
CSE 544
Principles of Database
Management Systems

Fall 2016
Lecture 14 - Data Warehousing and

Column Stores

CSE 544 - Fall 2016 2

References

•  Data Cube: A Relational Aggregation Operator
Generalizing Group By, Cross-Tab, and Sub-Totals.
 Jim Gray et. al. Data Mining and Knowledge Discovery 1,
29-53. 1997

•  Database management systems.
 Ramakrishnan and Gehrke.
 Third Ed. Chapter 25

CSE 544 - Fall 2016 3

Why Data Warehouses?

•  Production DBMSs designed to manage operational data
–  Goal: support every day activities
–  Online transaction processing (OLTP)
–  Ex: Tracking sales and inventory of each Wal-mart store

•  Data Warehouse designed to analyze and explore data
–  Goal: summarize and discover trends to support decision making
–  Online analytical processing (OLAP)

•  Data warehouse usually updated overnight from
production databases

The Origin of Data Warehouses

Sales DB

Sale
transactions

4 Users CSE 544 - Fall 2016

Nightly
Backups

Amazon, 00s
Operational

DB

CSE 544 - Fall 2016 5

Data Warehouse Overview

•  Consolidated data from many sources
–  Must create a single unified schema
–  The warehouse is like a materialized view

•  Very large size: terabytes of data are common

•  Complex read-only queries (no updates)

•  Fast response time is (not as) important
–  Compared to transaction processing

Star Schema

•  Central table, e.g.
–  SALES(saleID, time, price, storeID, productID, ...)

•  Dimension tables, e.g.
–  Store(storeID, sname, location, ...),
–  Product(productID, pname, weight, ...)
–  SalesPerson(personID, name, ...)
–  ...

OLAP queries

•  ETL pipeline load data into a data warehouse

•  Operators:
–  Rollup
–  Drill down
–  Pivoting
–  Cube

CSE 544 - Fall 2016 7

8

The ETL Pipeline
•  Extract data from distributed operational databases

•  Clean to minimize errors and fill in missing information

•  Transform to reconcile semantic mismatches
–  Performed by defining views over the data sources

•  Load to materialize the above defined views
–  Build indexes and additional materialized views

•  Refresh to propagate updates to warehouse periodically

CSE 544 - Fall 2016 9

Back to Warehouses: Outline

•  Multidimensional data model and operations

•  Data cube & rollup operators

•  Data warehouse implementation issues

•  Other extensions for data analysis

CSE 544 - Fall 2016 10

Multidimensional Data Model

•  Focus of the analysis is a collection of measures
–  Example: Wal-mart sales

•  Each measure depends on a set of dimensions
–  Example: product (pid), location (lid), and time of the sale (timeid)

203 54 102 18

296 87 334 25

23 76 93 11

17 62 154 8

timeid
1 2 3 4

pid

10
11
12
13

locid
Slicing: equality
selection on one or
more dimensions

Dicing: range selection

CSE 544 - Fall 2016 11

Star Schema

pid timeid locid amount Sales

pid pname category price
Product

locid city state country
Location

timeid date week month
Times

quarter year

Facts table: Sales
In BCNF

Dimensions tables
•  Product
•  Location
•  Times
Not necessarily
normalized

Representing multidimensional data as relations (ROLAP)

sid

CSE 544 - Fall 2016 12

Dimension Hierarchies

Dimension values can form a hierarchy described by attributes

category

pname

Product

country

state

Location

city

quarter

week

date

month

year

Time

CSE 544 - Fall 2016 13

Desired Operations

•  Histograms (agg. over computed categories) (paper p.34)

•  Summarize at different levels: roll-up and drill-down
–  Ex: total sales by day, week, quarter, and year

•  Pivoting
–  Ex: pivot on location and time
–  Result of pivot is a cross-tabulation
–  Column values become labels

500 200 700

150 850 1000

250 400 650

900 1450 2350

WI CA Total
2005
2006
2007
Total

CSE 544 - Fall 2016 14

Challenge 1: Representation

•  Problem: How to represent multi-level aggregation?
–  Ex: Table 3 in the paper need 2N columns for N dimensions!
–  Ex: Table 4 has even more columns!

