References

• **Database management systems.** Ramakrishnan and Gehrke. Third Ed. *Chapter 22.*
Two Ways to Scale a DBMS

Scale up

Scale out

A more powerful server

More servers
Two Ways to Scale a DBMS

• Obviously this can be used to:
 – Execute multiple queries in parallel
 – Speed up a single query

• For now: how to speed up a single query

• We will worry about how to scale to multiple queries later
FYI: Data Analytics Companies

DB analytics companies:

- **Greenplum** founded in 2003 acquired by EMC in 2010; A parallel shared-nothing DBMS
- **Vertica** founded in 2005 and acquired by HP in 2011; A parallel, column-store shared-nothing DBMS
- **DATAAllegro** founded in 2003 acquired by Microsoft in 2008; A parallel, shared-nothing DBMS
- **Aster Data Systems** founded in 2005 acquired by Teradata in 2011; A parallel, shared-nothing, MapReduce-based data processing system. SQL on top of MapReduce
- **Netezza** founded in 2000 and acquired by IBM in 2010. A parallel, shared-nothing DBMS.

What does this mean? $$$$$
Parallel v.s. Distributed Databases

• *Distributed database system (later?):*
 – Data is stored *across several sites* (geographically speaking), each site managed by a DBMS capable of running independently

• *Parallel database system (today):*
 – Data is stored *at a single site*, can be used to improve query performance through parallel implementation
Parallel DBMSs

• **Goal**
 – Improve performance by executing multiple operations in parallel

• **Key benefit**
 – Cheaper to scale than relying on a single increasingly more powerful processor

• **Key challenge**
 – Ensure overhead and contention do not kill performance
Performance Metrics for Parallel DBMSs

Speedup

• More processors \(\Rightarrow\) higher speed
• Individual queries should run faster
• Should do more transactions per second (TPS)
• Fixed problem size overall, vary \# of processors ("strong scaling")
Linear v.s. Non-linear Speedup

![Graph showing Speedup vs. # processors (P)]

- Ideal speedup
- For real...
Performance Metrics for Parallel DBMSs

Scaleup

- More processors \(\Rightarrow \) can process more data
- Fixed problem size \textit{per processor}, vary \# of processors ("weak scaling")
- \textbf{Batch scaleup}
 - Same query on larger input data should take the same time
- \textbf{Transaction scaleup}
 - N-times as many TPS on N-times larger database
 - But each transaction typically remains small
Linear v.s. Non-linear Scaleup

Batch Scaleup

ideal

for real...

processors (=P) AND data size

CSE 544 - Fall 2016
Buzzwords, buzzwords

• Be careful. Commonly used terms today:
 – “scale up” = use an increasingly more powerful server
 – “scale out” = use a larger number of servers
Challenges to Linear Speedup and Scaleup

• **Startup cost**
 – Cost of starting an operation on many processors

• **Interference**
 – Contention for resources between processors

• **Skew**
 – Slowest processor becomes the bottleneck
Parallel DBMS Architectures
Architecture for Parallel DBMS: Shared Memory

Interconnection Network

Global Shared Memory

Aka SMP = symmetric multi processor
Architecture for Parallel DBMS: Shared Disk
Architecture for Parallel DBMS:
Shared Nothing
A Professional Picture…

Figure 1 - Types of database architecture

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”
Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine
- leverage many threads to get a query to run faster

Characteristics:
- Easy to use and program
- But very expensive to scale
Shared Disk

• All nodes access the same disks
• Found in the largest "single-box" (non-cluster) multiprocessors

Oracle dominates this class of systems

Characteristics:
• Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines
Shared Nothing

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:
- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

We discuss only Shared Nothing in class
So…

• You have a parallel machine. Now what?

• How do you speed up your DBMS given a shared-nothing architecture?
Approaches to Parallel Query Evaluation

- **Inter-query parallelism**
 - Each query runs on one processor
 - Only for running multiple queries (OLTP)

- **Inter-operator parallelism**
 - A query runs on multiple processors
 - An operator runs on one processor
 - For both OLTP and Decision Support

- **Intra-operator parallelism**
 - An operator runs on multiple processors
 - For both OLTP and Decision Support

We study only intra-operator parallelism: most scalable
Data Partitioning
Horizontal Data Partitioning

- Relation R split into P chunks R_0, $..., R_{P-1}$, stored at the P nodes

- **Block partitioned**
 - Each group of k tuples go to a different node

- **Hash based partitioning on attribute A**:
 - Tuple t to chunk $h(t.A) \mod P$

- **Range based partitioning on attribute A**:
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$

Need to worry about **data skew**
Uniform Data v.s. Skewed Data

- Let R(K,A,B,C); which of the following partition methods may result in skewed partitions?

 - Block partition

 - Hash-partition
 - On the key K
 - On the attribute A

 - Range-partition
 - On the key K
 - On the attribute A

Uniform

Uniform

May be skewed

May be skewed

- Assuming uniform hash function

 E.g. when all records have the same value of the attribute A, then all records end up in the same partition

Difficult to partition the range of A uniformly.
All You Need to Know About Skew

Hash-partition a m data values (with duplicates!) to p bins

Fact 1 Expected size of any one fixed bin is m/p

Fact 2 Say that data is *skewed* if some value has degree $> m/p$. Then *some* bin has load $> m/p$

Fact 3 Conversely, if the database is *skew-free* then max size of all bins $= O(m/p)$ w.h.p.
Example from Teradata

AMP = Access Module Processor = unit of parallelism
Parallelizing Operator Implementations
Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v_1<A<v_2}(R)$

On a conventional database: cost = $B(R)$

Q: What is the cost on a parallel database with P processors?

