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Outline 

•  Transactions motivation, definition, properties 

•  Concurrency control and locking 

•  Optimistic concurrency control 
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Motivating Example  

UPDATE Budget 

SET money=money-100 
WHERE pid = 1 

 

UPDATE Budget 

SET money=money+60 

WHERE pid = 2 
 

UPDATE Budget 

SET money=money+40 

WHERE pid = 3 

SELECT sum(money) 
FROM Budget 

Would like to treat 
each group of 

instructions as a unit 
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Definition 

•  A transaction = one or more operations, single real-
world transition 

•  Examples  
–  Transfer money between accounts 
–  Purchase a group of products 
–  Register for a class (either waitlist or allocated) 
–  What else? 
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Transactions 

•  Major component of database systems 
•  Critical for most applications; arguably more so than SQL 

•  Fact: Turing awards to database researchers: 
–  Charles Bachman 1973 for CODASYL 
–  Edgar Codd 1981 for inventing relational dbms 
–  Jim Gray 1998 for inventing transactions 
–  Michael Stonebraker 2015 for postgres 
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Transaction Example 

START TRANSACTION

UPDATE Budget SET money = money - 100 

WHERE pid = 1

UPDATE Budget SET money = money + 60 

WHERE pid = 2

UPDATE Budget SET money = money + 40 

WHERE pid = 3

COMMIT

7 



CSE 544 - Fall 2016 

ROLLBACK 

•  If the application gets to a place where it can’t complete 
the transaction successfully, it can execute ROLLBACK 

•  This causes the system to “abort” the transaction 

•  Database returns to a state without any of the changes 
made by the transaction 
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Reasons for Rollback 

•  User changes their mind (“ctl-C”/cancel) 

•  Explicit in program, when app program finds a problem  
–  e.g., when qty on hand < qty being sold 

•  System-initiated abort 
–  System crash 
–  Housekeeping, e.g., due to timeouts, admission control, etc 
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ACID Properties 

•  Atomicity: Either all changes performed by transaction 
occur or none occurs 

•  Consistency: A transaction as a whole does not violate 
integrity constraints 

•  Isolation: Transactions appear to execute one after the 
other in sequence 

•  Durability: If a transaction commits, its changes will survive 
failures 
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What Could Go Wrong? 

•  Why is it hard to provide ACID properties? 

•  Concurrent operations 
–  Isolation problems 
–  We saw one example earlier 

•  Failures can occur at any time 
–  Atomicity and durability problems 
–  Next week 

•  Transaction may need to abort 
11 
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In a World Without Transactions 
Client 1: INSERT INTO SmallProduct(name, price) 

  SELECT pname, price 
  FROM Product 
  WHERE price <= 0.99 

 
  DELETE Product 
  WHERE price <=0.99 

 
Client 2: SELECT count(*) 

  FROM Product 
 

  SELECT count(*) 
  FROM SmallProduct 

What could go wrong ? Inconsistent reads 
12 
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Different Types of Problems 

Client 1: 
 UPDATE Product 
 SET Price = Price – 1.99 
 WHERE pname = ‘Gizmo’ 

 
Client 2: 

 UPDATE Product 
 SET Price = Price*0.5 
 WHERE pname=‘Gizmo’ 

Lost update What could go wrong ? 
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Different Types of Problems 

Client 1:  UPDATE SET Account.amount = 1000000 
   WHERE Account.number = 1001 

 
 
 
Client 2:  SELECT Account.amount 

   FROM Account 
   WHERE Account.number = 1001 

What could go wrong ? Dirty reads 

Aborted by 
system 
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Types of Problems: Summary 

•  Concurrent execution problems 
–  Write-read conflict: dirty read (includes inconsistent read) 

•  A transaction reads a value written by another transaction that has 
not yet committed 

–  Read-write conflict: unrepeatable read 
•  A transaction reads the value of the same object twice. Another 

transaction modifies that value in between the two reads 
–  Write-write conflict: lost update 

•  Two transactions update the value of the same object. The second 
one to write the value overwrite the first change 

•  Failure problems 
–  DBMS can crash in the middle of a series of updates 
–  Can leave the database in an inconsistent state 
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Outline 