CSE 544 - Fall 2016 15

Challenge 1: Representation

P1: RPS/ASH P2: RPS
Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

38 GRAY ET AL.

The representation suggested by Table 5 and unioned GROUP BYs “solve” the problem of
representing aggregate data in a relational data model. The problem remains that expressing
roll-up, and cross-tab queries with conventional SQL is daunting. A six dimension cross-
tab requires a 64-way union of 64 different GROUP BY operators to build the underlying
representation.
There is another very important reason why it is inadequate to use GROUP BYs. The

resulting representation of aggregation is too complex to analyze for optimization. Onmost
SQL systems this will result in 64 scans of the data, 64 sorts or hashes, and a long wait.

3. CUBE and ROLLUP operators

The generalization of group by, roll-up and cross-tab ideas seems obvious: Figure 3 shows
the concept for aggregation up to 3-dimensions. The traditional GROUP BY generates the
N -dimensional data cube core. The N � 1 lower-dimensional aggregates appear as points,
lines, planes, cubes, or hyper-cubes hanging off the data cube core.
The data cube operator builds a table containing all these aggregate values. The total

aggregate using function f() is represented as the tuple:

ALL, ALL, ALL, . . . , ALL, f(*)

Points in higher dimensional planes or cubes have fewer ALL values.

Figure 3. The CUBE operator is the N -dimensional generalization of simple aggregate functions. The 0D data
cube is a point. The 1D data cube is a line with a point. The 2D data cube is a cross tabulation, a plane, two lines,
and a point. The 3D data cube is a cube with three intersecting 2D cross tabs.

CSE 544 - Fall 2016 16

P1: RPS/ASH P2: RPS
Data Mining and Knowledge Discovery KL411-02-Gray March 5, 1997 16:21

DATA CUBE: A RELATIONAL AGGREGATION OPERATOR 39

Figure 4. A 3D data cube (right) built from the table at the left by the CUBE statement at the top of the figure.

Creating a data cube requires generating the power set (set of all subsets) of the aggrega-
tion columns. Since the CUBE is an aggregation operation, it makes sense to externalize it
by overloading the SQL GROUP BY operator. In fact, the cube is a relational operator, with
GROUP BY and ROLL UP as degenerate forms of the operator. This can be conveniently
specified by overloading the SQL GROUP BY3.
Figure 4 has an example of the cube syntax. To give another, here follows a statement to

aggregate the set of temperature observations:

SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY CUBE

Day(Time) AS day,
Country(Latitude, Longitude)

AS nation;

The semantics of the CUBE operator are that it first aggregates over all the <select
list> attributes in the GROUP BY clause as in a standard GROUP BY. Then, it UNIONs
in each super-aggregate of the global cube—substituting ALL for the aggregation columns.
If there are N attributes in the <select list>, there will be 2N � 1 super-aggregate
values. If the cardinality of the N attributes are C1,C2, . . . ,CN then the cardinality of the

CSE 544 - Fall 2016 17

Challenge 1: Representation

•  Problem: How to represent multi-level aggregation?
–  Ex: Table 3 in the paper need 2N columns for N dimensions!
–  Ex: Table 4 has even more columns!
–  And that’s without considering any hierarchy on the dimensions!

•  Solution: special “all” value

2005 WI 500

2005 CA 200

2005 ALL 700

...

