CSE 544 Principles of Database Management Systems

Fall 2016 Lecture 12 – Parallel Programming Models: Map Reduce and Spark

Announcements

- Project Milestone due tomorrow
 - I will meet with individual teams next Monday (watch doodle)
 - If you are late with the milestone, please submit by weekend at the latest
- HW3 due this Friday

Programming Models for Analytics

- How real-world users perform data analytics
 - SQL queries
 - Map Reduce programs (today)
 - Spark programs (today)
 - (there are many others as well: Pig, Hive, Pandas, etc)

References

• MapReduce: A major step backwards. DeWitt and Stonebraker, The Database Column, January 2008.

• Resilient distributed datasets: a fault-tolerant abstraction for inmemory cluster computing. Zaharia et al, NSDI 2012.

Map Reduce

- Google: [Dean 2004]
- Open source implementation: Hadoop
- MapReduce = high-level programming model and implementation for large-scale parallel data processing
- Core idea:
 - Explicit parallelism

Map Reduce Motivation

- Not designed to be a DBMS
- Designed to simplify task of writing parallel programs
 - A simple programming model that applies to many large-scale computing problems
- Hides messy details in MapReduce runtime library:
 - Automatic parallelization
 - Load balancing
 - Network and disk transfer optimizations
 - Handling of machine failures
 - Robustness
 - Improvements to core library benefit all users of library!

6

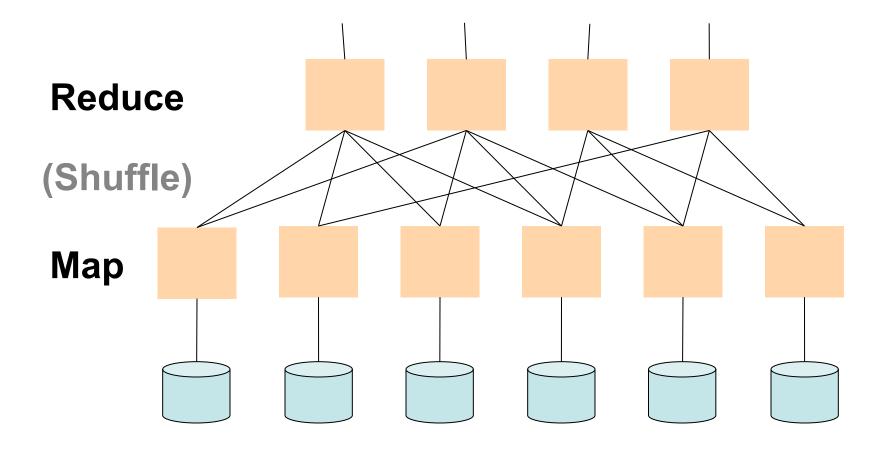
Data Processing at Massive Scale

- Want to process petabytes of data and more
- Massive parallelism:
 - 100s, or 1000s, or 10000s servers (think data center)
 - Many hours
- Failure:
 - If medium-time-between-failure is 1 year
 - Then 10000 servers have one failure / hour

Data Storage: GFS/HDFS

- MapReduce job input is a file
- Common implementation is to store files in a highly scalable file system such as GFS/HDFS
 - GFS: Google File System (proprietary)
 - HDFS: Hadoop File System (open source)
 - Each data file is split into M blocks (64MB or more)
 - Blocks are stored on random machines & replicated
 - Files are append only

Running your favorite parallel algorithm...



Typical Problems Solved by MR

- Read a lot of data
- Map: extract something you care about from each record
- Shuffle and Sort
- Reduce: aggregate, summarize, filter, transform
- Write the results

Outline stays the same, map and reduce change to fit the problem

Data Model

Files !

```
A file = a bag of (key, value) pairs
```

A MapReduce program:

- Input: a bag of (inputkey, value) pairs
- Output: a bag of (outputkey, value) pairs

Step 1: the MAP Phase

User provides the MAP-function:

- Input: (input key, value)
- Output: **bag** of (intermediate key, value)

System applies map function in parallel to all (input key, value) pairs in the input file

Step 2: the REDUCE Phase

User provides the **REDUCE** function:

