CSE 544
Principles of Database Management Systems

Fall 2016
Lecture 12 – Parallel Programming Models: Map Reduce and Spark
Announcements

• Project Milestone due tomorrow
 – I will meet with individual teams next Monday (watch doodle)
 – If you are late with the milestone, please submit by weekend at the latest

• HW3 due this Friday
Programming Models for Analytics

• How real-world users perform data analytics
 – SQL queries
 – Map Reduce programs (today)
 – Spark programs (today)
 – (there are many others as well: Pig, Hive, Pandas, etc)
References

Map Reduce

• Google: [Dean 2004]
• Open source implementation: Hadoop

• MapReduce = high-level programming model and implementation for large-scale parallel data processing

• Core idea:
 – Explicit parallelism
Map Reduce Motivation

- Not designed to be a DBMS
- Designed to simplify task of writing parallel programs
 - A simple programming model that applies to many large-scale computing problems
- Hides messy details in MapReduce runtime library:
 - Automatic parallelization
 - Load balancing
 - Network and disk transfer optimizations
 - Handling of machine failures
 - Robustness
 - Improvements to core library benefit all users of library!
Data Processing at Massive Scale

• Want to process petabytes of data and more

• Massive parallelism:
 – 100s, or 1000s, or 10000s servers (think data center)
 – Many hours

• Failure:
 – If medium-time-between-failure is 1 year
 – Then 10000 servers have one failure / hour
Data Storage: GFS/HDFS

- MapReduce job input is a file

- Common implementation is to store files in a highly scalable file system such as GFS/HDFS
 - GFS: Google File System (proprietary)
 - HDFS: Hadoop File System (open source)

 - Each data file is split into M blocks (64MB or more)
 - Blocks are stored on random machines & replicated
 - Files are append only
Running your favorite parallel algorithm…

Map

(Shuffle)

Reduce
Typical Problems Solved by MR

- Read a lot of data
- **Map**: extract something you care about from each record
- Shuffle and Sort
- **Reduce**: aggregate, summarize, filter, transform
- Write the results

Outline stays the same, map and reduce change to fit the problem
Data Model

Files!

A file = a bag of \((\text{key}, \text{value})\) pairs

A MapReduce program:
• Input: a bag of \((\text{inputkey}, \text{value})\) pairs
• Output: a bag of \((\text{outputkey}, \text{value})\) pairs
Step 1: the MAP Phase

User provides the MAP-function:

- Input: \((\text{input key, value})\)
- Output: \(\text{bag of (intermediate key, value)}\)

System applies map function in parallel to all \((\text{input key, value})\) pairs in the input file.
Step 2: the REDUCE Phase

User provides the REDUCE function:

- Input: \((\text{intermediate key}, \text{bag of values})\)
- Output (original MR paper): \(\text{bag of output} \ (\text{values})\)
- Output (Hadoop): \(\text{bag of} \ (\text{output key, values})\)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function
Famous (Infamous?) Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The **key** = document id (did)
 - The **value** = set of words (word)

```java
map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
    EmitIntermediate(w, "1");
```

```java
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
    result += parseInt(v);
Emit(AsString(result));
```
(did1,v1) (w1,1) (w2,1) (w3,1) ...
 (did2,v2) (w1,1) (w2,1) ...
 (did3,v3) ...
 ...

Shuffle

(w1, (1,1,1,...,1))
(w2, (1,1,...))
(w3,(1...))
...
...
...
...
...
...

(w1,25)
(w2,77)
(w3,12)
...
...
...
...
...
Jobs v.s. Tasks

• A MapReduce Job
 – One single “query,” e.g. count the words in all docs
 – More complex queries may consist of multiple jobs

• A Map Task, or a Reduce Task
 – A group of instantiations of the map-, or reduce-function, which
 are scheduled on a single worker
Workers

- A worker is a process that executes one task at a time
- Typically there is one worker per processor, hence 4 or 8 per node

- Often talk about “slots”
 - E.g., Each server has 2 map slots and 2 reduce slots
MAP Tasks

REDUCE Tasks

Shuffle
Parallel MapReduce Details

Reduce
(Shuffle)
Map

Task

Data not necessarily local

Intermediate data goes to local disk

Output to disk, replicated in cluster

File system: GFS or HDFS

CSE 544 - Fall 2016
MapReduce Implementation

• There is one master node
• Input file gets partitioned further into M' splits
 – Each split is a contiguous piece of the input file
• Master assigns workers (=servers) to the M' map tasks, keeps track of their progress
• Workers write their output to local disk
• Output of each map task is partitioned into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map workers’ local disks
Example Map Reduce Execution

PageRank Application

Skewed data (high indegree)
Example: CloudBurst

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.
MapReduce Phases
Interesting Implementation Details

• Worker failure:
 – Master pings workers periodically
 – If down then reassigns its task to another worker
 – (≠ a parallel DBMS restarts whole query)

• How many map and reduce tasks:
 – Larger is better for load balancing
 – But more tasks also add overheads
 – (≠ parallel DBMS spreads ops across all nodes)
MapReduce Granularity Illustration

<table>
<thead>
<tr>
<th>Block Size</th>
<th>Coarse</th>
<th>Fine</th>
<th>Finer</th>
<th>Finest</th>
<th>Manual</th>
<th>SkewReduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>128MB</td>
<td>14.1</td>
<td>8.8</td>
<td>4.1</td>
<td>5.7</td>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td>16MB</td>
<td>87.2</td>
<td>63.1</td>
<td>77.7</td>
<td>98.7</td>
<td>-</td>
<td>14.1</td>
</tr>
<tr>
<td>4MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Block = 128MB

Hours

Minutes

Relative Runtime

Astro

Seaflow
Interesting Implementation Details

Backup tasks:

- **Straggler** = a machine that takes unusually long time to complete one of the last tasks. e.g.:
 - Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
- Solution: *pre-emptive backup execution of the last few remaining in-progress tasks*
Declarative Languages on MR

- **PIG Latin (Yahoo!)**
 - New language, like Relational Algebra
 - Open source
- **HiveQL (Facebook)**
 - SQL-like language
 - Open source
- **SQL / Tenzing (Google)**
 - SQL on MR
 - Proprietary
Example: Pig system

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);
C = FILTER A BY px < 1.0;
D = JOIN C BY sid,
 B BY sid;
STORE g INTO 'output.txt';
MapReduce State

• Lots of extensions to address limitations
 – Capabilities to write DAGs of MapReduce jobs
 – Declarative languages
 – Ability to read from structured storage (e.g., indexes)
 – Etc.