T.year L.state SUM(S.sales)

ALL ALL 2350

Note: SQL-1999
standard uses NULL
values instead of ALL

CSE 544 - Fall 2016 18

Challenge 2:
Computing Aggregations

•  Need 2N different SQL queries to compute all aggregates
–  Expressing roll-up of a single column and cross-table queries is

thus daunting
–  Cannot optimize all these independent queries

•  Solution: CUBE and ROLLUP operators

CSE 544 - Fall 2016 19

Outline

•  Multidimensional data model and operations

•  Data cube & rollup operators

•  Data warehouse implementation issues

•  Other extensions for data analysis

CSE 544 - Fall 2016 20

Data Cube

•  CUBE is the N-dimensional generalization of aggregate

•  Cube in SQL-1999
 SELECT T.year, L.state, SUM(S.sales)

 FROM Sales S, Times T, Locations L

 WHERE S.timeid=T.timeid and S.locid=L.locid

 GROUP BY CUBE (T.year,L.state)

•  Creating a data cube requires generating the power set
of the aggregation columns

CSE 544 - Fall 2016 21

Rollup

•  Rollup produces a subset of a cube

•  Rollup in SQL-1999
 SELECT T.year,T.quarter, SUM(S.sales)

 FROM Sales S, Times T

 WHERE S.timeid=T.timeid

 GROUP BY ROLLUP (T.year,T.quarter)

•  Will aggregate over each pair of (year,quarter), each
year, and total, but will not aggregate over each quarter

CSE 544 - Fall 2016 22

Computing Cubes and Rollups

•  Naive algorithm
–  For each new tuple, update each of 2N matching cells

•  More efficient algorithm
–  Use intermediate aggregates to compute others
–  Relatively easy for distributive and algebraic functions

•  Updating a cube in response to updates is more
challenging

CSE 544 - Fall 2016 23

Outline

•  Multidimensional data model and operations

•  Data cube & rollup operators

•  Data warehouse implementation issues

•  Other extensions for data analysis

CSE 544 - Fall 2016 24

Indexes

•  Bitmap indexes: good for sparse attributes (few values)

•  Join indexes: to speed-up specific join queries
–  Example: Join fact table F with dimension tables D1 and D2
–  Index contain triples of rids <r1,r2,r> from D1, D2, and F that join
–  Alternatively, two indexes, each one with pairs <v1,r> or <v2,r>

where v1, v2 are values of tuples from D1, D2 that join with r

M F custid name gender rating 1 2 3 4
0 1 10 Alice F 3 0 0 1 0
1 0 11 Bob M 4 0 0 0 1
1 0 12 Chuck M 1 1 0 0 0

CSE 544 - Fall 2016 25

Materialized Views

•  How to choose views to materialize?
–  Physical database tuning

•  How to keep view up-to-date?
–  Could recompute entire view for each update: expensive
–  Better approach: incremental view maintenance
–  Example: recompute only affected partition

–  How often to synchronize? Periodic updates (at night) are typical
•  Think back in the case of Walmart

CSE 544 - Fall 2016 26

Outline

•  Multidimensional data model and operations

•  Data cube & rollup operators

•  Data warehouse implementation issues

•  Other extensions for data analysis

CSE 544 - Fall 2016 27

Additional Extensions
for Decision Support

•  Window queries
SELECT L.state, T.month, AVG(S.sales) over W AS movavg

FROM Sales S, Times T, Locations L

WHERE S.timeid = T.timeid AND S.locid=L.locid

WINDOW W AS (PARTITION BY L.State

 ORDER BY T.month

 RANGE BETWEEN INTERVAL ‘1’ MONTH PRECEDING

 AND INTERVAL ‘1’ MONTH FOLLOWING)

•  Top-k queries: optimize queries to return top k results

•  Online aggregation: produce results incrementally

CSE 544 - Fall 2016

Leveraging Column Stores

28

CSE 544 - Fall 2016

References

•  The Design and Implementation of Modern Column-
Oriented Database Systems Daniel Abadi, Peter Boncz,
Stavros Harizopoulos, Stratos Idreos, Samuel Madden.
Foundations and Trends® in Databases (Vol 5, Issue 3,
2012, pp 197-280).