•  Transactions motivation, definition, properties 

•  Concurrency control and locking 

•  Optimistic concurrency control 

16 



Schedules 

•  Given multiple transactions 

•  A schedule is a sequence of interleaved actions from all 
transactions 

CSE 544 - Fall 2016 17 



Example Schedule 

T1 T2 
READ(A, t) READ(A, s) 
t := t+100 s := s*2 
WRITE(A, t) WRITE(A,s) 
READ(B, t) READ(B,s) 
t := t+100 s := s*2 
WRITE(B,t) WRITE(B,s) 
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A Serial Schedule 

T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 
READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 
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Serializable Schedule 

•  A schedule is serializable if it is equivalent to a serial 
schedule 

CSE 544 - Fall 2016 20 



A Serializable Schedule 

T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(B,s) 
s := s*2 
WRITE(B,s) 

Notice:  
This is NOT a serial schedule 

CSE 544 - Fall 2016 21 



A Non-Serializable Schedule 

T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 
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Notation 

T1: r1(A); w1(A); r1(B); w1(B) 
T2: r2(A); w2(A); r2(B); w2(B) 
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Serializable Execution 

•  Serializability: interleaved execution has same effect as 
some serial execution 

•  Schedule of two transactions (Figure 1) 
r0[A] → w0[A] → r1[A] → r1[B] → c1→
→ r0[B] → w0[B] → c0

•  Serializable schedule: equiv. to serial schedule 
r0[A] → w0[A] → r1[A] → r0[B] → 
→ w0[B] → c0 → r1[B] → c1
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Ignoring Details 

•  Sometimes transactions’ actions can commute 
accidentally because of specific updates 
–  Fact: Serializability is undecidable ! 

•  Scheduler should not look at transaction details 

•  Assume worst case updates 
–  Only care about reads r(A) and writes w(A) 
–  Not the actual values involved 

CSE 544 - Fall 2016 25 



Conflict Serializability 

Conflicts: (aka bad things happen if swapped) 

ri(X); wi(Y) Two actions by same transaction Ti: 

wi(X); wj(X) Two writes by Ti, Tj to same element 

wi(X); rj(X) 
Read/write by Ti, Tj to same element 

ri(X); wj(X) 
CSE 544 - Fall 2016 26 



Conflict Serializability 

•  A schedule is conflict serializable if it can be 
transformed into a serial schedule by a series of 
swappings of adjacent non-conflicting actions 

Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 
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The Precedence Graph Test 

Is a schedule conflict-serializable ? 
Simple test: 
•  Build a graph of all transactions Ti 

•  Edge from Ti to Tj if Ti makes an action that conflicts with 
one of Tj and comes first 

•  Fact: if the graph has no cycles, then it is conflict 
serializable ! 
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Example 1 

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3 

This schedule is conflict-serializable 

A B 
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Example 2 

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B) 

1 2 3 

This schedule is NOT conflict-serializable 

A 
B 

B 

CSE 544 - Fall 2016 30 



View Equivalence 

•  A serializable schedule need not be conflict serializable, 
even under the “worst case update” assumption 

CSEP544 - Fall 2015       31 

w1(X); w2(X); w2(Y); w1(Y); w3(Y); 

Is this schedule conflict-serializable ? 



View Equivalence 

•  A serializable schedule need not be conflict serializable, 
even under the “worst case update” assumption 
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w1(X); w2(X); w2(Y); w1(Y); w3(Y); 

Is this schedule conflict-serializable ? No… 



View Equivalence 

•  A serializable schedule need not be conflict serializable, 
even under the “worst case update” assumption 
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w1(X); w1(Y); w2(X); w2(Y); w3(Y); 

w1(X); w2(X); w2(Y); w1(Y); w3(Y); 

Lost write 

Equivalent,  but not conflict-equivalent 



View Equivalence 
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T1 T2 T3 
W1(X) 

W2(X) 
W2(Y) 
CO2 

W1(Y) 
CO1 

W3(Y) 
CO3 

T1 T2 T3 
W1(X) 
W1(Y) 
CO1 

W2(X) 
W2(Y) 
CO2 

W3(Y) 
CO3 

Lost 

Serializable, but not conflict serializable 



Scheduler 

•  The scheduler is the module that schedules the 
transaction’s actions, ensuring serializability 

