
CSE 544
Principles of Database
Management Systems

Fall 2016
Lectures 17-18 - Transactions: recovery

Announcements

•  Project presentations next Tuesday

CSE 544 - Fall 2016 2

CSE 544 - Fall 2016

References

•  Concurrency control and recovery.
 Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

•  Database management systems.

 Ramakrishnan and Gehrke.
 Third Ed. Chapters 16 and 18.

3

CSE 544 - Fall 2016

Outline

•  Review of ACID properties
–  Today we will cover techniques for ensuring atomicity and

durability in face of failures

•  Review of buffer manager and its policies

•  Write-ahead log + simple UNDO / REDO recovery

•  ARIES method for failure recovery

4

CSE 544 - Fall 2016

ACID Properties

•  Atomicity: Either all changes performed by transaction
occur or none occurs

•  Consistency: A transaction as a whole does not violate
integrity constraints

•  Isolation: Transactions appear to execute one after the
other in sequence

•  Durability: If a transaction commits, its changes will
survive failures

5

CSE 544 - Fall 2016

What Could Go Wrong?

•  Concurrent operations
–  That’s what we discussed last time (atomicity and isolation

properties)

•  Failures can occur at any time
–  Today (isolation and durability properties)

6

CSE 544 - Fall 2016

Problem Illustration

Client 1:
 START TRANSACTION
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99
 COMMIT

What do we do now?

Crash !

7

CSE 544 - Fall 2016

Handling Failures

•  Types of failures
–  Transaction failure
–  System failure
–  Media failure -> we will not talk about this now

•  Required capability: undo and redo

•  Challenge: buffer manager
–  Changes performed in memory
–  Changes written to disk only from time to time

8

CSE 544 - Fall 2016

Impact of Buffer Manager

Disk

Main
memory

Page request from higher-level code

Buffer pool
Disk page

Free frame

1 page corresponds
to 1 disk block

9

INPUT/OUTPUT

READ/WRITE

CSE 544 - Fall 2016

Primitive Operations

•  READ(X,t)
–  copy value of data item X to transaction local variable t

•  WRITE(X,t)
–  copy transaction local variable t to data item X

•  INPUT(X)
–  read page containing data item X to memory buffer

•  OUTPUT(X)
–  write page containing data item X to disk

10

11

Running Example

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

CSEP544 - Fall 2015

BEGIN TRANSACTION
READ(A,t);
t := t*2;
WRITE(A,t);
READ(B,t);
t := t*2;
WRITE(B,t)
COMMIT;

12

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Is this bad ?

Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Yes it’s bad: A=16, B=8….

Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT
Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Yes it’s bad: A=B=16, but not committed

Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

Is this bad ?

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

No: that’s OK

Crash !

Typically, OUTPUT is after COMMIT (why?)

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Typically, OUTPUT is after COMMIT (why?)

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Crash !

CSE 544 - Fall 2016

Write-Ahead Log
•  Log: append-only file containing log records
•  For every update, commit, or abort operation

–  Write a log record
–  Multiple transactions run concurrently, log records are

interleaved

•  After a system crash, use log to:
–  Redo transactions that did commit
–  Undo other transactions that didn’t commit

21

Log Granularity
Two basic types of log records for update operations
•  Physical log records

–  Position on a particular page where update occurred
–  Both before and after image for undo/redo logs
–  Benefits: Idempotent & updates are fast to redo/undo

•  Logical log records
–  Record only high-level information about the operation
–  Benefit: Smaller log
–  BUT difficult to implement because crashes can occur in

the middle of an operation

CSE 544 - Fall 2016 22

CSE 544 - Fall 2016

Buffer Manager Policies
•  STEAL or NO-STEAL

–  Can an update made by an uncommitted transaction overwrite the
most recent committed value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to disk before the

transaction commits?

•  Easiest for recovery: NO-STEAL/FORCE

•  Highest performance: STEAL/NO-FORCE

23

CSE 544 - Fall 2016

Outline
•  Review of ACID properties

–  Today we will cover techniques for ensuring atomicity and
durability in face of failures

•  Review of buffer manager and its policies

•  Write-ahead log + simple UNDO / REDO recovery

•  ARIES method for failure recovery

24

UNDO Log

CSEP544 - Fall 2015 25

FORCE and STEAL

26

Undo Logging
Log records
•  <START T>

–  transaction T has begun
•  <COMMIT T>

–  T has committed
•  <ABORT T>

–  T has aborted
•  <T,X,v>

–  T has updated element X, and its old value was v

CSEP544 - Fall 2015

27

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

28
WHAT DO WE DO ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

29
WHAT DO WE DO ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

We UNDO by setting B=8 and A=8

Crash !

30

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

What do we do now ? Crash !

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

What do we do now ? Crash ! Nothing: log contains COMMIT

32

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back
do we need to
read in the log ?

Question 3:
What happens if there
is a second crash,
during recovery ?

Crash !

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

When must
we force pages
to disk ?