29

Column-Oriented Databases

•  Main idea:
–  Physical storage: complete vertical partition; each column stored

separately: R.A, R.B, R.A
–  Logical schema: remains the same R(A,B,C)

•  Main advantage:
–  Improved transfer rate: disk to memory, memory to CPU, better

cache locality
–  Other advantages (next)

CSEP544 - Fall 2015 30

Data Layout

31

Basic tradeoffs:
•  Reading all attributes of one records, v.s.
•  Reading some attributes of many records

Key Architectural Trends (Sec.1)

•  Virtual IDs

•  Block-oriented and vertical processing

•  Late materialization

•  Column-specific compression

CSEP544 - Fall 2015 32

Key Architectural Trends (Sec.1)

•  Virtual IDs
–  Offsets (arrays) instead of keys

•  Block-oriented and vertical processing
–  Iterator model: one tupleàone block of tuples

•  Late materialization
–  Postpone tuple reconstruction in query plan

•  Column-specific compression
–  Much better than row-compression (why?)

CSEP544 - Fall 2015 33

Fig. 1.2

Vectorized Processing

Review:
•  Volcano-style iterator model

–  Next() method
–  Pipelining

•  Materialization of all intermediate results
•  Discuss in class:

CSEP544 - Fall 2015 35

select avg(A) from R where A < 100

Vectorized Processing

•  Vectorized processing:
–  Next() returns a block of tuples (e.g. N=1000) instead of single

tuple

•  Pros:
–  No more large intermediate results
–  Tight inner loop for selection and/or avg

•  Discuss in class:

CSEP544 - Fall 2015 36

select avg(A) from R where A < 100

Compression (Sec. 4)

•  What is the advantage of compression in databases?

•  Discuss main column-at-a-time compression techniques

CSEP544 - Fall 2015 37

Compression (Sec. 4)

•  What is the advantage of compression in databases?

•  Discuss main column-at-a-time compression techniques
–  Row-length encoding: F,F,F,F,M,Mà4F,2M
–  Bit-vector (see also bit-map indexes)
–  Dictionary. More generally: Ziv-Lempel

CSEP544 - Fall 2015 38

Compression (Sec. 4)

CSE 544 - Fall 2016

Row-based
(4 pages)

A 1
A 2
A 2
A 2

Page

C 4
C 4

B 2
B 4

Column-based
(4 pages)

A
A
A

1

A

2

Page C

2

C

4
4
4

B

2

B

2

Compressed
(2 pages)

4XA
2XB
2XC

1X1
4X2
5X4

39

Late Materialization (Sec. 4)

•  What is it?
•  Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))

CSEP544 - Fall 2015 40

Late Materialization (Sec. 4)

•  What is it?
•  Discuss ΠB(σA=‘a’ ∧ D=‘d’(R(A,B,C,D,…))
•  Early materialization:

–  Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
–  Retrieve those values in column D: ‘x’, ‘d’, ‘y’, ‘d’, ‘d’,...
–  Retain only positions with ‘d’: 4, 9, ...
–  Lookup values in column B: B[4], B[9], …

•  Late materialization
–  Retrieve positions with ‘a’ in column A: 2, 4, 5, 9, 25…
–  Retrieve positions with ‘d’ in column D: 3, 4, 7, 9,12,..
–  Intersect: 4, 9, …
–  Lookup values in column B: B[4], B[9], …

Late Materialization (Sec. 4)

Ex: SELECT R.b from R where R.a=X and R.d=Y

a b c d

R

σ

π

Early materialization

a b c d

R

σ

Late materialization

σ

1
1
0

0
1

1
0
0
1
0

∩

Extract values

42 CSE 544 - Fall 2016

Joins (Sec. 4)

CSEP544 - Fall 2015 43

The result of a join R.A ⋈ S.A is an array
of positions in R.A and S.A.
Note: sorted on R.A only.

1 Value42
2 Value36
3 Value42
4 Value44
5 Value38

1 Value38
2 Value42
3 Value46
4 Value36

R.A S.A

⋈ =
1 1 2
2 2 4
3 3 2
4 5 1

Positions
in R.A

(sorted)
Positions

in S.A
(unsorted)

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second column, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

4 5 1
1 1 2
3 3 2
2 2 4

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

1 Smith
2 Johnson
3 Williams
4 Jones

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

4 5 1
1 1 2
3 3 2
2 2 4

Lookup S.C
(this is a

merge-join;
why?)