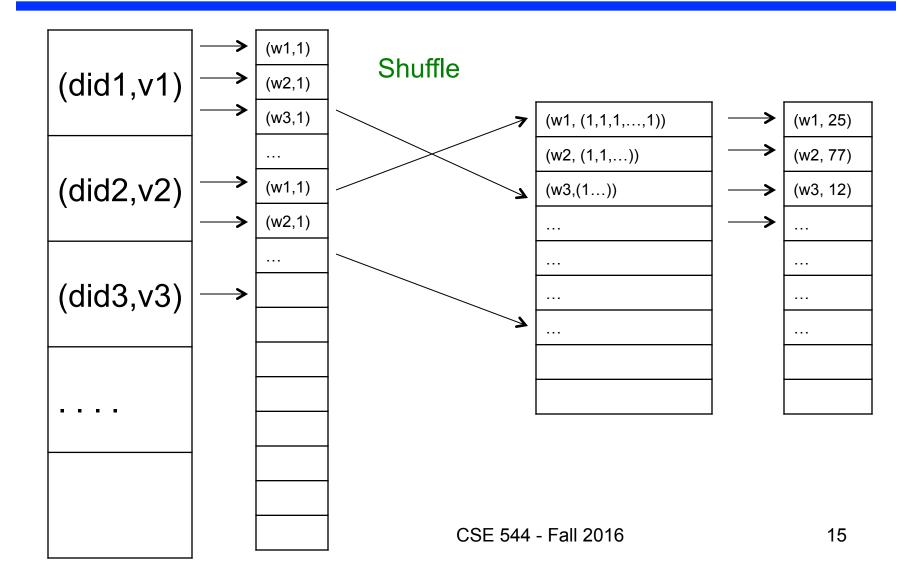
- Input: (intermediate key, bag of values)
- Output (original MR paper): bag of output (values)
- Output (Hadoop): bag of (output key, values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Famous (Infamous?) Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The key = document id (did)
 - The value = set of words (word)

```
reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
    result += ParseInt(v);
Emit(AsString(result));
```

