
CSE 544
Principles of Database
Management Systems

Fall 2016
Lecture 12 – Parallel Programming Models:

Map Reduce and Spark

Announcements

•  Project Milestone due tomorrow
–  I will meet with individual teams next Monday (watch doodle)
–  If you are late with the milestone, please submit by weekend at

the latest

•  HW3 due this Friday

2

Programming Models for Analytics

•  How real-world users perform data analytics
–  SQL queries
–  Map Reduce programs (today)
–  Spark programs (today)

–  (there are many others as well: Pig, Hive, Pandas, etc)

CSE 544 - Fall 2016 3

CSE 544 - Fall 2016 4

References

•  MapReduce: A major step backwards. DeWitt and Stonebraker,
The Database Column, January 2008.

•  Resilient distributed datasets: a fault-tolerant abstraction for in-

memory cluster computing. Zaharia et al, NSDI 2012.

Map Reduce

•  Google: [Dean 2004]
•  Open source implementation: Hadoop

•  MapReduce = high-level programming model and
implementation for large-scale parallel data processing

•  Core idea:
–  Explicit parallelism

5 CSE 544 - Fall 2016

Map Reduce Motivation

•  Not designed to be a DBMS
•  Designed to simplify task of writing parallel programs

–  A simple programming model that applies to many large-scale computing
problems

•  Hides messy details in MapReduce runtime library:
–  Automatic parallelization
–  Load balancing
–  Network and disk transfer optimizations
–  Handling of machine failures
–  Robustness
–  Improvements to core library benefit all users of library!

CSE 544 - Fall 2016 6
content in part from: Jeff Dean

Data Processing at Massive Scale

•  Want to process petabytes of data and more

•  Massive parallelism:
–  100s, or 1000s, or 10000s servers (think data center)
–  Many hours

•  Failure:
–  If medium-time-between-failure is 1 year
–  Then 10000 servers have one failure / hour

CSE 544 - Fall 2016 7

Data Storage: GFS/HDFS

•  MapReduce job input is a file

•  Common implementation is to store files in a highly
scalable file system such as GFS/HDFS
–  GFS: Google File System (proprietary)
–  HDFS: Hadoop File System (open source)

–  Each data file is split into M blocks (64MB or more)
–  Blocks are stored on random machines & replicated
–  Files are append only

CSE 544 - Fall 2016 8

9

Running your favorite parallel algorithm…

Map

(Shuffle)

Reduce

CSE 544 - Fall 2016

Typical Problems Solved by MR

•  Read a lot of data
•  Map: extract something you care about from each record
•  Shuffle and Sort
•  Reduce: aggregate, summarize, filter, transform
•  Write the results

CSE 544 - Fall 2016 10

Outline stays the same,
map and reduce change to
fit the problem

slide source: Jeff Dean

Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
•  Input: a bag of (inputkey, value)pairs
•  Output: a bag of (outputkey, value)pairs

11 CSE 544 - Fall 2016

Step 1: the MAP Phase

User provides the MAP-function:
•  Input: (input key, value)
•  Output: bag of (intermediate key, value)

 System applies map function in parallel to all (input
key, value) pairs in the input file

12 CSE 544 - Fall 2016

Step 2: the REDUCE Phase

User provides the REDUCE function:
•  Input: (intermediate key, bag of values)
•  Output (original MR paper): bag of output (values)
•  Output (Hadoop): bag of (output key, values)

 System groups all pairs with the same intermediate key, and
passes the bag of values to the REDUCE function

13 CSE 544 - Fall 2016

Famous (Infamous?) Example

•  Counting the number of occurrences of each word in a
large collection of documents

•  Each Document
–  The key = document id (did)
–  The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result));

14 CSE 544 - Fall 2016

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

15 CSE 544 - Fall 2016

Jobs v.s. Tasks

•  A MapReduce Job
–  One single “query,” e.g. count the words in all docs
–  More complex queries may consist of multiple jobs

•  A Map Task, or a Reduce Task
–  A group of instantiations of the map-, or reduce-function, which

are scheduled on a single worker

CSE 544 - Fall 2016 16

Workers

•  A worker is a process that executes one task at a time
•  Typically there is one worker per processor, hence 4 or 8

per node

•  Often talk about “slots”
–  E.g., Each server has 2 map slots and 2 reduce slots

CSE 544 - Fall 2016 17

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

18 CSE 544 - Fall 2016

Parallel MapReduce Details

CSE 544 - Fall 2016 19

Map

(Shuffle)