⋈

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

1 Smith
2 Johnson
3 Williams
4 Jones

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

4 5 1
1 1 2
3 3 2
2 2 4

Lookup S.C
(this is a

merge-join;
why?)

4 5 1 Smith
1 1 2 Johnson
3 3 2 Johnson
2 2 4 Jones

= ⋈

Jive-Join (Sec. 4)

Problem: accessing the values in the second table
has poor memory locality
Solution: re-sort by the second coljun, fetch, sort back
E.g. ΠS.C(R(A,…) ⋈ S(B,C,…)

1 Smith
2 Johnson
3 Williams
4 Jones

=
1 1 2
2 2 4
3 3 2
4 5 1

Sort
on positions

in S.B

4 5 1
1 1 2
3 3 2
2 2 4

Lookup S.C
(this is a

merge-join;
why?)

4 5 1 Smith
1 1 2 Johnson
3 3 2 Johnson
2 2 4 Jones

= ⋈

Re-sort
on positions

in R.A

1 1 2 Johnson
2 2 4 Jones
3 3 2 Johnson
4 5 1 Smith

=

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
 and 5<R.a<20 and 40<R.b<50
 and 30<S.a<40

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
 and 5<R.a<20 and 40<R.b<50
 and 30<S.a<40

40,50

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
 and 5<R.a<20 and 40<R.b<50
 and 30<S.a<40

???

Late Materialization
select sum(R.a) from R, S
where R.c = S.b
 and 5<R.a<20 and 40<R.b<50
 and 30<S.a<40

Simulating a Column-Store DBMS
in a Row-Store DBMS

•  Vertical partitioning
–  Two-column tables: (key, attribute)

•  Index-only plans
–  Create a B+ tree index on each attribute
–  Answer queries using indexes only, without reading actual data

•  Materialized views
–  Each view contains a subset of columns

CSE 544 - Fall 2016 52

Conclusion

•  Column-store DBMS outperforms row-store DBMS
–  Measured on a data warehousing benchmark (SSBM)

•  Late materialization and compression are key factors

•  Difficult to simulate a column-store in a row-store
–  Tuple overheads cause data blow-up
–  Column joins are expensive
–  Hard to get the DBMS to “do the right thing” (e.g., index plans)

•  Not the end of the story, however, … see CIDR’09 paper
CSE 544 - Fall 2016 53

Conclusion

54

Teaching an Old Elephant New Tricks

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

ABSTRACT
In recent years, column stores (or C-stores for short) have emerged
as a novel approach to deal with read-mostly data warehousing ap-
plications. Experimental evidence suggests that, for certain types of
queries, the new features of C-stores result in orders of magnitude
improvement over traditional relational engines. At the same time,
some C-store proponents argue that C-stores are fundamentally dif-
ferent from traditional engines, and therefore their benefits cannot
be incorporated into a relational engine short of a complete rewrite.
In this paper we challenge this claim and show that many of the
benefits of C-stores can indeed be simulated in traditional engines
with no changes whatsoever. We then identify some limitations
of our “pure-simulation” approach for the case of more complex
queries. Finally, we predict that traditional relational engines will
eventually leverage most of the benefits of C-stores natively, as is
currently happening in other domains such as XML data.

1. MOTIVATION
In the last couple of decades, new database applications have

emerged with different requirements than those in traditional OLTP
scenarios. A prominent example of this trend are data warehouses,
which are characterized by read-mostly workloads, snowflake-like
schemas, and ad-hoc complex aggregate queries. To address these
scenarios, the database industry reacted in different ways.
On one hand, traditional database vendors (e.g., Microsoft, IBM,

and Oracle) augmented traditional database systems with new func-
tionality, such as support for more complex execution plans, multi-
column index support, and the ability to automatically store, query
and maintain materialized views defined over the original data.
On the other hand, new players in the database market devised

a different way to store and process read-mostly data. This line
of work was pioneered by Sybase IQ [1] in the mid-nineties and
subsequently adopted in other systems [7, 15]. The main idea in
such column-oriented stores (also called C-stores) is to store data
column-by-column rather than the traditional row-by-row approach
used in traditional systems (called row-stores in this context). Since
queries read only the columns that they truly require, query pro-
cessing in C-stores becomes more efficient. Additionally, storing

