CSE 544 Principles of Database Management Systems

Fall 2016 Lecture 13 – Parallel DBMSs

References

 Parallel Database Systems: The Future of High Performance Database Systems. Dave DeWitt and Jim Gray. Com. of the ACM. 1992. Sec. 1 and 2.

 Database management systems. Ramakrishnan and Gehrke. Third Ed. Chapter 22.

Two Ways to Scale a DBMS

Two Ways to Scale a DBMS

- Obviously this can be used to:
 - Execute multiple queries in parallel
 - Speed up a single query
- For now: how to speed up a single query
- We will worry about how to scale to multiple queries later

FYI: Data Analytics Companies

DB analytics companies:

- Greenplum founded in 2003 acquired by EMC in 2010; A parallel shared-nothing DBMS
- Vertica founded in 2005 and acquired by HP in 2011; A parallel, column-store shared-nothing DBMS
- DATAllegro founded in 2003 acquired by Microsoft in 2008; A parallel, shared-nothing DBMS
- Aster Data Systems founded in 2005 acquired by Teradata in 2011; A parallel, shared-nothing, MapReduce-based data processing system. SQL on top of MapReduce
- Netezza founded in 2000 and acquired by IBM in 2010. A parallel, shared-nothing DBMS.

What does this mean? **\$\$\$\$**

Parallel v.s. Distributed Databases

- Distributed database system (later?):
 - Data is stored across several sites (geographically speaking), each site managed by a DBMS capable of running independently

- Parallel database system (today):
 - Data is stored at a single site, can be used to improve query performance through parallel implementation

Parallel DBMSs

Goal

- Improve performance by executing multiple operations in parallel

• Key benefit

 Cheaper to scale than relying on a single increasingly more powerful processor

• Key challenge

– Ensure overhead and contention do not kill performance

Performance Metrics for Parallel DBMSs

Speedup

- More processors → higher speed
- Individual queries should run faster
- Should do more transactions per second (TPS)
- Fixed problem size overall, vary # of processors ("strong scaling")

Linear v.s. Non-linear Speedup

Performance Metrics for Parallel DBMSs

Scaleup

- More processors → can process more data
- Fixed problem size *per processor*, vary # of processors ("weak scaling")
- Batch scaleup
 - Same query on larger input data should take the same time
- Transaction scaleup
 - N-times as many TPS on N-times larger database
 - But each transaction typically remains small

Linear v.s. Non-linear Scaleup

Buzzwords, buzzwords

- Be careful. Commonly used terms today:
 - "scale up" = use an increasingly more powerful server
 - "scale out" = use a larger number of servers

Challenges to Linear Speedup and Scaleup

• Startup cost

Cost of starting an operation on many processors

• Interference

Contention for resources between processors

- Skew
 - Slowest processor becomes the bottleneck

Parallel DBMS Architectures

Architecture for Parallel DBMS: Shared Memory

Aka SMP= symmetric multi processor

Architecture for Parallel DBMS: Shared Disk

Architecture for Parallel DBMS: Shared Nothing

A Professional Picture...

Figure 1 - Types of database architecture

From: Greenplum Database Whitepaper

SAN = "Storage Area Network"

111

Master

DB

Disk

DB

Disk

DB

Disk

DB

Disk

Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine

leverage many threads to get a query to run faster

Characteristics:

- Easy to use and program
- But very expensive to scale

Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

Oracle dominates this class of systems

Characteristics:

• Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines

Shared Nothing

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:

- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

We discuss only Shared Nothing in class

So...

- You have a parallel machine. Now what?
- How do you speed up your DBMS given a shared-nothing architecture?

Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - Each query runs on one processor
 - Only for running multiple queries (OLTP)
- Inter-operator parallelism
 - A query runs on multiple processors
 - An operator runs on one processor
 - For both OLTP and Decision Support
- Intra-operator parallelism
 - An operator runs on multiple processors
 - For both OLTP and Decision Support

Product Purchase

We study only intra-operator parallelism: most scalable

Data Partitioning

Horizontal Data Partitioning

- Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes
- Block partitioned
 - Each group of k tuples go to a different node
- Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$

Need to worry about data skew

Uniform Data v.s. Skewed Data

- Let R(K,A,B,C); which of the following partition methods may result in skewed partitions?
- Uniform **Block** partition ٠ Hash-partition • Assuming uniform Uniform hash function – On the key K On the attribute A E.g. when all records May be skewed have the same value of the attribute A, then **Range-partition** ٠ all records end up in the same partition – On the key K On the attribute A Difficult to partition May be skewed the range of A uniformly.