•  How?  We discuss three techniques in class: 
–  Locks 
–  Timestamps 
–  Validation 
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Outline 

•  Transactions motivation, definition, properties 

•  Concurrency control and locking 

•  Optimistic concurrency control 
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Locking Scheduler 

Simple idea: 
•  Each element has a unique lock 
•  Each transaction must first acquire the lock before 

reading/writing that element 
•  If lock is taken by another transaction, then wait 
•  The transaction must release the lock(s) 

CSE 544 - Fall 2016 37 



Notation 

li(A) = transaction Ti acquires lock for element A 
 
ui(A) = transaction Ti releases lock for element A 
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Example 
T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); L1(B) 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(B);  

Scheduler has ensured a conflict-serializable schedule 39 



Is this enough? 
T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A); 
L2(B); READ(B,s) 
s := s*2 
WRITE(B,s); U2(B); 

L1(B); READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

Locks did not enforce conflict-serializability !!! 40 



Two Phase Locking (2PL) 

The 2PL rule: 

•  In every transaction, all lock requests must preceed all 
unlock requests 

•  This ensures conflict serializability !  (why?) 
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Example: 2PL transactions 
T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  

Now it is conflict-serializable 42 



Example with Multiple Transactions 

Equivalent to each transaction executing entirely the 
moment it enters shrinking phase 
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T1 T2 T3 T4 

Growing 
phase 

Shrinking 
phase 

Unlocks first 
Was not waiting 
for anyone 

Unlocks second so 
perhaps was waiting 
for T3 



Two Phase Locking (2PL) 

Theorem: 2PL ensures conflict serializability 



Two Phase Locking (2PL) 

Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 



Two Phase Locking (2PL) 

46 

Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 

Then there is the 
following temporal 
cycle in the schedule: 
 



Two Phase Locking (2PL) 
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Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 

Then there is the 
following temporal 
cycle in the schedule: 
U1(A)àL2(A)     why? 



Two Phase Locking (2PL) 
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Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 

Then there is the 
following temporal 
cycle in the schedule: 
U1(A)àL2(A)  
L2(A)àU2(B)      why? 



Two Phase Locking (2PL) 
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Theorem: 2PL ensures conflict serializability 

Proof.  Suppose not: then 
there exists a cycle 
in the precedence graph. 

T1 

T2 

T3 

B A 

C 

Then there is the 
following temporal 
cycle in the schedule: 
U1(A)àL2(A) 
L2(A)àU2(B) 
U2(B)àL3(B) 
L3(B)àU3(C) 
U3(C)àL1(C) 
L1(C)àU1(A) Contradiction 



What about Aborts? 

•  2PL enforces conflict-serializable schedules 

•  But what if a transaction releases its locks and then 
aborts? 
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Example with Abort 
T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  

Abort Commit 51 



Strict 2PL 

•  Strict 2PL: All locks held by a transaction are 
released when the transaction is completed; 
release happens at the time of COMMIT or 
ROLLBACK 
–  Aka long-duration lock 

•  Schedule is recoverable 
•  Schedule avoids cascading aborts 
•  Schedule is strict: read book 
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Strict 2PL 
T1 T2 
L1(A); READ(A) 
A :=A+100 
WRITE(A);  

L2(A); DENIED… 
L1(B); READ(B) 
B :=B+100 
WRITE(B);  
U1(A),U1(B); Rollback 

…GRANTED; READ(A) 
A := A*2 
WRITE(A);  
L2(B);  READ(B) 
B := B*2 
WRITE(B); 
U2(A); U2(B); Commit 53 



Deadlock 

•  Transaction T1 waits for a lock held by T2; 
•  But T2 waits for a lock held by T3; 
•  While T3 waits for . . . . 
•  . . . 
•  . . .and T73 waits for a lock held by T1  !! 