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

data by column results in better compression than what is possi-
ble in a row-store. Some compression techniques used in C-stores
(such as dictionary or bitmap encoding) can also be applied to row-
stores. However, RLE encoding, which replaces a sequence of the
same value by a pair (value, count) is a technique that cannot be
directly used in a row-store, because wide tuples rarely agree on all
attributes. The final ingredient in a C-store is the ability to perform
query processing over compressed data as much as possible (see [5]
for an in-depth study on C-stores).
C-stores claim to be much more efficient than traditional row-

stores. The experimental evaluation in [15] results in C-stores being
164x faster on average than row-stores, and other evaluations [14]
report speedups from 30x to 16,200x (!). These impressive results
make us wonder whether we could incorporate some of the benefi-
cial features of C-stores in traditional row-stores to obtain a system
that performs very well not only in specific data-warehouse verti-
cal, but throughout the spectrum of database applications. Unfor-
tunately, some proponents of C-store architectures claim that their
design principles are so different from those in row-stores that they
cannot be effectively emulated [6], and moreover that “it will re-
quire widespread and extensive code modifications for row-stores
to even approach column-store performance” [4].
In this paper we challenge this claim by investigating ways to

simulate C-stores inside row-stores. In Section 2 we show how to
exploit some of the distinguishing characteristics of C-stores inside
a row-store without any engine changes. Then, in Section 3 we dis-
cuss some limitations of this approach and predict how row-stores
would eventually incorporate most of the benefits of a C-store with-
out losing the ability to process non data-warehouse workloads.

Experimental Setting
All our experiments were conducted using an Intel Xeon 3.2GHz
CPU with 2GB of RAM and a 250GB 7200RPM SATA hard drive
running Windows Server 2003 and Microsoft SQL Server 2005.
To validate our results, we use the same data set and workload pro-
posed in the original C-store paper [15]. Specifically, we used a
TPC-H database with scale factor ten and the seven queries1 of
Figure 1. Although additional data sets and workloads have been
used in subsequent papers, the one in [15] is a representative micro-
benchmark particularly well suited for C-stores and therefore a
good “stress test” for our approach. Following [15], we assume
that the following schema is used in the C-store:

D1: (lineitem | l shipdate, l suppkey)
D2: (lineitem ◃▹ orders | o orderdate, l suppkey)
D4: (lineitem ◃▹ orders ◃▹ customer | l returnflag)

1Reference [15] does not specify the D values for queries with inequalities
on date columns (i.e., Q1, Q3, Q4, and Q6). Therefore, in our experiments
we used values of D that resulted in a wide range of selectivity values.

Teaching an Old Elephant New Tricks

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

ABSTRACT
In recent years, column stores (or C-stores for short) have emerged
as a novel approach to deal with read-mostly data warehousing ap-
plications. Experimental evidence suggests that, for certain types of
queries, the new features of C-stores result in orders of magnitude
improvement over traditional relational engines. At the same time,
some C-store proponents argue that C-stores are fundamentally dif-
ferent from traditional engines, and therefore their benefits cannot
be incorporated into a relational engine short of a complete rewrite.
In this paper we challenge this claim and show that many of the
benefits of C-stores can indeed be simulated in traditional engines
with no changes whatsoever. We then identify some limitations
of our “pure-simulation” approach for the case of more complex
queries. Finally, we predict that traditional relational engines will
eventually leverage most of the benefits of C-stores natively, as is
currently happening in other domains such as XML data.

