CSE 544 Principles of Database Management Systems

Fall 2016 Lecture 11 – Worst Case Optimal Algorithm

Midterm

- This Thursday
- Closed books, no computers
- Bring a pen
- Material up to today

Yannakakis Algorithm

- Given: acyclic query Q
- Compute Q on any database in time O(|Input|+|Output|)
- Step 1: semi-join reduction

CORRECTION

- Pick any root node x in the tree decomposition of Q
- Do a semi-join reduction sweep from x to the leaves
- Do a semi-join reduction sweep from the leaves to x

Fall 2016

Step 2: compute the joins bottom up, with early projections

from x to the leaves

from the leaves to x

Worst-Case Optimal Algorithm

- Given database statistics |R1|=N1, |R2|=N2, ...
- The query's output is bound by $|Q| \le AGM(Q)$
- An algorithm for computing Q is called <u>worst-case optimal</u> if its runtime is O(AGM(Q))
- (Why do we call it optimal?)

Query Plans Are Not Worst-Case Optimal

$$Q(x,y,z) = R(x,y), S(y,z), T(z,x),$$

$$AGM(Q) = N^{3/2}$$

Three plans:

- (R ⋈ S) ⋈ T
- (S ⋈ T) ⋈ R
- (T ⋈ R) ⋈ S

What is their runtime? R = S = T = $= \{(i,i) | i = 1,N\}$ $\cup \{(0,i) | i = 1,N\}$ $\cup \{(i,0) | I = 1,N\}$

Generic-Join

 $Q(x_1,..., x_k) = R_1(...), R_2(...), ..., R_m(...); N = max_j |R_j|$

Recursive algorithm on the structure of the query Q:

- If Q has no variables, then output current bindings of vars
- If Q has some variable x:

- Let $J_1 = \{j \mid R_j \text{ contains } x\}, J_0 = \{j \mid Rj \text{ does not contain } x\}$

- Compute $A = \cap \{ \Pi_x(R_j) \mid j \in J_1 \}$
- For each $a \in A$, compute Q[a/x]

Theorem: the runtime is Õ(AGM(Q))

Recall: $\hat{O}(F) = O(F \log N)$

Example

 $AGM(Q) = N^{3/2}$

 $A = \Pi_{x}(R(x,y)) \cap \Pi_{x}(T(z,x))$ for a in A do /* compute Q(a,y,z) = R(a,y),S(y,z),T(z,a) */ $\mathsf{B} = \Pi_{\mathsf{v}}(\mathsf{R}(\mathsf{a},\mathsf{y})) \cap \Pi_{\mathsf{v}}(\mathsf{S}(\mathsf{y},\mathsf{z}))$ for b in B do /* compute Q(a,b,z) = R(a,b),S(b,z),T(z,a) */ $C = \prod_{z}(S(b,z)) \cap \prod_{z}(T(z,a))$ for c in C do output (a,b,c)

Q(x,y,z) = R(x,y), S(y,z), T(z,x),

Proof of the Runtime

• Cauchy-Schwartz:

• $(\sum_{i} a_{i})^{\frac{1}{2}} (\sum_{i} b_{i})^{\frac{1}{2}} \ge (\sum_{i} a_{i}^{\frac{1}{2}}) (\sum_{i} b_{i}^{\frac{1}{2}})$

• Generalized Holder: if $w1 + w2 + w3 \ge 1$ then

 $(\sum_{i} a_{i})^{w1} (\sum_{i} b_{i})^{w2} (\sum_{i} c_{i})^{w3} \ge (\sum_{i} a_{i}^{w1}) (\sum_{i} b_{i}^{w2}) (\sum_{i} b_{i}^{w3})$

Proof of the Runtime

$$Q(x_1,..., x_k) = R_1(...), R_2(...), ..., R_m(...);$$

Fix any fractional edge cover $w_1, ..., w_m$

CLAIM: Runtime = $\tilde{O}(\prod_{j} N_{j}^{wj})$

Because

 $\sum_{a} N_{i,a} \leq N_{i}$ (why)

Proof: $J_1 = \{j \mid R_j \text{ contains } x\}, J_0 = \{j \mid R_j \text{ does not contain } x\}$

- For $j \in J_1$, $a \in A$, let $N_{j,a} = |R_j[a/x]|$
- By induction: time for Q[a/x] is $(\prod_{j \in J0} N_j^{wj}) (\prod_{j \in J1} N_{j,a}^{wj})$
- Runtime for Q is: $(\prod_{j \in J0} N_j^{wj}) \sum_{a} (\prod_{j \in J1} N_{j,a}^{wj}) \leq (\prod_{j \in J0} N_j^{wj}) (\prod_{j \in J1} (\sum_{a} N_{j,a})^{wj})$ $\leq (\prod_{j \in J0} N_j^{wj}) (\prod_{j \in J1} N_j^{wj})$ $= \prod_{j} N_j^{wj}$

Comments

- Show in class: computing A = ∩ { Π_x(R_j) | j ∈ J₁ } takes time Õ(AGM(Q))
 Note: we must compute A in time Õ(min_j Π_x(R_j))
 (why? if N_j is huge and w_j=0 then N_j > AGM(Q) and we cannot afford to iterate over Π_x(R_j))
- Generic Join is worst case optimal for <u>any</u> variable order
- Should we ignore the variable order?

Comparison to Naïve Nested Loop

Naïve nested loop:

For x in Domain do For y in Domain do For z in Domain do

- - -

Generic-join

- A = \cap domains for x
- For x in A do

_ _ _

- $B = \cap$ domains for y
- For y in B do
 - $C = \cap$ domains for z

For z in C do

Example

- Q(x,y,z) = R(x,z), S(y,z) AGM(Q) = N²
- Suppose we pick the worst variable order: x,y,z
- What is the runtime of
 - Naïve nested loop?
 - Generic join?
- On these three databases:
 - R=S= {(i,i) | i=1,N}
 - $R=\{(0,i) \mid i=1,N\}, S = \{(i,0) \mid i=1,N\}$
 - $R={(i,0) | i=1,N}, S = {(0,i) | i=1,N}$

Extensions to Keys

- The AGM bound is worst case for <u>any</u> input database
- Consider the case when the input database has keys
- E.g. what is the largest output of these queries?
 - $R(x,y),S(\underline{y},z)$
 - $R(\underline{x},y),S(y,z),T(z,x)$

Query Expansion

- Given a query Q, repeat the following:
- If x→y holds in some atom R, then add the variable y to all atoms S that contain x
- Call Q' the *expanded* query
- FACT1: assuming the inputs to Q satisfy a set of FD's, then |Q| ≤ AGM(Q')
- FACT2: if all FD's are simple keys, then this bound is tight

Examples

- $Q = R(x,y), S(\underline{y},z)$
- Q' = R(x,y,z),S(y,z); $AGM(Q') = N_1$
- $Q = R(\underline{x}, y), S(y, z), T(z, x)$
- Q' = R(x,y),S(y,z),T(z,x,y); AGM(Q') = min(N₁N₂, N₃)