•  A deadlock is when two or more transactions are waiting 
for each other to complete 
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Handling Deadlock 

•  Deadlock avoidance 
–  Acquire locks in pre-defined order 
–  Acquire all locks at once before starting 

•  Deadlock detection 
–  Timeouts (but hard to pick the right threshold) 
–  Wait-for graph; this is what commercial systems use (they check 

graph periodically) 

CSE 544 - Fall 2016 



Lock Modes 

•  S = shared lock (for READ) 
•  X = exclusive lock (for WRITE) 

None S X 
None OK OK OK 

S OK OK Conflict 
X OK Conflict Conflict 

Lock compatibility matrix: 

Others: 
U = update lock: Initially like S, later may be upgraded to X 
 I = increment lock (for A := A + something): Increment operations commute 
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Lock Granularity 

•  Fine granularity locking (e.g., tuples) 
–  High concurrency 
–  High overhead in managing locks 

•  Coarse grain locking (e.g., tables) 
–  Many false conflicts 
–  Less overhead in managing locks 

•  Alternative techniques 
–  Hierarchical locking (and intentional locks) [commercial DBMSs] 
–  Lock escalation 
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The Tree Protocol 

•  An alternative to 2PL, for tree structures 
•  E.g. B+ trees (the indexes of choice in databases) 

•  Because 
–  Indexes are hot spots! 
–  2PL would lead to great lock contention 

–  Also, unlike data, the index is not directly visible to transactions 
–  So only need to guarantee that index returns correct values 
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The Tree Protocol 

Rules: 
•  A lock on a node A may only be acquired if the transaction holds a 

lock on its parent B 
•  Nodes can be unlocked in any order (no 2PL necessary) 
•  Cannot relock a node for which already released a lock 
•  “Crabbing” 

–  First lock parent then lock child 
–  Keep parent locked only if may need to update it 
–  Release lock on parent if child is not full 

•  The tree protocol is NOT 2PL, yet ensures conflict-serializability ! 
•  (More in the textbook) 
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Lock Performance 
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ug
hp

ut
 

# Active Transactions 

thrashing 

Why ? 



Phantom Problem 

•  So far we have assumed the database to be a static 
collection of elements (=tuples) 

•  If tuples are inserted/deleted then the phantom problem 
appears 
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Phantom Problem 

Is this schedule serializable ? 

T1 T2 
SELECT * 
FROM Product 
WHERE color=‘blue’ 

INSERT INTO Product(name, color) 
VALUES (‘gizmo’,’blue’) 

SELECT * 
FROM Product 
WHERE color=‘blue’ 



Phantom Problem 

63 

Suppose there are two blue products, X1, X2: 
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3) 

T1 T2 
SELECT * 
FROM Product 
WHERE color=‘blue’ 

INSERT INTO Product(name, color) 
VALUES (‘gizmo’,’blue’) 

SELECT * 
FROM Product 
WHERE color=‘blue’ 



Phantom Problem 

64 

Suppose there are two blue products, X1, X2: 
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3) 

This is conflict serializable ! What’s wrong ?? 

T1 T2 
SELECT * 
FROM Product 
WHERE color=‘blue’ 

INSERT INTO Product(name, color) 
VALUES (‘gizmo’,’blue’) 

SELECT * 
FROM Product 
WHERE color=‘blue’ 



Phantom Problem 

65 

Suppose there are two blue products, X1, X2: 
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3) 

Not serializable due to phantoms 

T1 T2 
SELECT * 
FROM Product 
WHERE color=‘blue’ 

INSERT INTO Product(name, color) 
VALUES (‘gizmo’,’blue’) 

SELECT * 
FROM Product 
WHERE color=‘blue’ 



Phantom Problem 

•  A “phantom” is a tuple that is  
invisible during part of a transaction execution but not 
invisible during the entire execution 

•  In our example: 
–  T1: reads list of products 
–  T2: inserts a new product 
–  T1: re-reads: a new product appears ! 
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Phantom Problem 

•  In a static database: 
–  Conflict serializability implies serializability 

•  In a dynamic database, this may fail due to 
phantoms 

•  Strict 2PL guarantees conflict serializability, but not 
serializability 
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Dealing With Phantoms 

•  Lock the entire table, or 
•  Lock the index entry for ‘blue’ 

–  If index is available 

•  Or use predicate locks  
–  A lock on an arbitrary predicate 

Dealing with phantoms is expensive ! 
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Degrees of Isolation 