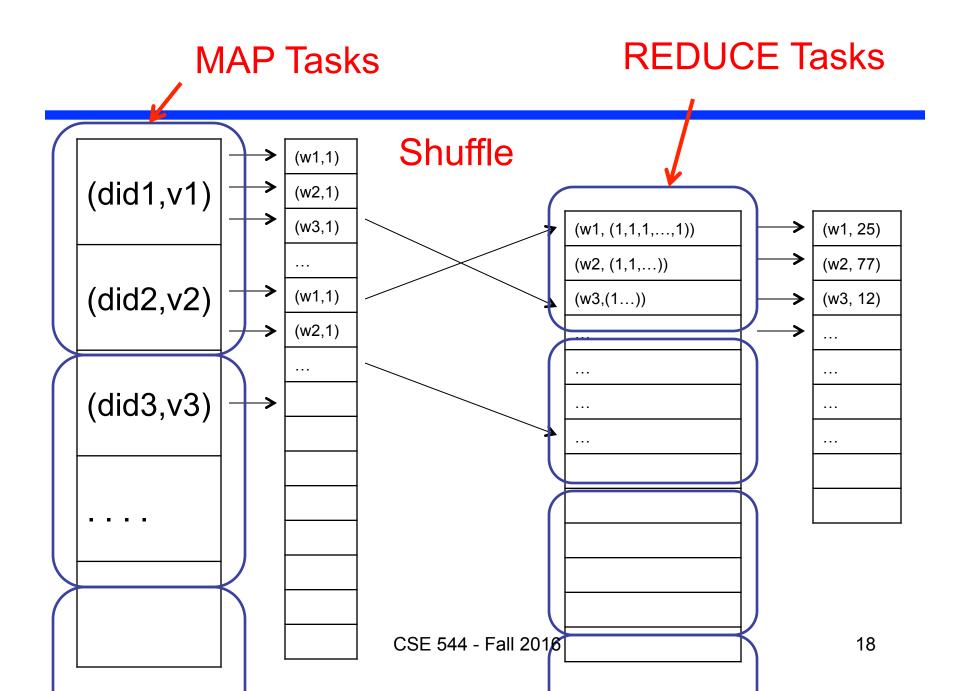
Jobs v.s. Tasks

• A MapReduce Job

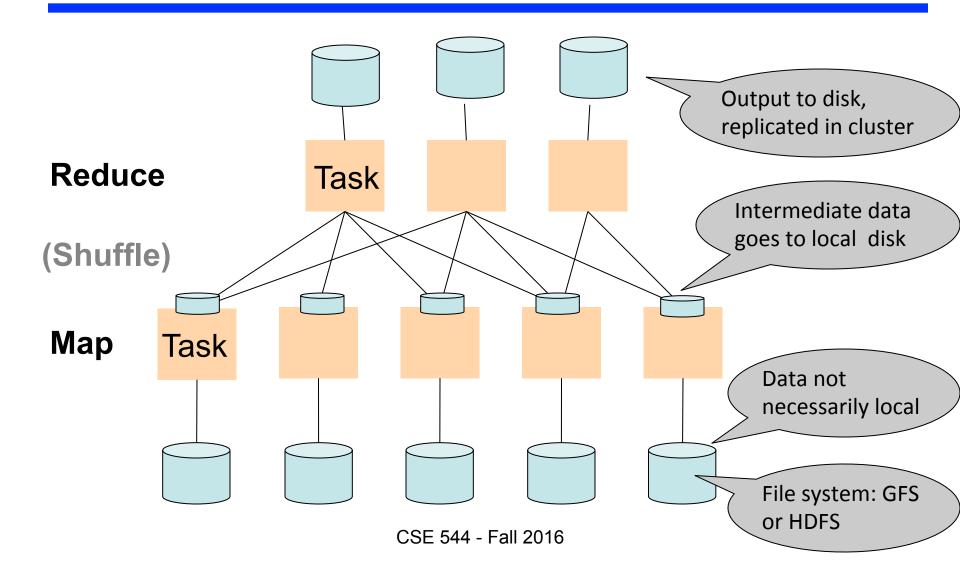
- One single "query," e.g. count the words in all docs
- More complex queries may consist of multiple jobs
- A Map Task, or a Reduce Task
 - A group of instantiations of the map-, or reduce-function, which are scheduled on a single worker

Workers

- A worker is a process that executes one task at a time
- Typically there is one worker per processor, hence 4 or 8 per node
- Often talk about "slots"
 - E.g., Each server has 2 map slots and 2 reduce slots



Parallel MapReduce Details

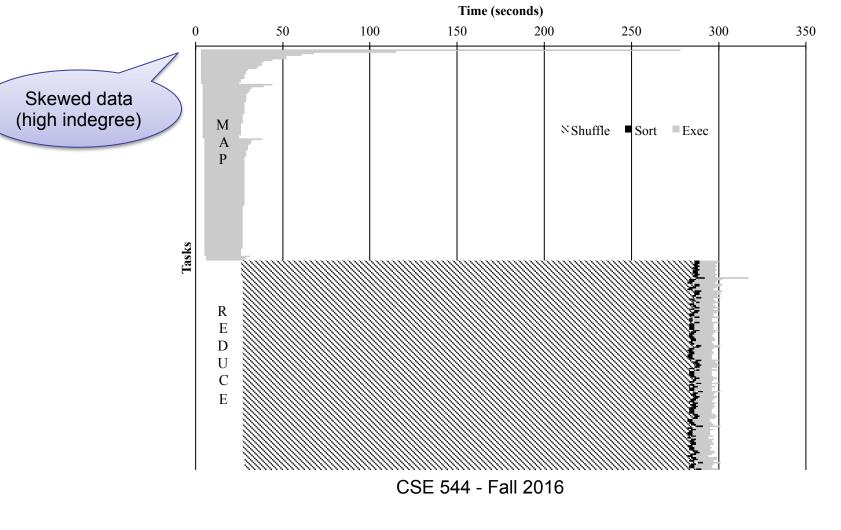


MapReduce Implementation

- There is one master node
- Input file gets partitioned further into *M'* splits
 - Each split is a contiguous piece of the input file
- Master assigns workers (=servers) to the M' map tasks, keeps track of their progress
- Workers write their output to local disk
- Output of each map task is partitioned into *R regions*
- Master assigns workers to the *R reduce tasks*
- Reduce workers read regions from the map workers' local disks

