CSE 544 Principles of Database Management Systems

Fall 2016 Lecture 14 - Data Warehousing and Column Stores

References

- Data Cube: A Relational Aggregation Operator Generalizing Group By, Cross-Tab, and Sub-Totals.
 Jim Gray et. al. Data Mining and Knowledge Discovery 1, 29-53. 1997
- Database management systems.

Ramakrishnan and Gehrke.

Third Ed. Chapter 25

Why Data Warehouses?

- Production DBMSs designed to manage operational data
 - Goal: support every day activities
 - Online transaction processing (OLTP)
 - Ex: Tracking sales and inventory of each Wal-mart store
- Data Warehouse designed to analyze and explore data
 - Goal: summarize and discover trends to support decision making
 - Online analytical processing (OLAP)
- Data warehouse usually updated overnight from production databases

Data Warehouse Overview

- Consolidated data from many sources
 - Must create a single unified schema
 - The warehouse is like a materialized view
- Very large size: terabytes of data are common
- Complex read-only queries (no updates)
- Fast response time is (not as) important
 - Compared to transaction processing

Star Schema

- Central table, e.g.
 - SALES(<u>saleID</u>, time, price, storeID, productID, ...)
- Dimension tables, e.g.
 - Store(<u>storeID</u>, sname, location, ...),
 - Product(productID, pname, weight, ...)
 - SalesPerson(personID, name, ...)

OLAP queries

- ETL pipeline load data into a data warehouse
- Operators:
 - Rollup
 - Drill down
 - Pivoting
 - Cube

The ETL Pipeline

- Extract data from distributed operational databases
- **Clean** to minimize errors and fill in missing information
- Transform to reconcile semantic mismatches
 Performed by defining views over the data sources
- Load to materialize the above defined views
 Build indexes and additional materialized views
- **Refresh** to propagate updates to warehouse periodically

Back to Warehouses: Outline

- Multidimensional data model and operations
- Data cube & rollup operators
- Data warehouse implementation issues
- Other extensions for data analysis

Multidimensional Data Model

- Focus of the analysis is a collection of measures
 - Example: Wal-mart sales
- Each measure depends on a set of dimensions
 - Example: product (pid), location (lid), and time of the sale (timeid)
 locid

Slicing: equality selection on one or more dimensions

Dicing: range selection

Star Schema

Representing multidimensional data as relations (ROLAP)

Dimension Hierarchies

Dimension values can form a hierarchy described by attributes

Desired Operations

- Histograms (agg. over computed categories) (paper p.34)
- Summarize at different levels: roll-up and drill-down
 - Ex: total sales by day, week, quarter, and year

Pivoting

- Ex: pivot on location and time
- Result of pivot is a cross-tabulation
- Column values become labels

WICATotal2005500200700200615085010002007250400650Total90014502350

Challenge 1: Representation

- Problem: How to represent multi-level aggregation?
 - Ex: Table 3 in the paper need 2^N columns for N dimensions!
 - Ex: Table 4 has even more columns!

