CSE 544

Principles of Database
Management Systems

Fall 2016
Lecture 13 — Parallel DBMSs

References

- Parallel Database Systems: The Future of High Performance
Database Systems. Dave DeWitt and Jim Gray. Com. of the ACM.
1992. Sec. 1 and 2.

- Database management systems. Ramakrishnan and Gehrke.
Third Ed. Chapter 22.

CSE 544 - Fall 2016 2

Two Ways to Scale a DBMS

Scale up

Scale ck

/\
) e

A more
powerful server

More servers

Two Ways to Scale a DBMS

* Obviously this can be used to:
— Execute multiple queries in parallel
— Speed up a single query

 For now: how to speed up a single query

« We will worry about how to scale to multiple queries later

CSE 544 - Fall 2016 4

FYI. Data Analytics Companies

DB analytics companies:

« Greenplum founded in 2003 acquired by EMC in 2010; A
parallel shared-nothing DBMS

« Vertica founded in 2005 and acquired by HP in 2011; A
parallel, column-store shared-nothing DBMS

« DATAIllegro founded in 2003 acquired by Microsoft in 2008; A
parallel, shared-nothing DBMS

« Aster Data Systems founded in 2005 acquired by Teradata in
2011; A parallel, shared-nothing, MapReduce-based data
processing system. SQL on top of MapReduce

* Netezza founded in 2000 and acquired by IBM in 2010. A
parallel, shared-nothing DBMS.

What does this mean? $$$% 5

Parallel v.s. Distributed
Databases

» Distributed database system (later?):

— Data is stored across several sites (geographically speaking),
each site managed by a DBMS capable of running independently

« Parallel database system (today):

— Data is stored at a single site, can be used to improve query
performance through parallel implementation

CSE 544 - Fall 2016 6

Parallel DBMSs

« Goal
— Improve performance by executing multiple operations in parallel

« Key benefit

— Cheaper to scale than relying on a single increasingly more
powerful processor

» Key challenge
— Ensure overhead and contention do not kill performance

CSE 544 - Fall 2016 7

Performance Metrics
for Parallel DBMSs

Speedup

* More processors = higher speed

 Individual queries should run faster

« Should do more transactions per second (TPS)

* Fixed problem size overall, vary # of processors ("strong
scaling”)

CSE 544 - Fall 2016 8

Linear v.s. Non-linear Speedup

A

Speedup

for real...

processors (=P)

CSE 544 - Fall 2016 9

Performance Metrics
for Parallel DBMSs

Scaleup

More processors =» can process more data

Fixed problem size per processor, vary # of processors
("weak scaling”)

Batch scaleup
— Same query on larger input data should take the same time

Transaction scaleup
— N-times as many TPS on N-times larger database
— But each transaction typically remains small

CSE 544 - Fall 2016 10

Linear v.s. Non-linear Scaleup

A

Batch
Scaleup

x 1 x5 x10 x15

I I | | S
Cdl

| |
processors (=P) AND data size

CSE 544 - Fall 2016 11

Buzzwords, buzzwords

* Be careful. Commonly used terms today:
— “scale up” = use an increasingly more powerful server
— “scale out” = use a larger number of servers

CSE 544 - Fall 2016

12

Challenges to

Linear SEeeduE and Scaleug

» Startup cost
— Cost of starting an operation on many processors

* |Interference
— Contention for resources between processors

« Skew

— Slowest processor becomes the bottleneck

CSE 544 - Fall 2016 13

Parallel DBMS Architectures

CSE 544 - Fall 2016

14

Architecture for Parallel DBMS:

Shared Memory
P P P

Interconnection Network

Global Shared Memory

D D D

Aka SMP= symmetric multi processor "°

Architecture for Parallel DBMS:

Shared Disk
M M M
P P P

Interconnection Network

16

Architecture for Parallel DBMS:
Shared Nothing

Interconnection Network

17

A Professional Picture...

Figure 1 - Types of database architecture

Everything I Shared-Disk (e.g. Oracle RAC! l l Shared-Nothing (o,!._cnongum)_‘l
: 'Network ' l I E

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”

CSE 544 - Fall 2016 18

Shared Memory

 Nodes share both RAM and disk
* Dozens to hundreds of processors

Example: SQL Server runs on a single machine
« |everage many threads to get a query to run faster

Characteristics:

« Easy to use and program
* But very expensive to scale

CSE 544 - Fall 2016

19

Shared Disk

 All nodes access the same disks

« Found in the largest "single-box" (non-cluster)
multiprocessors

Oracle dominates this class of systems

Characteristics:

« Also hard to scale past a certain point: existing
deployments typically have fewer than 10 machines

CSE 544 - Fall 2016

20

Shared Nothing

» Cluster of machines on high-speed network
 Called "clusters" or "blade servers”

« Each machine has its own memory and disk: lowest
contention.