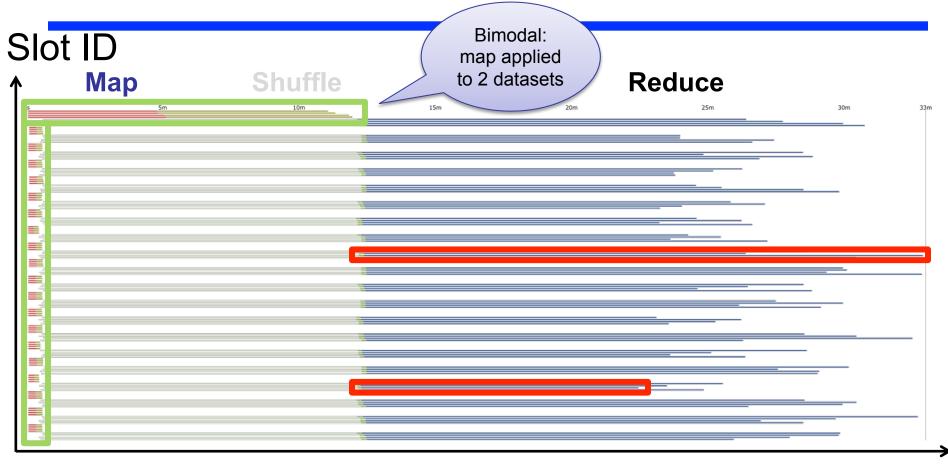
Example Map Reduce Execution

PageRank Application



21

Example: CloudBurst

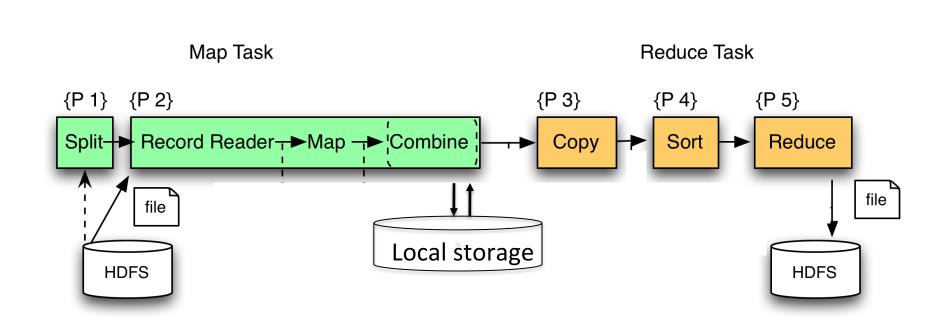


CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.

