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Announcements 

•  Project Milestone due tomorrow 
–  I will meet with individual teams next Monday (watch doodle) 
–  If you are late with the milestone, please submit by weekend at 

the latest 

•  HW3 due this Friday 
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Programming Models for Analytics 

•  How real-world users perform data analytics 
–  SQL queries 
–  Map Reduce programs (today) 
–  Spark programs (today) 

–  (there are many others as well: Pig, Hive, Pandas, etc) 
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Map Reduce 

•  Google: [Dean 2004] 
•  Open source implementation: Hadoop 

•  MapReduce = high-level programming model and 
implementation for large-scale parallel data processing 

•  Core idea: 
–  Explicit parallelism  
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Map Reduce Motivation 

•  Not designed to be a DBMS 
•  Designed to simplify task of writing parallel programs 

–  A simple programming model that applies to many large-scale computing 
problems 

•  Hides messy details in MapReduce runtime library: 
–  Automatic parallelization 
–  Load balancing 
–  Network and disk transfer optimizations 
–  Handling of machine failures 
–  Robustness 
–  Improvements to core library benefit all users of library! 
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Data Processing at Massive Scale 

•  Want to process petabytes of data and more 

•  Massive parallelism:  
–  100s, or 1000s, or 10000s servers (think data center) 
–  Many hours 

•  Failure: 
–  If medium-time-between-failure is 1 year 
–  Then 10000 servers have one failure / hour 
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Data Storage: GFS/HDFS 

•  MapReduce job input is a file 

•  Common implementation is to store files in a highly 
scalable file system such as GFS/HDFS 
–  GFS: Google File System (proprietary) 
–  HDFS: Hadoop File System (open source)  

–  Each data file is split into M blocks (64MB or more) 
–  Blocks are stored on random machines & replicated 
–  Files are append only 
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Running your favorite parallel algorithm… 

Map 

(Shuffle) 

Reduce 
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Typical Problems Solved by MR 

•  Read a lot of data 
•  Map: extract something you care about from each record 
•  Shuffle and Sort 
•  Reduce: aggregate, summarize, filter, transform 
•  Write the results 
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Outline stays the same, 
map and reduce change to 
fit the problem 

slide source: Jeff Dean 



Data Model 

Files ! 

A file = a bag of (key, value) pairs 

A MapReduce program: 
•  Input: a bag of (inputkey, value)pairs 
•  Output: a bag of (outputkey, value)pairs 
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Step 1: the MAP Phase 

User provides the MAP-function: 
•  Input: (input key, value) 
•  Output:  bag of (intermediate key, value) 

   System applies map function in parallel to all (input 
key, value) pairs in the input file 
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Step 2: the REDUCE Phase 

User provides the REDUCE function: 
•  Input: (intermediate key, bag of values) 
•  Output (original MR paper): bag of output (values) 
•  Output (Hadoop): bag of (output key, values) 

    System groups all pairs with the same intermediate key, and 
passes the bag of values to the REDUCE function 
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Famous (Infamous?) Example 

•  Counting the number of occurrences of each word in a 
large collection of documents 

•  Each Document 
–  The key = document id (did) 
–  The value = set of words (word) 

map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 

 EmitIntermediate(w, “1”); 

reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 

 result += ParseInt(v); 
Emit(AsString(result)); 
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MAP REDUCE 

(w1,1) 

(w2,1) 

(w3,1) 

… 

(w1,1) 

(w2,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(w1, (1,1,1,…,1)) 

(w2, (1,1,…)) 

(w3,(1…)) 

… 

… 

… 

… 

(w1, 25) 

(w2, 77) 

(w3, 12) 

… 

… 

… 

… 

Shuffle 
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Jobs v.s. Tasks 

•  A MapReduce Job 
–  One single “query,” e.g. count the words in all docs 
–  More complex queries may consist of multiple jobs 

•  A Map Task, or a Reduce Task 
–  A group of instantiations of the map-, or reduce-function, which 

are scheduled on a single worker 
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Workers 

•  A worker is a process that executes one task at a time 
•  Typically there is one worker per processor, hence 4 or 8 

per node 

•  Often talk about “slots” 
–  E.g., Each server has 2 map slots and 2 reduce slots 
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MAP Tasks REDUCE Tasks 

(w1,1) 

(w2,1) 