1. MOTIVATION
In the last couple of decades, new database applications have

emerged with different requirements than those in traditional OLTP
scenarios. A prominent example of this trend are data warehouses,
which are characterized by read-mostly workloads, snowflake-like
schemas, and ad-hoc complex aggregate queries. To address these
scenarios, the database industry reacted in different ways.
On one hand, traditional database vendors (e.g., Microsoft, IBM,

and Oracle) augmented traditional database systems with new func-
tionality, such as support for more complex execution plans, multi-
column index support, and the ability to automatically store, query
and maintain materialized views defined over the original data.
On the other hand, new players in the database market devised

a different way to store and process read-mostly data. This line
of work was pioneered by Sybase IQ [1] in the mid-nineties and
subsequently adopted in other systems [7, 15]. The main idea in
such column-oriented stores (also called C-stores) is to store data
column-by-column rather than the traditional row-by-row approach
used in traditional systems (called row-stores in this context). Since
queries read only the columns that they truly require, query pro-
cessing in C-stores becomes more efficient. Additionally, storing

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

data by column results in better compression than what is possi-
ble in a row-store. Some compression techniques used in C-stores
(such as dictionary or bitmap encoding) can also be applied to row-
stores. However, RLE encoding, which replaces a sequence of the
same value by a pair (value, count) is a technique that cannot be
directly used in a row-store, because wide tuples rarely agree on all
attributes. The final ingredient in a C-store is the ability to perform
query processing over compressed data as much as possible (see [5]
for an in-depth study on C-stores).
C-stores claim to be much more efficient than traditional row-

stores. The experimental evaluation in [15] results in C-stores being
164x faster on average than row-stores, and other evaluations [14]
report speedups from 30x to 16,200x (!). These impressive results
make us wonder whether we could incorporate some of the benefi-
cial features of C-stores in traditional row-stores to obtain a system
that performs very well not only in specific data-warehouse verti-
cal, but throughout the spectrum of database applications. Unfor-
tunately, some proponents of C-store architectures claim that their
design principles are so different from those in row-stores that they
cannot be effectively emulated [6], and moreover that “it will re-
quire widespread and extensive code modifications for row-stores
to even approach column-store performance” [4].
In this paper we challenge this claim by investigating ways to

simulate C-stores inside row-stores. In Section 2 we show how to
exploit some of the distinguishing characteristics of C-stores inside
a row-store without any engine changes. Then, in Section 3 we dis-
cuss some limitations of this approach and predict how row-stores
would eventually incorporate most of the benefits of a C-store with-
out losing the ability to process non data-warehouse workloads.

Experimental Setting
All our experiments were conducted using an Intel Xeon 3.2GHz
CPU with 2GB of RAM and a 250GB 7200RPM SATA hard drive
running Windows Server 2003 and Microsoft SQL Server 2005.
To validate our results, we use the same data set and workload pro-
posed in the original C-store paper [15]. Specifically, we used a
TPC-H database with scale factor ten and the seven queries1 of
Figure 1. Although additional data sets and workloads have been
used in subsequent papers, the one in [15] is a representative micro-
benchmark particularly well suited for C-stores and therefore a
good “stress test” for our approach. Following [15], we assume
that the following schema is used in the C-store:

D1: (lineitem | l shipdate, l suppkey)
D2: (lineitem ◃▹ orders | o orderdate, l suppkey)
D4: (lineitem ◃▹ orders ◃▹ customer | l returnflag)

1Reference [15] does not specify the D values for queries with inequalities
on date columns (i.e., Q1, Q3, Q4, and Q6). Therefore, in our experiments
we used values of D that resulted in a wide range of selectivity values.

Teaching an Old Elephant New Tricks

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

ABSTRACT
In recent years, column stores (or C-stores for short) have emerged
as a novel approach to deal with read-mostly data warehousing ap-
plications. Experimental evidence suggests that, for certain types of
queries, the new features of C-stores result in orders of magnitude
improvement over traditional relational engines. At the same time,
some C-store proponents argue that C-stores are fundamentally dif-
ferent from traditional engines, and therefore their benefits cannot
be incorporated into a relational engine short of a complete rewrite.
In this paper we challenge this claim and show that many of the
benefits of C-stores can indeed be simulated in traditional engines
with no changes whatsoever. We then identify some limitations
of our “pure-simulation” approach for the case of more complex
queries. Finally, we predict that traditional relational engines will
eventually leverage most of the benefits of C-stores natively, as is
currently happening in other domains such as XML data.