Challenge 1: Representation

50.5		8 - C.						CUBE	_
PROBLEM P		tees, t	serent's	WW(seles) AS Sel	••	Model	Year	Color	Sales
1.000.000		19. an 19.	1222			Covery	1390	2216	- 62 -
MIERE We						Charty	3990	zed.	1 S
		NEEN 25				Cherry	2990	1963.5 m	85
SROUP, RD	COME.	Magaz.	Apres 1	Celer:		Chevry	1890	ALL	156
						Chevry .	1591	2010 e	- 49 -
						Course	1991	red	54
						Cherry .	1991	- 568.84 B	95
						Chevry	1891	812.	198
						Chevry	3392	0.248	21.
						Chevry	3999	red	31
				K.		Chevy	2993	white:	
				D D	SR - 1	Chevry	1993	814.	156
-	SALE				1	Chevry	ALL	bine :	182
_	and the second second		-		1	Charry	ALL	red.	0.0
Model [®]	Year	Color	Sales		1	Deary	1.1.1.	white	236
CLANY	1990	red		ALIDE	- V -	Chevry	314	844.	6.58
Chevry	1890	10.514	12	CUBE	- >	Ford	1990	2016	63
Chevy	1880	hive.	41	VUUL	- /	Ford.	1990	264	
Chevy	1991	744	64		1	Ford	1990	white	- 64
Chevy			11		1	Ford	1990	ALL	199
	1991	white	1.55.521		/	Ford	1991	bitan.	- 55
Chavy	1991	Blue :	49	1	8	Ford	1991	White	52
Chevy.	4893	red	31	<i>y</i>		Ford	1391	ALL	116
Chevy	1993	WHERE !	54			Fond	1991	bites.	39
Chavy.	1493	State .	71			Food	2992	1004	27
Terd	1550	red	84			Ford	1392	white.	1.62
Part.	1990	white	42			Ford	1590	ALL	128
Ford						Ford	ADD	bites.	157
	1990	bine :				Ford	ALL.	- 2 mil	143
Pard	1993	red	52			Ford	814	white.	1.55
Pare	1993.	white,				Ford	ALL	ALL	4.3.3
Ford	1891	hime.	55			ALL:	1990	hine.	125
Patri	1592	red .	27			81.1.	1990	t and	6.9
2414	1992	MALLA.	83			ALX:	1440	W6156	149
Part	1222		100			ALC: N	1590	ALL	343
		10.1.48				ALL.	33.91	520 m	1.06
						ALC: N	1991	red	104
						ALL	0993	whitte	11.0
						42.5	4892.	ALL	214
						814.	1893	States -	114
						ALL.	1992	and .	3.8
						$ML_{1} > 0$	2993	Minister.	114
						ALL .	1993	ALL	204
						ALC: N	ALL	bine.	339
						314	312	1000	335
						414.	- ALA:	- 6012 D.M.	3.68
						ALL	ALC: NOTE: N	ALL	2943.

Challenge 1: Representation

- Problem: How to represent multi-level aggregation?
 - Ex: Table 3 in the paper need 2^N columns for N dimensions!
 - Ex: Table 4 has even more columns!
 - And that's without considering any hierarchy on the dimensions!
- Solution: special "all" value

., your	Liotato	
2005	WI	500
2005	CA	200
2005	ALL	700
ALL	ALL	2350

T.year L.state SUM(S.sales)

Note: SQL-1999 standard uses NULL values instead of ALL

Challenge 2: Computing Aggregations

- Need 2^N different SQL queries to compute all aggregates
 - Expressing roll-up of a single column and cross-table queries is thus daunting
 - Cannot optimize all these independent queries
- Solution: CUBE and ROLLUP operators

Outline

- Multidimensional data model and operations
- Data cube & rollup operators
- Data warehouse implementation issues
- Other extensions for data analysis

Data Cube

- CUBE is the N-dimensional generalization of aggregate
- Cube in SQL-1999 SELECT T.year, L.state, SUM(S.sales) FROM Sales S, Times T, Locations L WHERE S.timeid=T.timeid and S.locid=L.locid GROUP BY CUBE (T.year,L.state)
- Creating a data cube requires generating the power set of the aggregation columns

Rollup

- Rollup produces a subset of a cube
- Rollup in SQL-1999 SELECT T.year, T.quarter, SUM(S.sales) FROM Sales S, Times T WHERE S.timeid=T.timeid GROUP BY ROLLUP (T.year, T.quarter)
- Will aggregate over each pair of (year,quarter), each year, and total, but will **not** aggregate over each quarter

Computing Cubes and Rollups

- Naive algorithm
 - For each new tuple, update each of 2^N matching cells
- More efficient algorithm
 - Use intermediate aggregates to compute others
 - Relatively easy for distributive and algebraic functions
- Updating a cube in response to updates is more challenging

Outline

- Multidimensional data model and operations
- Data cube & rollup operators
- Data warehouse implementation issues
- Other extensions for data analysis