•  Isolation level “serializable” (i.e. ACID) 
–  Golden standard 
–  Requires strict 2PL and predicate locking 
–  But often too inefficient 
–  Imagine there are only a few update operations and many long 

read operations 

•  Weaker isolation levels 
–  Sacrifice correctness for efficiency 
–  Often used in practice (often default) 
–  Sometimes are hard to understand 
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Isolation Levels in SQL 

1.  “Dirty reads” 
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED 
 

2.  “Committed reads” 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED 
 

3.  “Repeatable reads” 
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ 
 

4.  Serializable transactions 
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE 
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1. Isolation Level: Dirty Reads 

•  “Long duration” WRITE locks 
–  Strict 2PL 

•  No READ locks 
–  Read-only transactions are never delayed 
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Possible pbs: dirty and inconsistent reads 



2. Isolation Level: Read Committed  

•  “Long duration” WRITE locks 
–  Strict 2PL 

•  “Short duration” READ locks 
–  Only acquire lock while reading (not 2PL) 
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Unrepeatable reads  
When reading same element twice,  
may get two different values 



3. Isolation Level: Repeatable Read  

•  “Long duration” WRITE locks 
–  Strict 2PL 

•  “Long duration” READ locks 
–  Strict 2PL 
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This is not serializable yet !!! Why ? 



4. Isolation Level Serializable 

•  “Long duration” WRITE locks 
–  Strict 2PL 

•  “Long duration” READ locks 
–  Strict 2PL 

•  Deals with phantoms too 
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Outline 

•  Transactions motivation, definition, properties 

•  Concurrency control and locking 

•  Optimistic concurrency control 
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Locking vs Optimistic 

•  Locking prevents unserializable behavior from occurring: 
it causes transactions to wait for locks 

•  Optimistic methods assume no unserializable behavior 
will occur: they abort transactions if it does 

•  Locking typically better in case of high levels of 
contention; optimistic better otherwise 

CSE 544 - Fall 2016 76 



CSE 544 - Fall 2016 

Optimistic Concurrency Control 

Timestamp-based technique 
•  Each object, O, has read and write timestamps: RTS(O) and WTS(O) 
•  Each transaction, T, has a timestamp TS(T) 
•  INVARIANT: Timestamp order defines serialization order 

Transaction wants to read object O 
–  If TS(T) < WTS(O)  abort 
–  Else read and update RTS(O) to larger of TS(T) or RTS(O) 

Transaction wants to write object O 
–  If TS(T) < RTS(O) abort 
–  If TS(T) < WTS(O) ignore my write and continue (Thomas Write Rule) 
–  Otherwise, write O and update WTS(O) to TS(T) 
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Optimistic Concurrency Control 

Timestamp-based technique 
•  What about aborts? Need to add a commit bit C to each element 
•  Read dirty data: 

–  T wants to read X, and WT(X) < TS(T) 
–  If C(X)= false, T needs to wait for it to become true in case previous writer aborts 

•  Write dirty data: 
–  T wants to write X, and WT(X) > TS(T) 
–  If C(X)= false, T needs to wait for it to become true in case of abort 

•  Bottom line: When T requests r(X) or w(X), scheduler examines 
RT(X), WT(X), C(X), and decides one of: 
–  To grant the request, or 
–  To rollback T (and restart with later timestamp) 
–  To delay T until C(X) = true 
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Optimistic Concurrency Control 

Multiversion-based technique  
 
•  Object timestamps: RTS(O) & WTS(O); transaction timestamps TS(T) 

•  Transaction can read most recent version that precedes TS(T)  
–  When reading object, update RTS(O) to larger of TS(T) or RTS(O) 

•  Transaction wants to write object O 
–  If TS(T) < RTS(O) abort 
–  Otherwise, create a new version of O with WTS(O) = TS(T) 

•  Common variant (used in commercial systems) 
–  To write object O only check for conflicting writes not reads 
–  Use locks for writes to avoid aborting in case conflicting transaction aborts 
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Optimistic Concurrency Control 