• Most companies use both types of engines
• Increased integration of both engines
Parallel DBMS vs MapReduce

• Parallel DBMS
 – Relational data model and schema
 – Declarative query language: SQL
 – Many pre-defined operators: relational algebra
 – Can easily combine operators into complex queries
 – Query optimization, indexing, and physical tuning
 – Streams data from one operator to the next without blocking
 – Can do more than just run queries: Data management
 • Updates and transactions, constraints, security, etc.
Parallel DBMS vs MapReduce

- MapReduce
 - Data model is a file with key-value pairs!
 - No need to “load data” before processing it
 - Easy to write user-defined operators
 - Can easily add nodes to the cluster (no need to even restart)
 - Uses less memory since processes one key-group at a time
 - Intra-query fault-tolerance thanks to results on disk
 - Intermediate results on disk also facilitate scheduling
 - Handles adverse conditions: e.g., stragglers
 - Arguably more scalable… but also needs more nodes!
Parallel DBMS vs MapReduce

• From DeWitt and Stonebraker article:
 – Lack of schema
 – No physical tuning
 • Indexes
 • Access methods
 – No novelty
 • map fn list \rightarrow calls fn on each element in list, and returns a new list
 • fold fn list \rightarrow passes each element in list to fn, fn computes an “aggregate” value
 • AKA group by and aggregate
 – Missing features as compared to DBMS
 • Updates and deletes
 • ETL tools
Parallel DBMS vs MapReduce

- Many technical similarities between the two systems
- At the end of the day, it’s all about the users
 - They are the ones who need to deal with these tools

January 17, 2008 7:37 PM
Joe Hellerstein said:

As a wise philosopher once said, *Be a lover, not a fighter!*
Spark

• [Zaharia et al, NSDI 2012]
• Open source implementation on top of Hadoop

• Spark = high-level programming model and implementation for large-scale parallel data processing

• Core idea:
 – Resilient Distributed Datasets (RDDs) as the basic data model
Resilient Distributed Datasets

• Primary abstraction in Spark
 – Immutable once constructed
 – Can be used to construct more RDDs
 – Each RDD traces lineage information of how it was computed
 – Iterate each element in RDD to perform computation
 • Compare this with Map Reduce
Creating RDDs

- Load from files (from local file system, HDFS [Hadoop File System], Amazon S3, etc)
- Generate from in-memory data structures (e.g., lists)
- Compute from an existing RDD
Examples

```python
>>> rdd1 = sc.textFile("data.txt")

>>> list = [1, 2, 3, 4, 5]

>>> rdd2 = sc.parallelize(list, 2)
```
Partitions

- Spark’s unit of parallelism
 - An RDD divided into N partitions means that it can be potentially be operated in parallel by N different workers
 - Default value if unspecified (based on data size)

*RDD split into 5 partitions

```
item-1  item-6  item-11  item-16  item-21
item-2  item-7  item-12  item-17  item-22
item-3  item-8  item-13  item-18  item-23
item-4  item-9  item-14  item-19  item-24
item-5  item-10 item-15  item-20 item-25
```

more partitions = more parallelism
Computing on RDDs

• Spark provides transformations on RDDs
 – Iterates over each element in RDD

• Examples:
 – `rdd.map(fn)`
 returns a new RDD by passing each element through `fn`
 – `rdd.filter(fn)`
 returns a new RDD by retaining those that passes `fn`
 – `rdd.distinct()`
 returns a new RDD with only distinct elements from source
Computing on RDDs

• Spark provides actions to get values out of RDDs
 – Each one performs aggregations on a RDD

• Examples:
 – rdd.reduce(fn)
 computes aggregate on each element in rdd using fn
 – rdd.take(n)
 returns the first n elements from rdd
 – rdd.count()
 returns the number of elements in rdd
Example 1

list = sc.textFile("data.txt", 3)
cnt = list.count()
Example 2

```
list = sc.textFile("data.txt", 3)
filtered = list.filter(lambda a: a % 2 == 0)
cnt = filtered.count()
```
Lazy Evaluation

• Not all RDDs are computed immediately
• Spark instead remembers the set of transformations applied to the source dataset
 – Computations are applied when results are needed
 – This is known as lazy evaluation

• Advantages:
 – Optimizes across transformations
 – Recovers from failures
 – Kills slow workers and migrates jobs (recall the data skew problem)
Data Frames

• Data frame: collection of data organized into named columns
• Another data model besides RDD

• Example:
 >>> users = sc.table("users")
 >>> young = users[users.age < 21]
 >>> young.groupBy("gender").count()
Spark Summary

• Programs structured around two data models:
 – RDDs
 – Data frames

• Emphasize on iteration over elements
 – Compare that with Map Reduce

• Lazy evaluation enables further optimization
Discussion

• We have seen three different programming models for analytics:
 – Writing queries (SQL)
 – Map Reduce
 – Spark
 – (there are many others, btw)

• Which one is better? Why?
• To what extent is each of these application dependent?