Indexes

• Bitmap indexes: good for sparse attributes (few values)

Ν	F	custid	name	gender	rating
C	1	10	Alice	F	3
1	0	11	Bob	Μ	4
1	0	12	Chuck	Μ	1

1	2	3	4
0	0	1	0
0	0	0	1
1	0	0	0

- Join indexes: to speed-up specific join queries
 - Example: Join fact table F with dimension tables D1 and D2
 - Index contain triples of rids $< r_1, r_2, r > from D_1, D_2$, and F that join
 - Alternatively, two indexes, each one with pairs $\langle v_1, r \rangle$ or $\langle v_2, r \rangle$ where v_1 , v_2 are values of tuples from D_1 , D_2 that join with r

Materialized Views

- How to choose views to materialize?
 - Physical database tuning
- How to keep view up-to-date?
 - Could recompute entire view for each update: expensive
 - Better approach: incremental view maintenance
 - Example: recompute only affected partition
 - How often to synchronize? Periodic updates (at night) are typical
 - Think back in the case of Walmart

Outline

- Multidimensional data model and operations
- Data cube & rollup operators
- Data warehouse implementation issues
- Other extensions for data analysis

Additional Extensions for Decision Support

• Window queries

SELECT L.state, T.month, AVG(S.sales) over W AS movavg FROM Sales S, Times T, Locations L WHERE S.timeid = T.timeid AND S.locid=L.locid WINDOW W AS (PARTITION BY L.State ORDER BY T.month RANGE BETWEEN INTERVAL '1' MONTH PRECEDING AND INTERVAL '1' MONTH FOLLOWING)

- Top-k queries: optimize queries to return top k results
- Online aggregation: produce results incrementally

Leveraging Column Stores

References

 The Design and Implementation of Modern Column-Oriented Database Systems Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, Samuel Madden. Foundations and Trends® in Databases (Vol 5, Issue 3, 2012, pp 197-280).

Column-Oriented Databases

- Main idea:
 - Physical storage: complete vertical partition; each column stored separately: R.A, R.B, R.A
 - Logical schema: remains the same R(A,B,C)
- Main advantage:
 - Improved transfer rate: disk to memory, memory to CPU, better cache locality
 - Other advantages (next)

Data Layout

Figure 1.1: Physical layout of column-oriented vs row-oriented databases.

Basic tradeoffs:

- Reading all attributes of one records, v.s.
- Reading some attributes of many records ³¹

Key Architectural Trends (Sec.1)

- Virtual IDs
- Block-oriented and vertical processing
- Late materialization
- Column-specific compression

Key Architectural Trends (Sec.1)

- Virtual IDs
 - Offsets (arrays) instead of keys
- Block-oriented and vertical processing
 - − Iterator model: one tuple \rightarrow one block of tuples
- Late materialization
 - Postpone tuple reconstruction in query plan
- Column-specific compression
 - Much better than row-compression (why?)

Fig. 1.2

Figure 1.2: Performance of C-Store versus a commercial database system on the SSBM benchmark, with different column-oriented optimizations enabled.

Vectorized Processing

Review:

- Volcano-style iterator model
 - Next() method
 - Pipelining
- Materialization of all intermediate results
- Discuss in class:

select avg(A) from R where A < 100

Vectorized Processing

- Vectorized processing:
 - Next() returns a block of tuples (e.g. N=1000) instead of single tuple
- Pros:
 - No more large intermediate results
 - Tight inner loop for selection and/or avg
- Discuss in class:

select avg(A) from R where A < 100

Compression (Sec. 4)

- What is the advantage of compression in databases?
- Discuss main column-at-a-time compression techniques

Compression (Sec. 4)

- What is the advantage of compression in databases?
- Discuss main column-at-a-time compression techniques
 - − Row-length encoding: F,F,F,F,M,M \rightarrow 4F,2M
 - Bit-vector (see also bit-map indexes)
 - Dictionary. More generally: Ziv-Lempel