CSE 544 - Fall 2016

Time

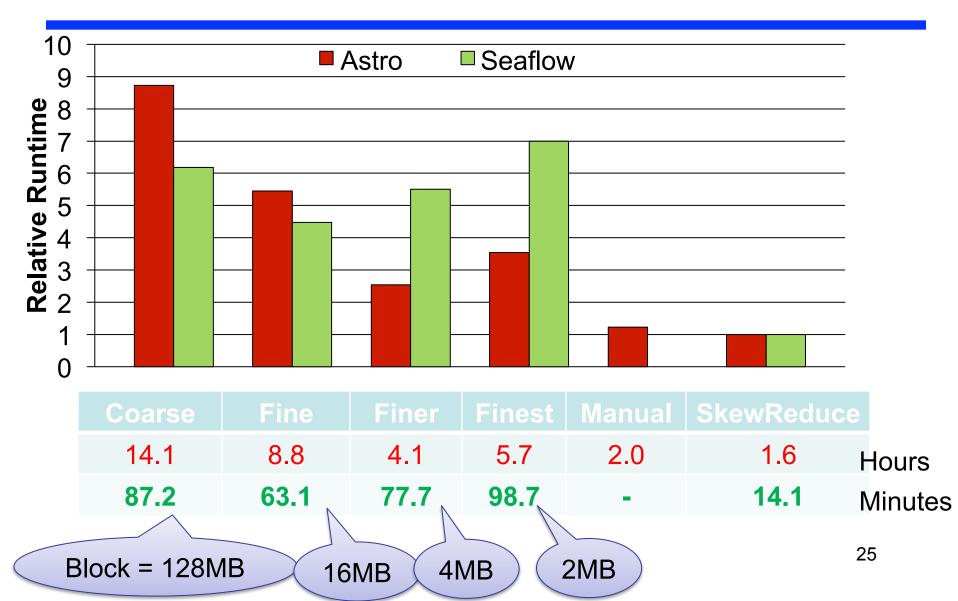
MapReduce Phases



Interesting Implementation Details

- Worker failure:
 - Master pings workers periodically
 - If down then reassigns its task to another worker
 - (\neq a parallel DBMS restarts whole query)
- How many map and reduce tasks:
 - Larger is better for load balancing
 - But more tasks also add overheads
 - (≠ parallel DBMS spreads ops across all nodes)

MapReduce Granularity Illustration



Interesting Implementation Details

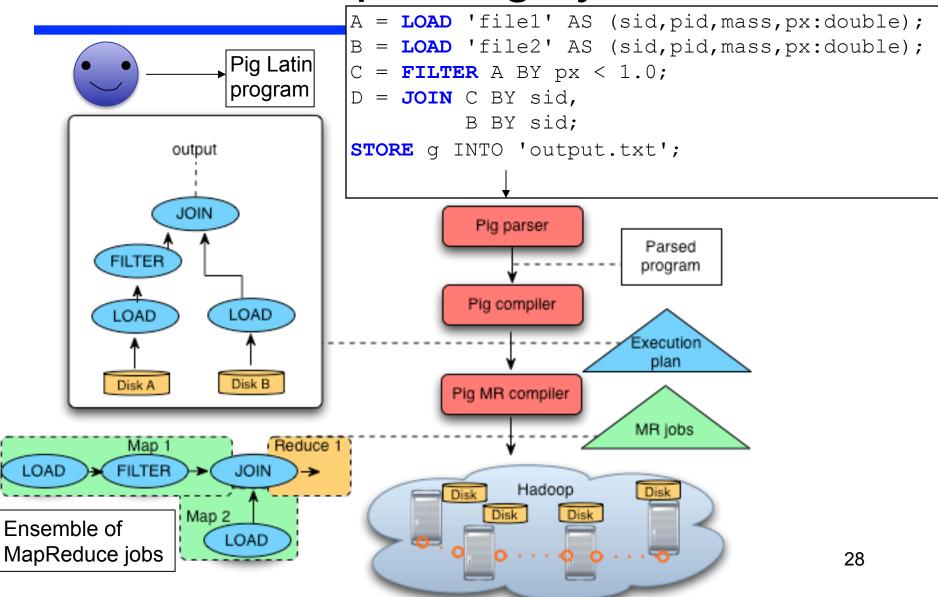
Backup tasks:

- Straggler = a machine that takes unusually long time to complete one of the last tasks. e.g.:
 - Bad disk forces frequent correctable errors (30MB/s \rightarrow 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
- Solution: pre-emptive backup execution of the last few remaining in-progress tasks

Declarative Languages on MR

- PIG Latin (Yahoo!)
 - New language, like Relational Algebra
 - Open source
- HiveQL (Facebook)
 - SQL-like language
 - Open source
- SQL / Tenzing (Google)
 - SQL on MR
 - Proprietary

Example: Pig system



MapReduce State

- Lots of extensions to address limitations
 - Capabilities to write DAGs of MapReduce jobs
 - Declarative languages
 - Ability to read from structured storage (e.g., indexes)
 - Etc.
- Most companies use both types of engines
- Increased integration of both engines

Parallel DBMS

- Relational data model and schema
- Declarative query language: SQL
- Many pre-defined operators: relational algebra
- Can easily combine operators into complex queries
- Query optimization, indexing, and physical tuning
- Streams data from one operator to the next without blocking
- Can do more than just run queries: Data management
 - Updates and transactions, constraints, security, etc.

MapReduce

- Data model is a file with key-value pairs!
- No need to "load data" before processing it
- Easy to write user-defined operators
- Can easily add nodes to the cluster (no need to even restart)
- Uses less memory since processes one key-group at a time
- Intra-query fault-tolerance thanks to results on disk
- Intermediate results on disk also facilitate scheduling
- Handles adverse conditions: e.g., stragglers
- Arguably more scalable... but also needs more nodes!