• Block partitioned
• Hash partitioned
• Range partitioned
Parallel Selection

Q: What is the cost on a parallel database with P nodes?

A: \(B(R) / P \) in all cases (except range) if cost is response time

However, not all processors are equal (workwise):

- Block: all servers do the same amount of work
- Hash: one server for \(\sigma_{A=v}(R) \), all for \(\sigma_{v_1<A<v_2}(R) \)
- Range: some servers only
Data Partitioning Revisited

What are the pros and cons?

• **Block based partitioning**
 – Good load balance but always needs to read all the data

• **Hash based partitioning**
 – Good load balance
 – Can avoid reading all the data for equality selections

• **Range based partitioning**
 – Can suffer from skew (i.e., load imbalances)
 – Can help reduce skew by creating uneven partitions
Parallel Group By: $\gamma_A, \text{sum}(B)(R)$

- If R is partitioned on A, then each node computes the group-by locally.
- Otherwise, hash-partition $R(K,A,B,C)$ on A, then compute group-by locally:

![Diagram showing reshuffling of R on attribute A]

Reshuffle R on attribute A
Parallel Group By: $\gamma_A, \text{sum}(B)(R)$

- Step 1: server i partitions chunk R_i using a hash function $h(t.A) \mod P$: $R_{i0}, R_{i1}, \ldots, R_{i,P-1}$ (there are P servers total)

- Step 2: server i sends partition R_{ij} to server j

- Step 3: server j computes $\gamma_A, \text{sum}(B)$ on $R_{0j}, R_{1j}, \ldots, R_{P-1,j}$
Parallel Group By: $\gamma_A, \text{sum}(B)(R)$

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?
Parallel Group By: \(\gamma_A, \sum(B)(R) \)

- Sum\((B) = \sum\left(\sum(B_0) + \sum(B_1) + \ldots + \sum(B_n)\right) \)
- Count\((B) = \sum\left(\sum(B_0) + \sum(B_1) + \ldots + \sum(B_n)\right) \)
- Max\((B) = \max(\max(B_0), \max(B_1), \ldots, \max(B_n)) \)

\(...\text{distributive}\)

- Avg\((B) = \frac{\sum(B)}{\text{Count}(B)} \)

\(...\text{algebraic}\)

- Median\((B) = ??? \)

\(...\text{holistic}\)
Parallel Join: \(R \bowtie_{A=B} S \)

- **Step 1**
 - For all servers in \([0,k]\), server \(i \) partitions chunk \(R_i \) using a hash function \(h(t.A) \mod P: R_{i0}, R_{i1}, ..., R_{i,P-1} \)
 - For all servers in \([k+1,P]\), server \(j \) partitions chunk \(S_j \) using a hash function \(h(t.A) \mod P: S_{j0}, S_{j1}, ..., R_{j,P-1} \)

- **Step 2:**
 - Server \(i \) sends partition \(R_{iu} \) to server \(u \)
 - Server \(j \) sends partition \(S_{ju} \) to server \(u \)

- **Steps 3:** Server \(u \) computes the join of \(R_{iu} \) with \(S_{ju} \)
Example of Parallel Query Plan

Find all orders from today, along with the items ordered

```
SELECT *
FROM Orders o, Lines i
WHERE o.item = i.item
AND o.date = today()
```
Example Parallel Plan

Node 1
- hash
- select
 - date = today()
- scan
 - Order o

Node 2
- hash
- select
 - date = today()
- scan
 - Order o

Node 3
- hash
- select
 - date = today()
- scan
 - Order o

CSE 544 - Fall 2016
Example Parallel Plan

CSE 544 - Fall 2016
Example Parallel Plan

Node 1
join
\[o.item = i.item \]
contains all orders and all lines where \(\text{hash}(\text{item}) = 1 \)

Node 2
join
\[o.item = i.item \]
contains all orders and all lines where \(\text{hash}(\text{item}) = 2 \)

Node 3
join
\[o.item = i.item \]
contains all orders and all lines where \(\text{hash}(\text{item}) = 3 \)

contains all orders and all lines where \(\text{hash}(\text{item}) = 3 \)
Optimization for Small Relations

- When joining R and S
- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes

- Sometimes called a “small join” or “broadcast join”
Other Interesting Parallel Join Implementation

Problem of skew during join computation

Some join partitions get more input tuples than others

• Reason 1: Base data unevenly distributed
 – Because used a range-partition function
 – Or used hashing but some values are very popular (Skew)

• Reason 2: Selection before join with different selectivities

• Reason 3: Input data got unevenly rehashed (or otherwise repartitioned before the join)

Some partitions output more tuples than others
Some Skew Handling Techniques

1. Use range- instead of hash-partitions
 - Ensure that each range gets same number of tuples
 - Example: \{1, 1, 1, 2, 3, 4, 5, 6 \} → [1,2] and [3,6]

2. Create more partitions than nodes
 - And be smart about scheduling the partitions

3. Use subset-replicate (i.e., “skewedJoin”)
 - Given an extremely common value ‘v’
 - Distribute R tuples with value v randomly across k nodes (R is the build relation)
 - Replicate S tuples with value v to same k machines (S is the probe relation)
Parallel Dataflow Implementation

Use relational operators unchanged

Add a special *shuffle* operator

- Handle data routing, buffering, and flow control
- Inserted between consecutive operators in the query plan
- Two components: ShuffleProducer and ShuffleConsumer
- Producer pulls data from operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
- Consumer buffers input data from n producers and makes it available to operator through getNext interface
Conclusion

• Making databases parallel is another way to speed up query processing

• Many algorithms for parallelizing different relational operators

• Next time: column stores