Compression (Sec. 4)

Late Materialization (Sec. 4)

- What is it?
- Discuss $\Pi_B(\sigma_{A='a' \land D='d'}(R(A,B,C,D,...))$

Late Materialization (Sec. 4)

- What is it?
- Discuss $\Pi_{B}(\sigma_{A='a' \land D='d'}(R(A,B,C,D,...)))$ •
- Early materialization:
 - Retrieve positions with 'a' in column A:
 - Retrieve those values in column D:
 - Retain only positions with 'd':
 - Lookup values in column B:
- Late materialization
 - Retrieve positions with 'a' in column A: 2, 4, 5, 9, 25...
 - Retrieve positions with 'd' in column D: 3, 4, 7, 9,12,...
 - Intersect: 4, 9, ...
 - Lookup values in column B:

2.4.5.9.25... 'x', 'd', 'y', 'd', 'd',... 4, 9, ... B[4], B[9], ...

```
B[4], B[9], ...
```

Late Materialization (Sec. 4)

Ex:SELECT R.b from R where R.a=X and R.d=Y

Early materialization

Late materialization

42

Joins (Sec. 4)

Problem: accessing the values in the second table has poor memory locality Solution: re-sort by the second column, fetch, sort back E.g. $\Pi_{S.C}(R(A,...) \bowtie S(B,C,...)$

Problem: accessing the values in the second table has poor memory locality Solution: re-sort by the second coljun, fetch, sort back E.g. $\Pi_{S.C}(R(A,...) \bowtie S(B,C,...)$

Problem: accessing the values in the second table has poor memory locality Solution: re-sort by the second coljun, fetch, sort back E.g. $\Pi_{S.C}(R(A,...) \bowtie S(B,C,...)$

Problem: accessing the values in the second table has poor memory locality Solution: re-sort by the second coljun, fetch, sort back E.g. $\Pi_{S.C}(R(A,...) \bowtie S(B,C,...)$

select sum(R.a) from R, S where R.c = S.b and 5<R.a<20 and 40<R.b<50 and 30<S.a<40

select sum(R.a) from R, S where R.c = S.b and 5<R.a<20 and 40<R.b<50 and 30<S.a<40

40,50

select sum(R.a) from R, S where R.c = S.b and 5<R.a<20 and 40<R.b<50 and 30<S.a<40

???

Simulating a Column-Store DBMS in a Row-Store DBMS

- Vertical partitioning
 - Two-column tables: (key, attribute)
- Index-only plans
 - Create a B+ tree index on each attribute
 - Answer queries using indexes only, without reading actual data
- Materialized views
 - Each view contains a subset of columns

Conclusion

- Column-store DBMS outperforms row-store DBMS
 - Measured on a data warehousing benchmark (SSBM)
- Late materialization and compression are key factors
- Difficult to simulate a column-store in a row-store
 - Tuple overheads cause data blow-up
 - Column joins are expensive
 - Hard to get the DBMS to "do the right thing" (e.g., index plans)
- Not the end of the story, however, ... see CIDR'09 paper

CSE 544 - Fall 2016

Conclusion

Teaching an Old Elephant New Tricks

ABSTRACT

Nicolas Bruno Microsoft Research nicolasb@microsoft.com

In recent years, column stores (or C-stores for short) have emerged as a novel approach to deal with read-mostly data warehousing applications. Experimental evidence suggests that, for certain types of queries, the new features of C-stores result in orders of magnitude improvement over traditional relational engines. At the same time, some C-store proponents argue that C-stores are fundamentally different from traditional engines, and therefore their benefits cannot be incorporated into a relational engine short of a complete rewrite. In this paper we challenge this claim and show that many of the benefits of C-stores can indeed be simulated in traditional engines with no changes whatsoever. We then identify some limitations of our "pure-simulation" approach for the case of more complex queries. Finally, we predict that traditional relational engines will eventually leverage most of the benefits of C-stores natively, as is currently happening in other domains such as XML data.

CIDR'09