CSE 544 Principles of Database Management Systems

Fall 2016
Lecture 11 - Worst Case Optimal Algorithm

Midterm

- This Thursday
- Closed books, no computers
- Bring a pen
- Material up to today

Yannakakis Algorithm

- Given: acyclic query Q
- Compute Q on any database in time $O(|\ln n u t|+|O u t p u t|)$
- Step 1: semi-join reduction from the leaves to x
- Pick any root node x in the tree decomposition of Q
- Do a semi-join reduction sweep from x to the leaves
- Do a semi-join reduction sweep from the leaves to $*$
- Step 2: compute the joins bottom up, with early projections

from x to the leaves

CORRECTION

Worst-Case Optimal Algorithm

- Given database statistics |R1|=N1, |R2|=N2, ...
- The query's output is bound by $|\mathrm{Q}| \leq \mathrm{AGM}(\mathrm{Q})$
- An algorithm for computing Q is called worst-case optimal if its runtime is $O(A G M(Q))$
- (Why do we call it optimal?)

Query Plans Are Not Worst-Case Optimal

$$
Q(x, y, z)=R(x, y), S(y, z), T(z, x), \quad A G M(Q)=N^{3 / 2}
$$

Three plans:

- $(R \bowtie S) \bowtie T$
- $(S \bowtie T) \bowtie R$
- $(T \bowtie R) \bowtie S$

What is their runtime?

$$
\begin{aligned}
R=S & =T= \\
& =\{(\mathrm{i}, \mathrm{i}) \mid i=1, \mathrm{~N}\} \\
& \cup\{(0, \mathrm{i}) \mid \mathrm{i}=1, \mathrm{~N}\} \\
& \cup\{(\mathrm{i}, 0) \mid \mathrm{I}=1, \mathrm{~N}\}
\end{aligned}
$$

Generic-Join

$$
Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}(\ldots), R_{2}(\ldots), \ldots, R_{m}(\ldots) ; \quad N=\max _{j}\left|R_{j}\right|
$$

Recursive algorithm on the structure of the query Q :

- If Q has no variables, then output current bindings of vars
- If Q has some variable x :
- Let $J_{1}=\left\{j \mid R_{j}\right.$ contains $\left.x\right\}, J_{0}=\{j \mid R j$ does not contain $x\}$
- Compute $A=\cap\left\{\Pi_{x}\left(R_{j}\right) \mid j \in J_{1}\right\}$
- For each $a \in A$, compute $Q[a / x]$

Theorem: the runtime is $\tilde{O}(A G M(Q))$

Recall:
$\tilde{O}(F)=O(F \log N)$

Example

$Q(x, y, z)=R(x, y), S(y, z), T(z, x), \quad A G M(Q)=N^{3 / 2}$
$A=\Pi_{x}(R(x, y)) \cap \Pi_{x}(T(z, x))$
for a in A do /* compute $Q(a, y, z)=R(a, y), S(y, z), T(z, a) * /$ $B=\Pi_{y}(R(a, y)) \cap \Pi_{y}(S(y, z))$
for b in B do
/* compute $Q(a, b, z)=R(a, b), S(b, z), T(z, a) * /$
$C=\Pi_{z}(S(b, z)) \cap \Pi_{z}(T(z, a))$
for c in C do output (a,b,c)

Proof of the Runtime

- Cauchy-Schwartz:
- $\left(\sum_{i} a_{i}\right)^{1 / 2}\left(\sum_{i} b_{i}\right)^{1 / 2} \geq\left(\sum_{i} a_{i}^{1 / 2}\right)\left(\sum_{i} b_{i}^{1 / 2}\right)$
- Generalized Holder: if $\mathrm{w} 1+\mathrm{w} 2+\mathrm{w} 3 \geq 1$ then

$$
\left(\sum_{i} a_{i}\right)^{w 1}\left(\sum_{i} b_{i}\right)^{w 2}\left(\sum_{i} c_{i}\right)^{w 3} \geq\left(\sum_{i} a_{i}^{w 1}\right)\left(\sum_{i} b_{i}^{w 2}\right)\left(\sum_{i} b_{i}^{w 3}\right)
$$

