CSE 544 Principles of Database Management Systems

Fall 2016
Lecture 10 -- AGM Bound

Size of the Query's Output

- Fully conjunctive query Q
- Known cardinalities of input relations $|\mathrm{R}|,|S|, \ldots$
- How large is the size of the output?

Example

- $\mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})$:- $\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{S}(\mathrm{y}, \mathrm{z})$
- $|R|=N_{1}, \quad|S|=N_{2}$
- How large is $|\mathrm{Q}|$?
- Min =
- Max =

Example

- $\mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})$:- $\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{S}(\mathrm{y}, \mathrm{z})$
- $|R|=N_{1}, \quad|S|=N_{2}$
- How large is $|Q|$?
- $\operatorname{Min}=0$
- $\operatorname{Max}=\mathrm{N}_{1} \mathrm{~N}_{2}$

Example

- $\mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})$:- $\mathrm{R}(\mathrm{x}, \mathrm{y}), \mathrm{S}(\mathrm{y}, \mathrm{z})$
- $|R|=N_{1}, \quad|S|=N_{2}$
- How large is $|\mathrm{Q}|$?
- $\operatorname{Min}=0$
- $\operatorname{Max}=\mathrm{N}_{1} \mathrm{~N}_{2}$
- Thus $0 \leq|Q| \leq N_{1} N_{2}$

Example

- $Q(x, y, z)=R(x, y), S(y, z), T(z, x)$
- $|R|=N_{1}, \quad|S|=N_{2},|T|=N_{3}$
- How large is $|\mathrm{Q}|$?

Example

- $Q(x, y, z)=R(x, y), S(y, z), T(z, x)$
- $|R|=N_{1}, \quad|S|=N_{2},|T|=N_{3}$
- How large is $|Q|$?
- $|\mathrm{Q}| \leq \mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3}$

Example

- $Q(x, y, z)=R(x, y), S(y, z), T(z, x)$
- $|R|=N_{1}, \quad|S|=N_{2},|T|=N_{3}$
- How large is $|Q|$?
- $|Q| \leq N_{1} N_{2} N_{3}$
- $|Q| \leq N_{1} N_{2} \quad$ and $|Q| \leq N_{1} N_{3} \quad$ and $|Q| \leq N_{2} N_{3}$

Example

- $Q(x, y, z)=R(x, y), S(y, z), T(z, x)$
- $|R|=N_{1}, \quad|S|=N_{2},|T|=N_{3}$
- How large is $|\mathrm{Q}|$?
- $|Q| \leq N_{1} N_{2} N_{3}$
- $|Q| \leq N_{1} N_{2} \quad$ and $|Q| \leq N_{1} N_{3} \quad$ and $|Q| \leq N_{2} N_{3}$
- But also $|\mathrm{Q}| \leq\left(\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3}\right)^{1 / 2}$

Definition

- Let Q be a full conjunctive query without self-joins. The hypergraph associated to Q has:
- Nodes = variables of Q
- Hyperedges = atoms of Q

Examples

$$
Q(x, y, z)=R(x, y), S(y, z), T(z, x)
$$

$$
Q(x, y, z)=R(x, y, z), S(x), T(y), K(z), M(x, u)
$$

Edge Cover

- $G=(V, E)$ a hypergraph

$$
V=\left\{x_{1}, \ldots, x_{n}\right\}, \quad E=\left\{e_{1}, \ldots, e_{m}\right\}
$$

- An edge cover $=$ set of edges $\mathrm{e}_{\mathrm{i} 1}, \ldots, \mathrm{e}_{\mathrm{ik}}$ s.t. forall $\mathrm{x} \in \mathrm{V}, \exists \mathrm{i} \mathrm{x} \in \mathrm{e}_{\mathrm{i}}$

Edge Cover \rightarrow Query Bound

- Fact. If $R_{i 1}, R_{i 2}, \ldots, R_{i k}$ is an edge cover, then $|Q| \leq\left|R_{i 1}\right|\left|R_{i 2}\right| \ldots\left|R_{i k}\right|$
- Proof in class

Fractional Edge Cover

- $G=(V, E)$ a hypergraph

$$
V=\left\{x_{1}, \ldots, x_{n}\right\}, \quad E=\left\{e_{1}, \ldots, e_{m}\right\}
$$

- A fractional edge cover $=$ real numbers $w_{1}, \ldots, w_{m} \geq 0$ s.t. for any $\mathrm{x} \in \mathrm{V}: \sum\left\{\mathrm{w}_{\mathrm{i}} \mid \mathrm{x} \in \mathrm{e}_{\mathrm{i}}\right\} \geq 1$
- Every edge cover is also a fractional edge cover. (Why?)