All You Need to Know About Skew

Hash-partition a m data values (with duplicates!) to p bins

Fact 1 Expected size of any **one** fixed bin is m/p

Fact 2 Say that data is *skewed* if some value has degree > m/p. Then **some** bin has load > m/p Hiding log p

factors

Fact 3 Conversely, if the database is <u>skew-free</u> then max size of **all** bins = O(m/p) w.h.p.

Example from Teradata

AMP = Access Module Processor = unit of parallelism

Parallelizing Operator Implementations

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1 < A < v2}(R)$

On a conventional database: cost = B(R)

Q: What is the cost on a parallel database with P processors ?

- Block partitioned
- Hash partitioned
- Range partitioned

Parallel Selection

Q: What is the cost on a parallel database with P nodes ?

A: B(R) / P in all cases (except range) if cost is response time

However, not all processors are equal (workwise):

- Block: all servers do the same amount of work
- Hash: one server for $\sigma_{A=v}(R)$, all for $\sigma_{v1<A<v2}(R)$
- Range: some servers only

Data Partitioning Revisited

What are the pros and cons ?

- Block based partitioning
 - Good load balance but always needs to read all the data
- Hash based partitioning
 - Good load balance
 - Can avoid reading all the data for equality selections
- Range based partitioning
 - Can suffer from skew (i.e., load imbalances)
 - Can help reduce skew by creating uneven partitions

- If R is partitioned on A, then each node computes the group-by locally
- Otherwise, hash-partition R(K,A,B,C) on A, then compute group-by locally:

CSE 544 - Fall 2016

- Step 1: server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i,P-1} (there are P servers total)
- Step 2: server i sends partition R_{ii} to server j
- Step 3: server j computes $\gamma_{A, \ sum(B)}$ on $R_{0j}, \ R_{1j}, \ ..., \ R_{P-1,j}$

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

- $Sum(B) = Sum(B_0) + Sum(B_1) + ... + Sum(B_n)$
- Count(B) = Count(B₀) + Count(B₁) + ... + Count(B_n)
- $Max(B) = Max(Max(B_0), Max(B_1), ..., Max(B_n))$

distributive

Avg(B) = Sum(B) / Count(B)

algebraic

• Median(B) = ???

holistic

Parallel Join: $R \bowtie_{A=B} S$

- Step 1
 - For all servers in [0,k], server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i,P-1}
 - For all servers in [k+1,P], server j partitions chunk S_j using a hash function h(t.A) mod P: S_{j0}, S_{j1}, ..., R_{j,P-1}
- Step 2:
 - Server i sends partition R_{iu} to server u
 - Server j sends partition S_{ju} to server u
- Steps 3: Server u computes the join of R_{iu} with S_{ju}

Example of Parallel Query Plan

Find all orders from today, along with the items ordered

CSE 544 - Fall 2016

Example Parallel Plan

CSE 544 - Fall 2016

Optimization for Small Relations

- When joining R and S
- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Sometimes called a "small join" or "broadcast join"

Other Interesting Parallel Join Implementation

Problem of skew during join computation

Some join partitions get more **input** tuples than others

- Reason 1: Base data unevenly distributed
 - Because used a range-partition function
 - Or used hashing but some values are very popular (Skew)
- Reason 2: Selection before join with different selectivities
- Reason 3: Input data got unevenly rehashed (or otherwise repartitioned before the join)

Some partitions **output** more tuples than others

Some Skew Handling Techniques

- 1. Use range- instead of hash-partitions
 - Ensure that each range gets same number of tuples
 - Example: $\{1, 1, 1, 2, 3, 4, 5, 6\} \rightarrow [1,2]$ and [3,6]
- 2. Create more partitions than nodes
 - And be smart about scheduling the partitions
- 3. Use subset-replicate (i.e., "skewedJoin")
 - Given an extremely common value 'v'
 - Distribute R tuples with value v randomly across k nodes (R is the build relation)
 - Replicate S tuples with value v to same k machines (S is the probe relation)

Parallel Dataflow Implementation

Use relational operators unchanged

Add a special *shuffle* operator

- Handle data routing, buffering, and flow control
- Inserted between consecutive operators in the query plan
- Two components: ShuffleProducer and ShuffleConsumer
- Producer pulls data from operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
- Consumer buffers input data from n producers and makes it available to operator through getNext interface

Conclusion

- Making databases parallel is another way to speed up query processing
- Many algorithms for parallelizing different relational operators
- Next time: column stores