NOTE: Because all machines today have many cores and many
disks, then shared-nothing systems typically run many "nodes” on
a single physical machine.

Characteristics:
« Today, this is the most scalable architecture.
« Most difficult to administer and tune.

[We discuss only Shared Nothing in class} 21

So...

* You have a parallel machine. Now what?

 How do you speed up your DBMS given a shared-nothing
architecture?

CSE 544 - Fall 2016 22

Approaches to

Parallel Querx Evaluation

 Inter-query parallelism
— Each query runs on one processor

cid=cid

— Only for running multiple queries (OLTP) Product purchase

* |Inter-operator parallelism
— A query runs on multiple processors

— An operator runs on one processor
— For both OLTP and Decision Support

* Intra-operator parallelism

— An operator runs on multiple processors
— For both OLTP and Decision Support

Product Purchase

[We study only intra-operator parallelism

: most scalable 1

Data Partitioning

CSE 544 - Fall 2016

24

Horizontal Data Partitioning

Relation R split into P chunks R, ..., Rp_4, stored at the P
nodes

Block partitioned
— Each group of k tuples go to a different node

Hash based partitioning on attribute A.
— Tuple t to chunk h(t.A) mod P

Range based partitioning on attribute A:
— Tuple tto chunkiifv_; <tA <y,

[Need to worry about data skew } 25

Uniform Data v.s. Skewed Data

Let R(K,A,B,C); which of the following partition methods may
result in skewed partitions?

Block partition Uniform

Hash-partition
— On the key K

— On the attribute A May be skewed E.g. when all records
have the same value

. of the attribute A, then
Range-partltlon all records end up in the

— On the key K same partition

— On the attribute A Difficult to partition
May be skewed the range of A uniformly.

CSE 544 - Fall 2016 26

. Assuming uniform
Uniform hash function

All You Need to Know About Skew

Hash-partition a m data values (with duplicates!) to p bins

Fact 1 Expected size of any one fixed bin is m/p

Fact 2 Say that data is skewed if some value has degree >

m/p. Then some bin has load > m/p Hiding log p
factors

Fact 3 Conversely, if the database is skew-free
then max size of all bins = O(m/p) w.h.p.

Example from Teradata

A Customer Row is Inserted—l

Hashing AI orithm produces
/1 A Hash ucket
2. A Hash-ID

The Hash Bucket Points
to One AMP

Node 1 Node 2 Node 3 Node 4

AMP = Access Module Processor = unit of parallelism

Parallelizing Operator
Implementations

CSE 544 - Fall 2016

29

Parallel Selection

ComDUte 0A=V(R)’ oro, <A<v2(R)
On a conventional database: cost = B(R)

Q: What is the cost on a parallel database with P
processors ?

« Block partitioned
« Hash partitioned
* Range partitioned

CSE 544 - Fall 2016

30

Parallel Selection

Q: What is the cost on a parallel database with P nodes ?

A: B(R)/ P in all cases (except range) if cost is response
time

However, not all processors are equal (workwise):
» Block: all servers do the same amount of work
» Hash: one server for o,_,(R), all for 0,1.a<,»(R)
 Range: some servers only

CSE 544 - Fall 2016 31

Data Partitioning Revisited

What are the pros and cons ?

* Block based partitioning
— Good load balance but always needs to read all the data

* Hash based partitioning

— Good load balance

— Can avoid reading all the data for equality selections
 Range based partitioning

— Can suffer from skew (i.e., load imbalances)
— Can help reduce skew by creating uneven partitions

CSE 544 - Fall 2016

32

Parallel Group By: ya sum@)(R)

« If Ris partitioned on A, then each node computes the
group-by locally

« Otherwise, hash-partition R(K,A,B,C) on A, then compute
group-by locally:

Reshuffle R
on attribute A

CSE 544 - Fall 2016 33

Parallel Group By: ya sum@)(R)

Step 1: server i partitions chunk R, using a hash function
h(t.A) mod P: Ry, Riq, ..., Rip.y (there are P servers total)

Step 2: server i sends partition R; to server |

Step 3: server j computes Yu gyme) ON

ROJ, R1J, " nay RP'1,J

CSE 544 - Fall 2016 34

Parallel Group By: ya sum@)(R)

Can we do better?
e Sum?
 Count?