Reduce

Data	not	
necessarily	local	

Intermediate	data	
goes	to	local		disk	

Output	to	disk,	
replicated	in	cluster	

File	system:	GFS	
or	HDFS	

Task

Task

MapReduce Implementation

•  There is one master node
•  Input file gets partitioned further into M’ splits

–  Each split is a contiguous piece of the input file

•  Master assigns workers (=servers) to the M’ map tasks,
keeps track of their progress

•  Workers write their output to local disk
•  Output of each map task is partitioned into R regions
•  Master assigns workers to the R reduce tasks
•  Reduce workers read regions from the map workers’

local disks

CSE 544 - Fall 2016 20

Example Map Reduce Execution

CSE 544 - Fall 2016 21

0 50 100 150 200 250 300 350
Time (seconds)

Ta
sk

s

Shuffle Sort Exec M
A
P

R
E
D
U
C
E

PageRank Application

Skewed data
(high indegree)

Example: CloudBurst

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.

Map Reduce Sort Shuffle
Slot ID

Time
22 CSE 544 - Fall 2016

Bimodal:
map applied
to 2 datasets

Local	storage	`	

MapReduce Phases

23 CSE 544 - Fall 2016

Interesting Implementation Details

•  Worker failure:
–  Master pings workers periodically
–  If down then reassigns its task to another worker
–  (≠ a parallel DBMS restarts whole query)

•  How many map and reduce tasks:
–  Larger is better for load balancing
–  But more tasks also add overheads
–  (≠ parallel DBMS spreads ops across all nodes)

CSE 544 - Fall 2016 24

MapReduce Granularity Illustration

0
1
2
3
4
5
6
7
8
9

10

R
el

at
iv

e
R

un
tim

e

Astro Seaflow

Coarse Fine Finer Finest Manual SkewReduce
14.1 8.8 4.1 5.7 2.0 1.6
87.2 63.1 77.7 98.7 - 14.1

Hours
Minutes

25 Block = 128MB 16MB 4MB 2MB

Interesting Implementation Details

Backup tasks:
•  Straggler = a machine that takes unusually long time to

complete one of the last tasks. e.g.:
–  Bad disk forces frequent correctable errors (30MB/s à 1MB/s)
–  The cluster scheduler has scheduled other tasks on that machine

•  Stragglers are a main reason for slowdown
•  Solution: pre-emptive backup execution of the last few

remaining in-progress tasks

CSE 544 - Fall 2016 26

Declarative Languages on MR

•  PIG Latin (Yahoo!)
–  New language, like Relational Algebra
–  Open source

•  HiveQL (Facebook)
–  SQL-like language
–  Open source

•  SQL / Tenzing (Google)
–  SQL on MR
–  Proprietary

27 CSE 544 - Fall 2016

Example: Pig system

28

Pig Latin
program

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);
C = FILTER A BY px < 1.0;
D = JOIN C BY sid,
 B BY sid;
STORE g INTO 'output.txt';

Ensemble of
MapReduce jobs

MapReduce State

•  Lots of extensions to address limitations
–  Capabilities to write DAGs of MapReduce jobs
–  Declarative languages
–  Ability to read from structured storage (e.g., indexes)
–  Etc.

•  Most companies use both types of engines
•  Increased integration of both engines

CSE 544 - Fall 2016 29

Parallel DBMS vs MapReduce

•  Parallel DBMS
–  Relational data model and schema
–  Declarative query language: SQL
–  Many pre-defined operators: relational algebra
–  Can easily combine operators into complex queries
–  Query optimization, indexing, and physical tuning
–  Streams data from one operator to the next without blocking
–  Can do more than just run queries: Data management

•  Updates and transactions, constraints, security, etc.

30 CSE 544 - Fall 2016

Parallel DBMS vs MapReduce

•  MapReduce
–  Data model is a file with key-value pairs!
–  No need to “load data” before processing it
–  Easy to write user-defined operators
–  Can easily add nodes to the cluster (no need to even restart)
–  Uses less memory since processes one key-group at a time
–  Intra-query fault-tolerance thanks to results on disk
–  Intermediate results on disk also facilitate scheduling
–  Handles adverse conditions: e.g., stragglers
–  Arguably more scalable… but also needs more nodes!