Validation-based technique 
 
•  Phase 1: Read 

–  Transaction reads from database and writes to a private workspace 
–  Each transaction keeps track of its read set RS(T) and write set WS(T) 

•  Phase 2: Validate 
–  At commit time, system performs validation using read/write sets 
–  Validation checks if transaction could have conflicted with others 

•  Each transaction gets a timestamp = validation time 
•  Check if timestamp order is equivalent to a serial order  

–  If there is a potential conflict: abort  

•  Phase 3: Write 
–  If no conflict, transaction changes are copied into database 
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Snapshot Isolation 

•  A type of multiversion concurrency control algorithm 
•  Provides yet another level of isolation 

•  Very efficient, and very popular 
–  Oracle, PostgreSQL, SQL Server 2005 

•  Prevents many classical anomalies BUT… 
•  Not serializable (!), yet ORACLE and PostgreSQL use(d) 

it even for SERIALIZABLE transactions! 
–  “Serializable snapshot isolation” now in PostgreSQL 
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Snapshot Isolation Rules 

•  Each transactions receives a timestamp TS(T) 

•  Transaction T sees snapshot at time TS(T) of the 
database 

•  When T commits, updated pages are written to disk 

•  Write/write conflicts resolved by “first committer wins” rule 
–  Loser gets aborted 

•  Read/write conflicts are ignored 
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Snapshot Isolation (Details) 

•  Multiversion concurrency control: 
–  Versions of X:   Xt1, Xt2, Xt3, . . . 

•  When T reads X, return XTS(T). 

•  When T writes X: if other transaction updated X, abort 
–  Not faithful to “first committer” rule, because the other transaction 

U might have committed after T.  But once we abort T, U 
becomes the first committer J 
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What Works and What Not 

•  No dirty reads (Why ?) 
•  No inconsistent reads (Why ?) 

–  A: Each transaction reads a consistent snapshot 

•  No lost updates (“first committer wins”) 

•  Moreover: no reads are ever delayed 

•  However: read-write conflicts not caught ! “Write skew” 
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Write Skew 
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T1: 
   READ(X); 
   if X >= 50 
         then Y = -50; WRITE(Y) 
   COMMIT 

T2: 
   READ(Y); 
   if Y >= 50 
         then X = -50; WRITE(X) 
   COMMIT 

In our notation: 

R1(X), R2(Y), W1(Y), W2(X), C1,C2 

Starting with X=50,Y=50, we end with X=-50, Y=-50. 
Non-serializable !!! 

Invariant: X + Y ≥ 0 



Write Skews Can Be Serious 

•  ACIDicland had two viceroys, Delta and Rho 
•  Budget had two registers: taXes, and spendYng 
•  They had high taxes and low spending… 
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Delta: 
   READ(taXes); 
   if taXes = ‘High’ 
         then { spendYng = ‘Raise’; 
                    WRITE(spendYng) } 
   COMMIT 

Rho: 
   READ(spendYng); 
   if spendYng = ‘Low’ 
         then {taXes = ‘Cut’; 
                   WRITE(taXes) } 
   COMMIT 

… and they ran a deficit ever since. 



Questions/Discussions 

•  How does snapshot isolation (SI) compare to repeatable 
reads and serializable?  
–  A: SI avoids most but not all phantoms (e.g., write skew) 

•  Note: Oracle & PostgreSQL implement it even for 
isolation level SERIALIZABLE 
–  But most recently: “serializable snapshot isolation” 

•  How can we enforce serializability at the app level ?  
–  A: Use dummy writes for all reads to create write-write conflicts… 

but that is confusing for developers!!! 
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Commercial Systems 

Always check documentation as DBMSs keep evolving and 
thus changing! Just to get an idea: 
•  DB2: Strict 2PL 
•  SQL Server: 

–  Strict 2PL for standard 4 levels of isolation 
–  Multiversion concurrency control for snapshot isolation 

•  PostgreSQL: Multiversion concurrency control 
•  Oracle: Multiversion concurrency control 
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Important Lesson 

•  ACID transactions/serializability make it easy to develop 
applications 

•  BUT they add overhead and slow things down 

•  Lower levels of isolation reduce overhead 
•  BUT they are hard to reason about for developers!  
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