(w3,1) 

… 

(w1,1) 

(w2,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(w1, (1,1,1,…,1)) 

(w2, (1,1,…)) 

(w3,(1…)) 

… 

… 

… 

… 

(w1, 25) 

(w2, 77) 

(w3, 12) 

… 

… 

… 

… 

Shuffle 
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Parallel MapReduce Details 
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Map 

(Shuffle) 

Reduce 

Data	not	
necessarily	local	

Intermediate	data	
goes	to	local		disk	

Output	to	disk,	
replicated	in	cluster	

File	system:	GFS	
or	HDFS	

Task 

Task 



MapReduce Implementation 

•  There is one master node 
•  Input file gets partitioned further into M’ splits 

–  Each split is a contiguous piece of the input file 

•  Master assigns workers (=servers) to the M’ map tasks, 
keeps track of their progress 

•  Workers write their output to local disk 
•  Output of each map task is partitioned into R regions 
•  Master assigns workers to the R reduce tasks 
•  Reduce workers read regions from the map workers’ 

local disks  
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Example Map Reduce Execution 
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Example: CloudBurst 

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers. 

Map Reduce Sort Shuffle 
Slot ID 

Time 
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Bimodal: 
map applied 
to 2 datasets 



Local	storage	`	

MapReduce Phases 

23 CSE 544 - Fall 2016 



Interesting Implementation Details 

•  Worker failure: 
–  Master pings workers periodically 
–  If down then reassigns its task to another worker 
–  (≠ a parallel DBMS restarts whole query) 

•  How many map and reduce tasks: 
–  Larger is better for load balancing 
–  But more tasks also add overheads 
–  (≠ parallel DBMS spreads ops across all nodes) 
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MapReduce Granularity Illustration 
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Interesting Implementation Details 

Backup tasks: 
•   Straggler = a machine that takes unusually long time to 

complete one of the last tasks. e.g.: 
–  Bad disk forces frequent correctable errors (30MB/s à 1MB/s) 
–  The cluster scheduler has scheduled other tasks on that machine 

•  Stragglers are a main reason for slowdown 
•  Solution: pre-emptive backup execution of the last few 

remaining in-progress tasks 

CSE 544 - Fall 2016 26 



Declarative Languages on MR 

•  PIG Latin (Yahoo!) 
–  New language, like Relational Algebra 
–  Open source 

•  HiveQL (Facebook) 
–  SQL-like language 
–  Open source 

•  SQL / Tenzing (Google) 
–  SQL on MR 
–  Proprietary 
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Example: Pig system 
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Pig Latin  
program 

A = LOAD 'file1' AS (sid,pid,mass,px:double);  
B = LOAD 'file2' AS (sid,pid,mass,px:double);  
C = FILTER A BY px < 1.0; 
D = JOIN C BY sid,  
         B BY sid; 
STORE g INTO 'output.txt'; 

Ensemble of 
MapReduce jobs 



MapReduce State 

•  Lots of extensions to address limitations 
–  Capabilities to write DAGs of MapReduce jobs 
–  Declarative languages 
–  Ability to read from structured storage (e.g., indexes) 
–  Etc. 

•  Most companies use both types of engines 
•  Increased integration of both engines 
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Parallel DBMS vs MapReduce 

•  Parallel DBMS 
–  Relational data model and schema 
–  Declarative query language: SQL 
–  Many pre-defined operators: relational algebra 
–  Can easily combine operators into complex queries 
–  Query optimization, indexing, and physical tuning 
–  Streams data from one operator to the next without blocking 
–  Can do more than just run queries: Data management 

•  Updates and transactions, constraints, security, etc. 
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Parallel DBMS vs MapReduce 

•  MapReduce 
–  Data model is a file with key-value pairs! 
–  No need to “load data” before processing it 
–  Easy to write user-defined operators 
–  Can easily add nodes to the cluster (no need to even restart) 
–  Uses less memory since processes one key-group at a time 
–  Intra-query fault-tolerance thanks to results on disk 
–  Intermediate results on disk also facilitate scheduling 
–  Handles adverse conditions: e.g., stragglers 
–  Arguably more scalable… but also needs more nodes! 
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Parallel DBMS vs MapReduce 

•  From DeWitt and Stonebraker article: 
–  Lack of schema 
–  No physical tuning  