The AGM Bound

- Theorem [Atserias,Grohe,Marx]
(1) If $w_{1}, \ldots, w_{m} \geq 0$ is a fractional edge cover, then $|Q| \leq\left|R_{1}\right|^{w 1}\left|R_{2}\right|^{w 2} \ldots\left|R_{m}\right|^{w m}$
(2) For any numbers $\mathrm{N} 1, \ldots, \mathrm{Nm}$, there exists a database s.t. $|\mathrm{R} 1| \leq \mathrm{N} 1, \ldots,|\mathrm{Rm}| \leq \mathrm{Nm}$ and a fractional edge cover $w_{1}, \ldots, w_{m} \geq 0$ such that $|Q|=\left|R_{1}\right|^{w 1}\left|R_{2}\right|^{w 2} \ldots\left|R_{m}\right|^{w m}$
- We denote $A G M(Q)=\min _{w}\left|R_{1}\right|^{w 1}\left|R_{2}\right|^{w 2} \ldots\left|R_{m}\right|^{w m}$

Proof of Part (2)

- $G=(V, E)$ a hypergraph

$$
V=\left\{x_{1}, \ldots, x_{n}\right\}, \quad E=\left\{e_{1}, \ldots, e_{m}\right\}
$$

- $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}} \geq 0$ are given numbers
- A generalized fractional vertex packing =
$=$ real numbers $v_{1}, \ldots, v_{n} \geq 0$ s.t. for any $e_{j} \in E: \sum\left\{v_{i} \mid x_{i} \in e_{j}\right\} \leq n_{j}=\log N_{j}$
- Theorem (strong duality of LP programs) $\min _{w=\text { frac. edge cover }} \mathrm{w}_{1} \mathrm{n}_{1}+\ldots+\mathrm{w}_{\mathrm{m}} \mathrm{n}_{\mathrm{m}}=$
$=\max _{\mathrm{v}=\text { gen. frac. vertex packing }} \mathrm{V}_{1}+\ldots+\mathrm{V}_{\mathrm{n}}$

Proof of the Theorem on Special Case

$$
Q(x, y, z)=R(x, y), S(y, z), T(z, x)
$$

(Generalized) fractional vertex packing:

$\max \left(\mathrm{v}_{\mathrm{R}}+\mathrm{v}_{\mathrm{S}}+\mathrm{v}_{\mathrm{T}}\right)$			
$\mathrm{R}:$	$\mathrm{v}_{\mathrm{x}}+\mathrm{v}_{\mathrm{y}}$	$\leq \log \|\mathrm{R}\|$	
$\mathrm{S}:$		$\mathrm{v}_{\mathrm{y}}+$	
$\mathrm{V}:$	$\mathrm{v}_{\mathrm{S}} \leq \log \|\mathrm{S}\|$		
$\mathrm{T}:$	$\mathrm{v}_{\mathrm{x}}+$	$\mathrm{v}_{\mathrm{z}} \leq \log \|\mathrm{T}\|$	

Th. For any feasible v_{R}, v_{S}, v_{T} $\log |\mathrm{Q}| \geq$ objective \mid Q| $\geq n^{\text {vx }} \times n^{\text {vy }} \times n^{\text {vz }}$

Hypergraph $=$ variables + relations

Fractional edge cover:

$$
\begin{array}{ll}
\min \left(w_{R} \log |R|+w_{S} \log |S|+w_{T} \log |T|\right) \\
x: & w_{R}+w_{T} \geq 1 \\
y: & w_{R}+w_{S} \geq 1 \\
z: & w_{S}+w_{T} \geq 1
\end{array}
$$

Th. For any feasible W_{R}, w_{S}, w_{T} :
$\log |\mathrm{Q}| \leq$ objective
$|\mathrm{Q}| \leq|R|^{\mathrm{wR}} \times|\mathrm{S}|^{\mathrm{wS}} \times|\mathrm{T}|^{\mathrm{wT}}$

Proof "Free" instance
$R(x, y)=\left[n^{\vee x}\right] \times\left[n^{v y}\right]$
$S(y, z)=\left[n^{\vee v}\right] \times\left[n^{\vee z}\right]$
$T(z, x)=\left[n^{v x}\right] \times\left[n^{v z}\right]$

Examples (in Class)

- Assume $|\mathrm{R}|=|\mathrm{S}|=|\mathrm{T}|=. . .=\mathrm{N}$
- Find max |Q|
- Describe database on which Q is max
- $Q=R(x, y), S(y, z)$
- $Q=R(x, y), S(y, z), T(z, x)$
- $Q=R(x, y), S(y, z), T(z, u)$
- $Q=R(x, y), S(y, z), T(z, u), K(u, v)$
- $Q=R(x, y, z), S(x, y, u), T(x, z, u), K(y, z, u)$
- $Q=R(x, y, z, u), S(x, y, z, w), T(x, y, u, w), K(x, z, u, w), L(y, z, u, w)$

Shannon Entropy

- $\mathrm{X}=$ random variable (usually $\mathrm{X}=\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$)