31 CSE 544 - Fall 2016

Parallel DBMS vs MapReduce

•  From DeWitt and Stonebraker article:
–  Lack of schema
–  No physical tuning

•  Indexes
•  Access methods

–  No novelty
•  map fn list à calls fn on each element in list, and returns a new list
•  fold fn list à passes each element in list to fn, fn computes an

“aggregate” value
•  AKA group by and aggregate

–  Missing features as compared to DBMS
•  Updates and deletes
•  ETL tools

CSE 544 - Fall 2016 32

Parallel DBMS vs MapReduce

•  Many technical similarities between the two systems

•  At the end of the day, it’s all about the users
–  They are the ones who need to deal with these tools

CSE 544 - Fall 2016 33

Spark

•  [Zaharia et al, NSDI 2012]
•  Open source implementation on top of Hadoop

•  Spark = high-level programming model and
implementation for large-scale parallel data processing

•  Core idea:
–  Resilient Distributed Datasets (RDDs) as the basic data model

CSE 544 - Fall 2016 34

Resilient Distributed Datasets

•  Primary abstraction in Spark
–  Immutable once constructed
–  Can be used to construct more RDDs
–  Each RDD traces lineage information of how it was computed
–  Iterate each element in RDD to perform computation

•  Compare this with Map Reduce

CSE 544 - Fall 2016 35

Creating RDDs

•  Load from files (from local file system, HDFS [Hadoop
File System], Amazon S3, etc)

•  Generate from in-memory data structures (e.g., lists)

•  Compute from an existing RDD

CSE 544 - Fall 2016 36

Examples

>>> rdd1 = sc.textFile(“data.txt”)

>>> list = [1, 2, 3, 4, 5]
>>> rdd2 = sc.parallelize(list, 2)

CSE 544 - Fall 2016 37

Divide RDD into 2
partitions

Spark Context
object

Partitions

•  Spark’s unit of parallelism
–  An RDD divided into N partitions means that it can be potentially

be operated in parallel by N different workers
–  Default value if unspecified (based on data size)

CSE 544 - Fall 2016 38

•  Programmer specifies number of partitions for an RDD"

item-1"
item-2"
item-3"
item-4"
item-5"
"

item-6"
item-7"
item-8"
item-9"
item-10"
"

item-11"
item-12"
item-13"
item-14"
item-15"
"

item-16"
item-17"
item-18"
item-19"
item-20"
"

item-21"
item-22"
item-23"
item-24"
item-25"
"

RDD split into 5 partitions"
more partitions = more parallelism"

RDDs"

Worker"
Spark

executor"

Worker"
Spark

executor"
Worker"
Spark

executor"

(Default value used if unspecified)"

Computing on RDDs

•  Spark provides transformations on RDDs
–  Iterates over each element in RDD

•  Examples:
–  rdd.map(fn)

returns a new RDD by passing each element through fn
–  rdd.filter(fn)

returns a new RDD by retaining those that passes fn
–  rdd.distinct()

returns a new RDD with only distinct elements from source

CSE 544 - Fall 2016 39

Computing on RDDs

•  Spark provides actions to get values out of RDDs
–  Each one performs aggregations on a RDD

•  Examples:
–  rdd.reduce(fn)

computes aggregate on each element in rdd using fn
–  rdd.take(n)

returns the first n elements from rdd
–  rdd.count()

returns the number of elements in rdd

CSE 544 - Fall 2016 40

Example 1

list = sc.textFile(“data.txt”, 3)
cnt = list.count()

CSE 544 - Fall 2016 41

item1
item2
item3

item4
item5
item6

item7
item8
item9

list

data.txt
sc.textFile

cnt

count

Example 2
list = sc.textFile(“data.txt”, 3)
filtered = list.filter(lambda a: a % 2 == 0)
cnt = filtered.count()

CSE 544 - Fall 2016 42

item1
item2
item3

item4
item5
item6

item7
item8
item9

list

data.txt
sc.textFile

cnt

count
item1
item2
item3

item4
item5

Item7

list

filter

Lazy Evaluation

•  Not all RDDs are computed immediately
•  Spark instead remembers the set of transformations

applied to the source dataset
–  Computations are applied when results are needed
–  This is known as lazy evaluation

•  Advantages:
–  Optimizes across transformations
–  Recovers from failures
–  Kills slow workers and migrates jobs (recall the data skew

problem)

CSE 544 - Fall 2016 43

Data Frames

•  Data frame: collection of data organized into named
columns

•  Another data model besides RDD

•  Example:
>>> users = sc.table(“users”)
>>> young = users[users.age < 21]
>>> young.groupBy(“gender”).count()

CSE 544 - Fall 2016 44

Spark Summary

•  Programs structured around two data models:
–  RDDs
–  Data frames

•  Emphasize on iteration over elements
–  Compare that with Map Reduce

•  Lazy evaluation enables further optimization

CSE 544 - Fall 2016 45

Discussion

•  We have seen three different programming models for
analytics:
–  Writing queries (SQL)
–  Map Reduce
–  Spark
–  (there are many others, btw)

•  Which one is better? Why?
•  To what extent is each of these application dependent?

CSE 544 - Fall 2016 46