34

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

RULES: log entry before OUTPUT before COMMIT

FORCE

35

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must

be written to disk before <COMMIT T>

•  Hence: OUTPUTs are done early,

before the transaction commits
CSEP544 - Fall 2015

FORCE

REDO Log

CSEP544 - Fall 2015 36

NO-FORCE and NO-STEAL

37

Redo Logging

One minor change to the undo log:

•  <T,X,v>= T has updated element X, and
its new value is v

CSEP544 - Fall 2015

38

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

39

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ?

Crash !

40

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ? We REDO by setting A=16 and B=16

Crash !

41

Recovery with Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

CSEP544 - Fall 2015

Show actions
during recovery

Crash !

42

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

When must
we force pages
to disk ?

43

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

RULE: OUTPUT after COMMIT

NO-STEAL

44

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

•  Hence: OUTPUTs are done late

CSEP544 - Fall 2015

NO-STEAL

45

Comparison Undo/Redo

• Undo logging: OUTPUT must be
done early:
– Inefficient

• Redo logging: OUTPUT must be
done late:
– Inflexible

CSEP544 - Fall 2015

CSE 544 - Fall 2016

Outline

•  Review of ACID properties
–  Today we will cover techniques for ensuring atomicity and

durability in face of failures

•  Review of buffer manager and its policies

•  Write-ahead log + simple UNDO / REDO recovery

•  ARIES method for failure recovery

46

ARIES

CSEP544 - Fall 2015 47

48

Aries

•  ARIES pieces together several techniques into a
comprehensive algorithm

•  Developed at IBM Almaden, by Mohan

•  IBM botched the patent, so everyone uses it now

•  Several variations, e.g. for distributed transactions

CSEP544 - Fall 2015

Granularity in ARIES

•  Physiological logging
–  Log records refer to a single page
–  But record logical operation within the page

•  Page-oriented logging for REDO
–  Necessary since can crash in middle of complex operation

•  Logical logging for UNDO
–  Enables tuple-level locking!
–  Why physical logging for REDO and logical logging for UNDO?

(answer at the end of the lecture)

CSE 544 - Fall 2016 49

ARIES Method

Recovery from a system crash is done in 3 passes:
1.  Analysis pass

–  Figure out what was going on at time of crash
–  List of dirty pages and active transactions

2.  Redo pass (repeating history principle)
–  Redo all operations, even for transactions that will not commit
–  Get back to state at the moment of the crash

3.  Undo pass
–  Remove effects of all uncommitted transactions
–  Log changes during undo in case of another crash during undo

CSE 544 - Fall 2016 50

ARIES Recovery Manager

•  A redo/undo log
•  Physiological logging

–  Physical logging for REDO
–  Logical logging for UNDO

•  Efficient checkpointing

CSEP544 - Fall 2015 51

Why do we
do checkpointing?

52

ARIES Recovery Manager

Log entries:
•  <START T> -- when T begins
•  Update: <T,X,u,v>

–  T updates X, old value=u, new value=v
–  In practice: undo only and redo only entries

•  <COMMIT T> or <ABORT T>
•  CLR’s – we’ll talk about them later.

CSEP544 - Fall 2015

53

ARIES Recovery Manager

Rule:
•  If T modifies X, then <T,X,u,v> must be written to disk

before OUTPUT(X)

We are free to OUTPUT early or late

CSEP544 - Fall 2015

54

LSN = Log Sequence Number

•  LSN = identifier of a log entry
–  Log entries belonging to the same TXN are linked

•  Each page contains a pageLSN:
–  LSN of log record for latest update to that page

CSEP544 - Fall 2015

55

ARIES Data Structures

•  Active Transactions Table
–  Lists all active TXN’s
–  For each TXN: lastLSN = its most recent update LSN

•  Dirty Page Table
–  Lists all dirty pages
–  For each dirty page: recoveryLSN (recLSN)= first LSN

that caused page to become dirty

•  Write Ahead Log
–  LSN, prevLSN = previous LSN for same txn

CSEP544 - Fall 2015

ARIES Data Structures

pageID recLSN
P5 102
P6 103
P7 101

LSN prevLSN transID pageID Log entry
101 - T100 P7
102 - T200 P5
103 102 T200 P6
104 101 T100 P5

Dirty pages Log (WAL)

transID lastLSN
T100 104
T200 103

Active transactions
P8 P2 . . .

. . .

P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

Buffer Pool

WT100(P7)
WT200(P5)
WT200(P6)
WT100(P5)

57

ARIES Normal Operation

T writes page P
•  What do we do ?

CSEP544 - Fall 2015

58

ARIES Normal Operation

T writes page P
•  What do we do ?

•  Write <T,P,u,v> in the Log
•  prevLSN=lastLSN
•  pageLSN=LSN
•  lastLSN=LSN
•  recLSN=if isNull then LSN

CSEP544 - Fall 2015

59

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
•  What do we do ?

Buffer manager wants INPUT(P)
•  What do we do ?

CSEP544 - Fall 2015

60

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
•  Flush log up to pageLSN
•  Remove P from Dirty Pages table
Buffer manager wants INPUT(P)
•  Create entry in Dirty Pages table

recLSN = NULL

CSEP544 - Fall 2015

61

ARIES Normal Operation

Transaction T starts
•  What do we do ?