Has N outcomes
with probabilities p_{1}, \ldots, p_{N}

- The entropy of X is: $H(X)=-\left[p_{1} \log p_{1}+\ldots+p_{N} \log p_{N}\right]$
- Facts about the entropy
- $H(X) \leq \log N$ and it is "=" iff $p_{1}=p_{2}=\ldots=p_{N}$
- $\mathrm{H}(\varnothing)=0$
- $H(X) \leq H(X Y)$
monotonicity
- $\mathrm{H}(\mathrm{X} \cap \mathrm{Y})+\mathrm{H}(\mathrm{X} \cup \mathrm{Y}) \leq \mathrm{H}(\mathrm{X})+\mathrm{H}(\mathrm{Y})$ submodularity

$H=-\left(p_{1} \log p_{1}+p_{2} \log p_{2}+\ldots+p_{N} \log p_{N}\right)$

Entropy for Query Bounds

$$
Q(x, y, z)=R(x, y), S(y, z), T(z, x)
$$

Probability space:

$$
H(x y z)=\log n
$$

R, S, T are marginal probabilities:

$$
\begin{aligned}
& H(x y) \leq \log |R| \\
& H(y z) \leq \log |S| \\
& H(x z) \leq \log |T|
\end{aligned}
$$

x	y
a	3
a	2
b	2
d	3

y	z
3	y
	$2 / 5$
2	q
	$2 / 5$
3	q
1	$1 / 5$

x	z
a	m
a	q
b	q
d	m

Shearer's Inequality

- Let $X_{1}, \ldots, X_{m} \subseteq X$ be sets of random variables
- Let $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}=$ fractional edge cover of this hypergraph nodes $=X$
hyperedges $=X_{1}, \ldots, X_{m}$
- Then: $\mathrm{w}_{1} \mathrm{H}\left(\mathrm{X}_{1}\right)+\ldots+\mathrm{w}_{\mathrm{m}} \mathrm{H}\left(\mathrm{X}_{\mathrm{m}}\right) \geq \mathrm{H}(\mathrm{X}) \quad$ (Shearer)
- Example: $1 / 2 H(x y)+1 / 2 H(y z)+1 / 2 H(x z) \geq H(x y z)$
- Proof: $\mathrm{H}(\mathrm{xy})+\mathrm{H}(\mathrm{yz})+\mathrm{H}(\mathrm{xz}) \geq \mathrm{H}(\mathrm{xyz})+\mathrm{H}(\mathrm{y})+\mathrm{H}(\mathrm{xz})$

$$
\geq H(x y z)+H(x y z)+H(\varnothing)=2 H(x y z)
$$

Proof of Shearer's Lemma

- Restated: let $X_{1}, \ldots, X_{m} \subseteq X$ be sets of random variables such that every $x \in X$ is covered at least k times
- Then: $\mathrm{H}\left(\mathrm{X}_{1}\right)+\mathrm{H}\left(\mathrm{X}_{2}\right)+\ldots+\mathrm{H}\left(\mathrm{X}_{\mathrm{m}}\right) \geq \mathrm{kH}(\mathrm{X})$
- Proof. replace X_{i}, X_{j} s.t. $X_{i} \pm X_{j}$ and $X_{j} \pm X_{i}$ with $X_{i} \cup X_{j}, X_{i} \cap X_{j}$
- Every variable x continues to be k-covered (why?)
$-\left|X_{i}\right|^{2}+\left|X_{j}\right|^{2}<\left|X_{i} \cup X_{j}\right|^{2}+\left|X_{i} \cap X_{j}\right|^{2}$ (why?) we use $X_{i} \pm X_{j}$ and $X_{j} \pm X_{i}$
- When we stop: $X_{1} \supseteq X_{2} \supseteq X_{3} \supseteq \ldots$
- Since each variable is k-covered: $X_{1}=X_{2}=\ldots=X_{k}=X$ (why?)
- Hence $H\left(X_{1}\right)+H\left(X_{2}\right)+\ldots+H\left(X_{m}\right) \geq k H(X)+\ldots[r e s t]$

Proof of AGM Part (1)

- If $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}} \geq 0$ is a fractional edge cover, then $|Q| \leq\left|R_{1}\right|^{w 1}\left|R_{2}\right|^{w 2} \ldots\left|R_{m}\right|^{w m}$
- Fix any input database, let H be the entropy of the probability space defined by the output of Q
$-\log |Q|=H(X)$
$-\log \left|R_{i}\right| \geq H\left(X_{i}\right)$
- Shearer's inequality: $w_{1} H\left(X_{1}\right)+\ldots+w_{m} H\left(X_{m}\right) \geq H(X)$
- It follows: $w_{1} \log \left|R_{1}\right|+\ldots+w_{m} \log \left|R_{m}\right| \geq \log |Q|$

Summary of AGM Bound

- For any fractional vertex cover $|Q| \leq\left|R_{1}\right|^{w 1}\left|R_{2}\right|^{w 2} \ldots\left|R_{m}\right|^{w m}$ and this is tight
- No query should take time more than $A G M(Q)$!
- However, for certain queries, any query plan has a data complexity >> AGM(Q)
- Next time: novel worst-case optimal algorithms, which run in time $O(A G M(Q))$