•  Indexes  
•  Access methods 

–  No novelty 
•  map fn list à calls fn on each element in list, and returns a new list 
•  fold fn list à passes each element in list to fn, fn computes an 

“aggregate” value 
•  AKA group by and aggregate 

–  Missing features as compared to DBMS 
•  Updates and deletes 
•  ETL tools 
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Parallel DBMS vs MapReduce 

•  Many technical similarities between the two systems 

•  At the end of the day, it’s all about the users 
–  They are the ones who need to deal with these tools 
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Spark 

•  [Zaharia et al, NSDI 2012] 
•  Open source implementation on top of Hadoop 

•  Spark = high-level programming model and 
implementation for large-scale parallel data processing 

•  Core idea: 
–  Resilient Distributed Datasets (RDDs) as the basic data model 
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Resilient Distributed Datasets 

•  Primary abstraction in Spark 
–  Immutable once constructed 
–  Can be used to construct more RDDs 
–  Each RDD traces lineage information of how it was computed 
–  Iterate each element in RDD to perform computation 

•  Compare this with Map Reduce 
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Creating RDDs 

•  Load from files (from local file system, HDFS [Hadoop 
File System], Amazon S3, etc) 

•  Generate from in-memory data structures (e.g., lists) 

•  Compute from an existing RDD 
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Examples 

>>> rdd1 = sc.textFile(“data.txt”) 
 
>>> list = [1, 2, 3, 4, 5] 
>>> rdd2 = sc.parallelize(list, 2) 
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Divide RDD into 2 
partitions 

Spark Context 
object 



Partitions 

•  Spark’s unit of parallelism 
–  An RDD divided into N partitions means that it can be potentially 

be operated in parallel by N different workers 
–  Default value if unspecified (based on data size) 
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•  Programmer specifies number of partitions for an RDD"
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"
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item-24"
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"

RDD split into 5 partitions"
more partitions = more parallelism"

RDDs"

Worker"
Spark 

executor"

Worker"
Spark 

executor"
Worker"
Spark 

executor"

(Default value used if unspecified)"



Computing on RDDs 

•  Spark provides transformations on RDDs 
–  Iterates over each element in RDD 

•  Examples: 
–  rdd.map(fn)  

returns a new RDD by passing each element through fn 
–  rdd.filter(fn)  

returns a new RDD by retaining those that passes fn 
–  rdd.distinct() 

returns a new RDD with only distinct elements from source 
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Computing on RDDs 

•  Spark provides actions to get values out of RDDs 
–  Each one performs aggregations on a RDD 

•  Examples: 
–  rdd.reduce(fn) 

computes aggregate on each element in rdd using fn 
–  rdd.take(n) 

returns the first n elements from rdd 
–  rdd.count() 

returns the number of elements in rdd 
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Example 1 

list = sc.textFile(“data.txt”, 3) 
cnt = list.count() 
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item4 
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item8 
item9 

list 

data.txt 
sc.textFile 

cnt 

count 



Example 2 
list = sc.textFile(“data.txt”, 3) 
filtered = list.filter(lambda a: a % 2 == 0) 
cnt = filtered.count() 
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Lazy Evaluation 

•  Not all RDDs are computed immediately 
•  Spark instead remembers the set of transformations 

applied to the source dataset 
–  Computations are applied when results are needed 
–  This is known as lazy evaluation 

•  Advantages: 
–  Optimizes across transformations 
–  Recovers from failures 
–  Kills slow workers and migrates jobs (recall the data skew 

problem) 
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Data Frames 

•  Data frame: collection of data organized into named 
columns 

•  Another data model besides RDD 

•  Example: 
>>> users = sc.table(“users”) 
>>> young = users[users.age < 21] 
>>> young.groupBy(“gender”).count() 
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Spark Summary 

•  Programs structured around two data models:  
–  RDDs  
–  Data frames 

•  Emphasize on iteration over elements 
–  Compare that with Map Reduce 

•  Lazy evaluation enables further optimization 

CSE 544 - Fall 2016 45 



Discussion 

•  We have seen three different programming models for 
analytics: 
–  Writing queries (SQL) 
–  Map Reduce 
–  Spark 
–  (there are many others, btw) 

•  Which one is better? Why? 
•  To what extent is each of these application dependent? 
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