Proof of the Runtime

$Q\left(x_{1}, \ldots, x_{k}\right)=R_{1}(\ldots), R_{2}(\ldots), \ldots, R_{m}(\ldots) ;$
Fix any fractional edge cover w_{1}, \ldots, w_{m}
CLAIM: Runtime $=O \tilde{O}\left(\Pi_{j} N_{j}{ }^{\text {wij }}\right)$
Proof: $\mathrm{J}_{1}=\left\{j \mid \mathrm{R}_{\mathrm{j}}\right.$ contains x$\}, \mathrm{J}_{0}=\{j \mid \mathrm{Rj}$ does not contain x$\}$

- For $j \in J_{1}, a \in A$, let $N_{j, a}=\left|R_{j}[a / x]\right|$
- By induction: time for $Q[a / x]$ is $\left(\prod_{j \in J 0} N_{j}^{w j}\right)\left(\prod_{j \in J 1} N_{j, a}{ }^{w j}\right)$
- Runtime for Q is:

$$
\begin{aligned}
& \left(\prod_{j \in J 0} N_{j}^{w j}\right) \sum_{a}\left(\Pi_{j \in J 1} N_{j, a}^{w j}\right) \leq\left(\prod_{j \in J 0} N_{j}^{w j}\right)\left(\prod_{j \in J 1}\left(\sum_{a} N_{j, a}\right)^{w j}\right) \\
& \leq\left(\prod_{j \in J 0} N_{j}^{w j}\right)\left(\prod_{j \in J 1} N_{j}^{w j}\right) \\
& \text { Holder. Because } \\
& \sum_{j \in J 1} w_{j} \geq 1 \text { (why?) } \\
& =\Pi_{j} N_{j}{ }^{\text {wj }} \\
& \text { Because } \\
& \sum_{\mathrm{a}} \mathrm{~N}_{\mathrm{j}, \mathrm{a}} \leq \mathrm{N}_{\mathrm{j}} \text { (why) }
\end{aligned}
$$

Comments

- Show in class: computing $A=\cap\left\{\Pi_{x}\left(R_{j}\right) \mid j \in J_{1}\right\}$ takes time Õ(AGM(Q))
Note: we must compute A in time $O\left(\min _{j} \Pi_{\mathrm{x}}\left(\mathrm{R}_{\mathrm{j}}\right)\right)$ (why? if N_{j} is huge and $w_{j}=0$ then $N_{j}>\operatorname{AGM}(Q)$ and we cannot afford to iterate over $\Pi_{\mathrm{x}}\left(\mathrm{R}_{\mathrm{j}}\right)$)
- Generic Join is worst case optimal for any variable order
- Should we ignore the variable order?

Comparison to Naïve Nested Loop

Naïve nested loop:

For x in Domain do
For y in Domain do
For z in Domain do

Generic-join
$A=\cap$ domains for x
For x in A do
$B=\cap$ domains for y
For y in B do
$C=\cap$ domains for z
For z in C do

Example

- $Q(x, y, z)=R(x, z), S(y, z) \quad A G M(Q)=N^{2}$
- Suppose we pick the worst variable order: x, y, z
- What is the runtime of
- Naïve nested loop?
- Generic join?
- On these three databases:
- $R=S=\{(i, i) \mid i=1, N\}$
- $R=\{(0, i) \mid i=1, N\}, S=\{(i, 0) \mid i=1, N\}$
- $R=\{(i, 0) \mid i=1, N\}, S=\{(0, i) \mid i=1, N\}$

Extensions to Keys

- The AGM bound is worst case for any input database
- Consider the case when the input database has keys
- E.g. what is the largest output of these queries?
- $R(x, y), S(y, z)$
- R(X,y),S(y,z),T(z,x)

Query Expansion

- Given a query Q , repeat the following:
- If $x \rightarrow y$ holds in some atom R, then add the variable y to all atoms S that contain x
- Call Q' the expanded query
- FACT1: assuming the inputs to Q satisfy a set of FD's, then $|\mathrm{Q}| \leq \mathrm{AGM}\left(\mathrm{Q}^{\prime}\right)$
- FACT2: if all FD's are simple keys, then this bound is tight

Examples

- $Q=R(x, y), S(y, z)$
- $Q^{\prime}=R(x, y, z), S(y, z) ; A G M\left(Q^{\prime}\right)=N_{1}$
- $Q=R(\underline{x}, y), S(y, z), T(z, x)$
- $Q^{\prime}=R(x, y), S(y, z), T(z, x, y) ; A G M\left(Q^{\prime}\right)=\min \left(N_{1} N_{2}, N_{3}\right)$

