NULL

CSEP544 - Fall 2015

60

ARIES Normal Operation

Transaction T starts
e What do we do ?

Transaction T commits/aborts
e What do we do ?

CSEP544 - Fall 2015

61

ARIES Normal Operation

Transaction T starts
« Write <START T> in the log

* New entry T in Active TXN,;
lastLSN = null

Transaction T commits/aborts
« Write <COMMIT T> in the log
* Flush log up to this entry

CSEP544 - Fall 2015

62

Checkpoints

Write into the log

 Entire active transactions table
« Entire dirty pages table

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

CSEP544 - Fall 2015 63

ARIES Recovery

1. Analysis pass
— Figure out what was going on at time of crash
— List of dirty pages and active transactions
2. Redo pass (repeating history principle)
— Redo all operations, even for transactions that will not commit
— Get back to state at the moment of the crash

3. Undo pass

— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo

CSEP544 - Fall 2015 64

ARIES Method lllustration

Start of oldest First update ‘ . ‘
in—progress potentially Checkpoint End of Log
transaction lost during crash
llll| llllllllllllllllllllllllllll I II l- Log (tillle _-":
= Analysis
el Redo
- v

Undo

Yure 3: The Three Passes of ARIES Restart

First undo and first redo log entry might be
INn reverse order

[Figure 3 from Franklin97]

CSEP544 - Fall 2015 65

1. Analysis Phase

+ Goal
— Determine point in log (firstLSN) where to start REDO

— Determine set of dirty pages when crashed
» Conservative estimate of dirty pages

— ldentify active transactions when crashed

* Approach
— Rebuild active transactions table and dirty pages table

— Reprocess the log from the checkpoint
* Only update the two data structures

— Compute: firstLSN = smallest of all recoveryLSN

CSEP544 - Fall 2015

66

1. Analysis Phase

Log

Checkpoint (crash)

Dirty
pages

Active
txn

|

\L >
] Where do we start
firstLSN= 77" the REDO phase ?

pagelD

recLSN

pagelD

transiD

lastLSN

transiD

1. Analysis Phase

Log

Checkpoint

y

(crash)

firstLSN=min(

Dirty
pages

Active
txn

|

pagelD

recLSN | pagelD

transiD

lastLSN

transiD

1. Analysis Phase

LOg Cthprlnt (crash)
firstLSN

Dlrty pagelD |recLSN |pagelD eplay [g;gg.'o"j};;[s‘ﬁ'gggga']
pages nistory | | | |
A N
- translD |lastLSN |transtDh (| f---—-——-—--p-——-—-——-pr—-————
Active transID | lastLSN | transID |
I I

txn

2. Redo Phase

Main principle: replay history

* Process Log forward, starting from firstLSN
 Read every log record, sequentially

* Redo actions are not recorded in the log
 Needs the Dirty Page Table

CSEP544 - Fall 2015

70

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
* Re-do the action P=u and WRITE(P)
« But which actions can we skip, for efficiency ?

CSEP544 - Fall 2015

71

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
« If Pis notin Dirty Page then no update

* |f recLSN > LSN, then no update

* Read page from disk:
If pageLSN > LSN, then no update

» Otherwise perform update

CSEP544 - Fall 2015

72

2. Redo Phase: Detalls

What happens if system crashes during REDO ?

CSEP544 - Fall 2015

73

2. Redo Phase: Detalls

What happens if system crashes during REDO ?

We REDO again! Each REDO operation is idempotent:
doing it twice is the as as doing it once.

CSEP544 - Fall 2015 74

3. Undo Phase

« Cannot “unplay” history, in the same way as we “replay”
history

« WHY NOT ? Time to answer this question®©

75

3. Undo Phase

Cannot “unplay” history, in the same way as we “replay’
history

WHY NOT ? Time to answer this question©
Need to support ROLLBACK!
Selective undo, for one transaction only

— Cannot simply undo physical actions

— E.g. Txn updates a record on a page, another Txn updates
another record on the same page: don’'t undo the latter

— E.g. Txn updates a B*-tree, causing rebalancing, other Txn do
other update: don’t undo the latter!

Hence, logical undo v.s. physical redo

76

3. Undo Phase

Main principle: “logical” undo

Start from end of Log, move backwards
Read only affected log entries

Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

CLRs are redone, but never undone

CSEP544 - Fall 2015

77

3. Undo Phase: Detalls

 “Loser transactions” =
— Uncommitted transactions in Active Transactions Table
— Or transactions to be rolled back

« ToUndo = set of lastLSN of loser transactions

CSEP544 - Fall 2015 78

3. Undo Phase: Detalls

While ToUndo not empty:
* Choose most recent (largest) LSN in ToUndo

« If LSN = regular record <T,P,u,v>:

— Undo v

— Write a CLR where CLR.undoNextLSN = LSN.prevLSN
 If LSN = CLR record:

— Don’t undo!

e if CLR.undoNextLSN not null, insertin ToUndo
otherwise, write <END TRANSACTION> in log

CSEP544 - Fall 2015

79

3. Undo Phase: Detalils

o A

Write Write Write sz CLR FOR CLR FOR Gt CLR FOR
page 1 page 1 page 1 g~ LSN 30 LSN 20 ‘<ggg# LSN 10
Log (time —®=) % % G
J()(l’ ll]](l -- s LLLLLLLLLLL L] Y |[sesssssssssssagjssssssasssy ’ ------
: | — % 2 %
LLSN: 10 20 10 Restart 40 50 Restart 60

L g

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]

CSEP544 - Fall 2015 80

3. Undo Phase: Detalls

What happens if system crashes during UNDOQO ?

CSEP544 - Fall 2015

81

3. Undo Phase: Detalls

What happens if system crashes during UNDO ?

We do not UNDO again ! Instead, each CLR is a REDO
record: we simply redo the undo

CSEP544 - Fall 2015 82

Physical v.s. Logical Loging

Why are redo records physical ?

Why are undo records logical ?

CSEP544 - Fall 2015

83

Physical v.s. Logical Loging

Why are redo records physical ?
« Simplicity: replaying history is easy, and idempotent

Why are undo records logical ?

« Required for transaction rollback: this not “undoing
history”, but selective undo

CSEP544 - Fall 2015

84