1. MOTIVATION
In the last couple of decades, new database applications have

emerged with different requirements than those in traditional OLTP
scenarios. A prominent example of this trend are data warehouses,
which are characterized by read-mostly workloads, snowflake-like
schemas, and ad-hoc complex aggregate queries. To address these
scenarios, the database industry reacted in different ways.
On one hand, traditional database vendors (e.g., Microsoft, IBM,

and Oracle) augmented traditional database systems with new func-
tionality, such as support for more complex execution plans, multi-
column index support, and the ability to automatically store, query
and maintain materialized views defined over the original data.
On the other hand, new players in the database market devised

a different way to store and process read-mostly data. This line
of work was pioneered by Sybase IQ [1] in the mid-nineties and
subsequently adopted in other systems [7, 15]. The main idea in
such column-oriented stores (also called C-stores) is to store data
column-by-column rather than the traditional row-by-row approach
used in traditional systems (called row-stores in this context). Since
queries read only the columns that they truly require, query pro-
cessing in C-stores becomes more efficient. Additionally, storing

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

data by column results in better compression than what is possi-
ble in a row-store. Some compression techniques used in C-stores
(such as dictionary or bitmap encoding) can also be applied to row-
stores. However, RLE encoding, which replaces a sequence of the
same value by a pair (value, count) is a technique that cannot be
directly used in a row-store, because wide tuples rarely agree on all
attributes. The final ingredient in a C-store is the ability to perform
query processing over compressed data as much as possible (see [5]
for an in-depth study on C-stores).
C-stores claim to be much more efficient than traditional row-

stores. The experimental evaluation in [15] results in C-stores being
164x faster on average than row-stores, and other evaluations [14]
report speedups from 30x to 16,200x (!). These impressive results
make us wonder whether we could incorporate some of the benefi-
cial features of C-stores in traditional row-stores to obtain a system
that performs very well not only in specific data-warehouse verti-
cal, but throughout the spectrum of database applications. Unfor-
tunately, some proponents of C-store architectures claim that their
design principles are so different from those in row-stores that they
cannot be effectively emulated [6], and moreover that “it will re-
quire widespread and extensive code modifications for row-stores
to even approach column-store performance” [4].
In this paper we challenge this claim by investigating ways to

simulate C-stores inside row-stores. In Section 2 we show how to
exploit some of the distinguishing characteristics of C-stores inside
a row-store without any engine changes. Then, in Section 3 we dis-
cuss some limitations of this approach and predict how row-stores
would eventually incorporate most of the benefits of a C-store with-
out losing the ability to process non data-warehouse workloads.

Experimental Setting
All our experiments were conducted using an Intel Xeon 3.2GHz
CPU with 2GB of RAM and a 250GB 7200RPM SATA hard drive
running Windows Server 2003 and Microsoft SQL Server 2005.
To validate our results, we use the same data set and workload pro-
posed in the original C-store paper [15]. Specifically, we used a
TPC-H database with scale factor ten and the seven queries1 of
Figure 1. Although additional data sets and workloads have been
used in subsequent papers, the one in [15] is a representative micro-
benchmark particularly well suited for C-stores and therefore a
good “stress test” for our approach. Following [15], we assume
that the following schema is used in the C-store:

D1: (lineitem | l shipdate, l suppkey)
D2: (lineitem ◃▹ orders | o orderdate, l suppkey)
D4: (lineitem ◃▹ orders ◃▹ customer | l returnflag)

1Reference [15] does not specify the D values for queries with inequalities
on date columns (i.e., Q1, Q3, Q4, and Q6). Therefore, in our experiments
we used values of D that resulted in a wide range of selectivity values.

CIDR’09