* Avg?

 Max?
 Median?

CSE 544 - Fall 2016

35

Parallel Group By: ya sum@)(R)

« Sum(B) = Sum(B,) + Sum(B,) + ... + Sum(B,)
« Count(B) = Count(B,) + Count(B,) + ... + Count(B,)

« Max(B) = Max(Max(B,), Max(B,), ..., Max(B,))

distributive
* Avg(B) = Sum(B) / Count(B)

algebraic
+ Median(B) = ???

holistic

CSE 544 - Fall 2016

36

Parallel Join: R X,_g S

o Step 1
— For all servers in [0,k], server i partitions chunk R, using a hash
function h(t.A) mod P: R, Ry, ..., Rip.

— For all servers in [k+1,P], server j partitions chunk S; using a hash
function h(t.A) mod P: S5, S5, ..., Rjp

o Step 2:
— Server i sends partition R, to server u
— Server j sends partition S;, to server u

« Steps 3: Server u computes the join of R,, with Sju

CSE 544 - Fall 2016 37

Example of Parallel Query Plan

Find all orders from today, along with the items
ordered

SELECT *

FROM Orders o, Lines 1
WHERE o.item = i.item :>

AND o.date today ()

o.item = i.item

date = today()

Order o

ltem i

CSE 544 - Fall 2016 38

Example Parallel Plan

Node 1

hash

h(o.item)

date=today()

scan
Order o

Node 1

Node 2

hash
\ h(o.item)

d

ate=today()

sScan

Order o

Node 2

CSE 544 - Fall 2016

o.item = i.item

< scan > Order o h

~

date = today()

Node 3

==

hash

Cselect>

Scan

h(o.item)

date=today()

Order o

Node 3

39

Example Parallel Plan

Node 1

ha

sh

Scan

h(i.item)

ltem |

Node 1

Node 2

hash

Scan

h(i.item)

ltem i

Node 2

CSE 544 - Fall 2016

~

o.item = i.item

date = today()

- Order o /h

Node 3

ha

sh

Scan

h(i.item)

ltem i

Node 3

40

Example Parallel Plan

o.item = i.item o.item = i.item o.item = i.item
Node 1 Node 2 Node 3

@talns all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSE 544 - Fall 2016 41

Optimization for Small Relations

 When joining R and S
*+ If[R]>>[S]
— Leave Rwhere itis
— Replicate entire S relation across nodes

« Sometimes called a “small join™ or “broadcast join”

CSE 544 - Fall 2016 42

Other Interesting Parallel
Join Implementation

Problem of skew during join computation

Some join partitions get more input tuples than others

 Reason 1: Base data unevenly distributed
— Because used a range-partition function
— Or used hashing but some values are very popular (Skew)

« Reason 2: Selection before join with different selectivities

« Reason 3: Input data got unevenly rehashed (or otherwise
repartitioned before the join)

Some partitions output more tuples than others

43

Some Skew Handling Techniques

1. Use range- instead of hash-partitions
— Ensure that each range gets same number of tuples
— Example: {1,1,1,2,3,4,5,6} > [1,2] and [3,6]

2. Create more partitions than nodes
— And be smart about scheduling the partitions

3. Use subset-replicate (i.e., “skeweddJoin”)
— Given an extremely common value ‘v’

— Distribute R tuples with value v randomly across k nodes (R is
the build relation)

— Replicate S tuples with value v to same k machines (S is the
probe relation)

CSE 544 - Fall 2016 44

Parallel Dataflow Implementation

Use relational operators unchanged

Add a special shuffle operator

Handle data routing, buffering, and flow control
Inserted between consecutive operators in the query plan
Two components: ShuffleProducer and ShuffleConsumer

Producer pulls data from operator and sends to n

consumers
— Producer acts as driver for operators below it in query plan

Consumer buffers input data from n producers and
makes it available to operator through getNext interface

CSE 544 - Fall 2016 45

Conclusion

Making databases parallel is another way to speed up
guery processing

Many algorithms for parallelizing different relational
operators

Next time: column stores

CSE 544 - Fall 2016

46