Transaction T commits/aborts
•  What do we do ?

CSEP544 - Fall 2015

62

ARIES Normal Operation

Transaction T starts
•  Write <START T> in the log
•  New entry T in Active TXN;

lastLSN = null
Transaction T commits/aborts
•  Write <COMMIT T> in the log
•  Flush log up to this entry

CSEP544 - Fall 2015

63

Checkpoints

Write into the log

•  Entire active transactions table
•  Entire dirty pages table

CSEP544 - Fall 2015

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

64

ARIES Recovery

1.  Analysis pass
–  Figure out what was going on at time of crash
–  List of dirty pages and active transactions

2.  Redo pass (repeating history principle)
–  Redo all operations, even for transactions that will not commit
–  Get back to state at the moment of the crash

3.  Undo pass
–  Remove effects of all uncommitted transactions
–  Log changes during undo in case of another crash during undo

CSEP544 - Fall 2015

65

ARIES Method Illustration

[Figure 3 from Franklin97]
CSEP544 - Fall 2015

First undo and first redo log entry might be
in reverse order

66

1. Analysis Phase

•  Goal
–  Determine point in log (firstLSN) where to start REDO
–  Determine set of dirty pages when crashed

•  Conservative estimate of dirty pages
–  Identify active transactions when crashed

•  Approach
–  Rebuild active transactions table and dirty pages table
–  Reprocess the log from the checkpoint

•  Only update the two data structures
–  Compute: firstLSN = smallest of all recoveryLSN

CSEP544 - Fall 2015

1. Analysis Phase

(crash) Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

firstLSN= ???
Where do we start
the REDO phase ?

1. Analysis Phase

(crash) Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

firstLSN=min(recLSN)

1. Analysis Phase

(crash) Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

pageID recLSN pageID

transID lastLSN transID

Replay
history

firstLSN

2. Redo Phase

Main principle: replay history
•  Process Log forward, starting from firstLSN
•  Read every log record, sequentially
•  Redo actions are not recorded in the log
•  Needs the Dirty Page Table

CSEP544 - Fall 2015 70

71

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
•  Re-do the action P=u and WRITE(P)
•  But which actions can we skip, for efficiency ?

CSEP544 - Fall 2015

72

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
•  If P is not in Dirty Page then no update
•  If recLSN > LSN, then no update
•  Read page from disk:

If pageLSN > LSN, then no update
•  Otherwise perform update

CSEP544 - Fall 2015

73

2. Redo Phase: Details

What happens if system crashes during REDO ?

CSEP544 - Fall 2015

74

2. Redo Phase: Details

What happens if system crashes during REDO ?

We REDO again ! Each REDO operation is idempotent:

doing it twice is the as as doing it once.

CSEP544 - Fall 2015

3. Undo Phase

•  Cannot “unplay” history, in the same way as we “replay”
history

•  WHY NOT ? Time to answer this questionJ

75

3. Undo Phase

•  Cannot “unplay” history, in the same way as we “replay”
history

•  WHY NOT ? Time to answer this questionJ
•  Need to support ROLLBACK!

Selective undo, for one transaction only
–  Cannot simply undo physical actions
–  E.g. Txn updates a record on a page, another Txn updates

another record on the same page: don’t undo the latter
–  E.g. Txn updates a B+-tree, causing rebalancing, other Txn do

other update: don’t undo the latter!

•  Hence, logical undo v.s. physical redo

76

3. Undo Phase

Main principle: “logical” undo
•  Start from end of Log, move backwards
•  Read only affected log entries
•  Undo actions are written in the Log as special

entries: CLR (Compensating Log Records)
•  CLRs are redone, but never undone

CSEP544 - Fall 2015 77

3. Undo Phase: Details

•  “Loser transactions” =
–  Uncommitted transactions in Active Transactions Table
–  Or transactions to be rolled back

•  ToUndo = set of lastLSN of loser transactions

CSEP544 - Fall 2015 78

3. Undo Phase: Details

While ToUndo not empty:
•  Choose most recent (largest) LSN in ToUndo
•  If LSN = regular record <T,P,u,v>:

–  Undo v
–  Write a CLR where CLR.undoNextLSN = LSN.prevLSN

•  If LSN = CLR record:
–  Don’t undo !

•  if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END TRANSACTION> in log

CSEP544 - Fall 2015 79

80

3. Undo Phase: Details

[Figure 4 from Franklin97]

CSEP544 - Fall 2015

81

3. Undo Phase: Details

What happens if system crashes during UNDO ?

CSEP544 - Fall 2015

82

3. Undo Phase: Details

What happens if system crashes during UNDO ?

We do not UNDO again ! Instead, each CLR is a REDO

record: we simply redo the undo

CSEP544 - Fall 2015

83

Physical v.s. Logical Loging

Why are redo records physical ?

Why are undo records logical ?

CSEP544 - Fall 2015

84

Physical v.s. Logical Loging

Why are redo records physical ?
•  Simplicity: replaying history is easy, and idempotent

Why are undo records logical ?
•  Required for transaction rollback: this not “undoing

history”, but selective undo

CSEP544 - Fall 2015