- From DeWitt and Stonebraker article:
 - Lack of schema
 - No physical tuning
 - Indexes
 - Access methods
 - No novelty
 - map fn list \rightarrow calls fn on each element in list, and returns a new list
 - fold fn list → passes each element in list to fn, fn computes an "aggregate" value
 - AKA group by and aggregate
 - Missing features as compared to DBMS
 - Updates and deletes
 - ETL tools

- Many technical similarities between the two systems
- At the end of the day, it's all about the users
 - They are the ones who need to deal with these tools

January 17, 2008 7:37 PM Joe Hellerstein said:

As a wise philosopher once said, Be a lover, not a fighter!

Google Dumps MapReduce in Favor of New Hyper-Scale Analytics System

Spark

- [Zaharia et al, NSDI 2012]
- Open source implementation on top of Hadoop
- Spark = high-level programming model and implementation for large-scale parallel data processing
- Core idea:
 - Resilient Distributed Datasets (RDDs) as the basic data model

Resilient Distributed Datasets

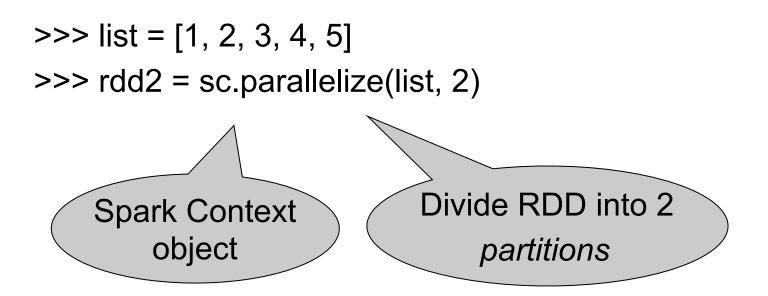
- Primary abstraction in Spark
 - Immutable once constructed
 - Can be used to construct more RDDs
 - Each RDD traces lineage information of how it was computed
 - Iterate each element in RDD to perform computation
 - Compare this with Map Reduce

Creating RDDs

- Load from files (from local file system, HDFS [Hadoop File System], Amazon S3, etc)
- Generate from in-memory data structures (e.g., lists)
- Compute from an existing RDD

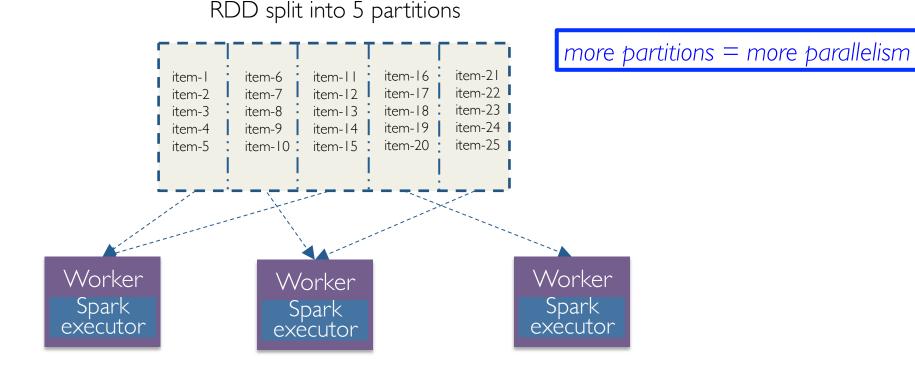
Examples

>>> rdd1 = sc.textFile("data.txt")



Partitions

- Spark's unit of parallelism
 - An RDD divided into N partitions means that it can be *potentially* be operated in parallel by N different workers
 - Default value if unspecified (based on data size)



Computing on RDDs

- Spark provides transformations on RDDs
 - Iterates over each element in RDD
- Examples:
 - rdd.map(fn)
 returns a new RDD by passing each element through fn
 - rdd.filter(fn)
 - returns a new RDD by retaining those that passes fn
 - rdd.distinct()
 returns a new RDD with only distinct elements from source

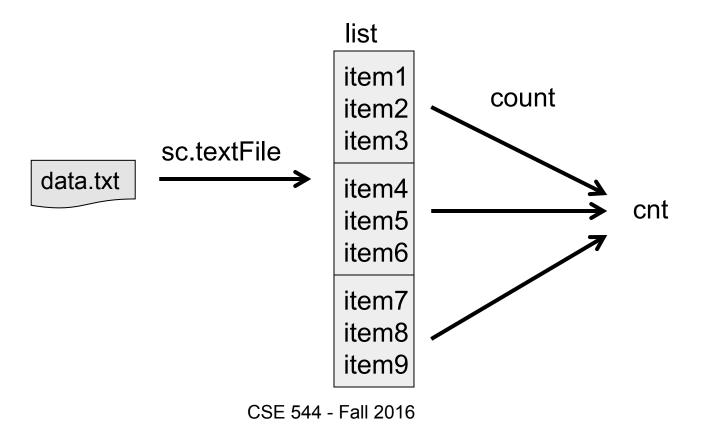
Computing on RDDs

- Spark provides actions to get values out of RDDs
 - Each one performs aggregations on a RDD
- Examples:
 - rdd.reduce(fn)
 computes aggregate on each element in rdd using fn
 - rdd.take(n)
 returns the first n elements from rdd
 - rdd.count()

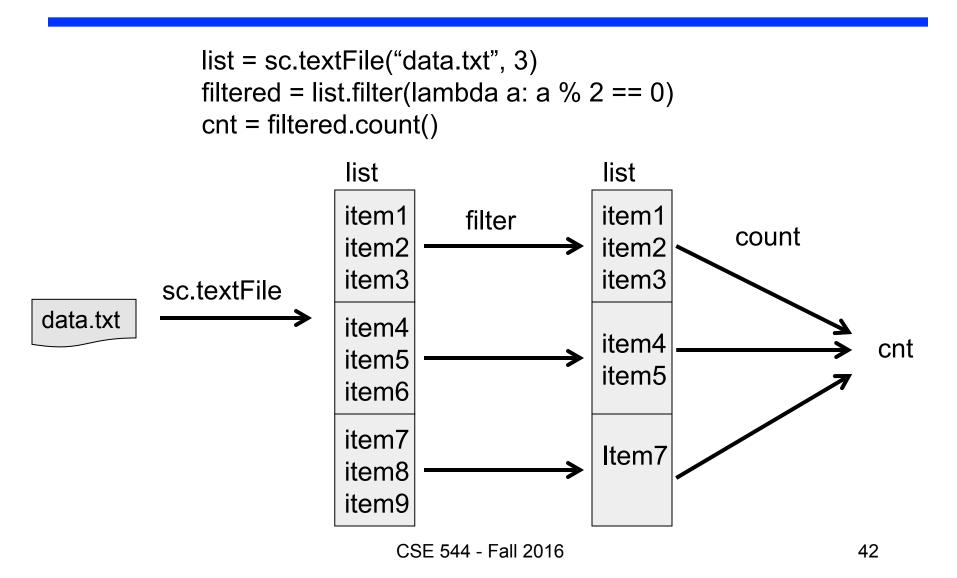
returns the number of elements in rdd

Example 1

```
list = sc.textFile("data.txt", 3)
cnt = list.count()
```



Example 2



Lazy Evaluation

- Not all RDDs are computed immediately
- Spark instead remembers the set of transformations applied to the source dataset
 - Computations are applied when results are needed
 - This is known as lazy evaluation
- Advantages:
 - Optimizes across transformations
 - Recovers from failures
 - Kills slow workers and migrates jobs (recall the data skew problem)

Data Frames

- Data frame: collection of data organized into named columns
- Another data model besides RDD
- Example:

```
>>> users = sc.table("users")
>>> young = users[users.age < 21]
>>> young.groupBy("gender").count()
```

Spark Summary

- Programs structured around two data models:
 - RDDs
 - Data frames
- Emphasize on iteration over elements
 - Compare that with Map Reduce
- Lazy evaluation enables further optimization

Discussion

- We have seen three different programming models for analytics:
 - Writing queries (SQL)
 - Map Reduce
 - Spark
 - (there are many others, btw)
- Which one is better? Why?
- To what extent is each of these application dependent?