CSE 544
Principles of Database Management Systems

Fall 2016
Lecture 9 – Structural query optimization
Conjunctive Queries

- **Definition:**
 \[Q(X) : R_1(X_1), R_2(X_2), \ldots, R_m(X_m) \]

- Same as a single datalog rule

- **Terminology:**
 - Atoms
 - Head variables
 - Existential variables

- **CQ =** denotes the set of conjunctive queries
Examples

• Example of CQ

\[
q(x,y) = \exists z.(R(x,z) \land \exists u.(R(z,u) \land R(u,y)))
\]
\[
q(x) = \exists z.\exists u.(R(x,z) \land R(z,u) \land R(u,y))
\]

• Examples of non-CQ:

\[
q(x,y) = S(x,y) \land \forall z.(R(x,z) \rightarrow R(y,z))
\]
\[
q(x) = T(x) \lor \exists z.S(x,z)
\]
Types of CQ

- **Full** CQ: head variables are all variables
 \[Q(x,y,z,u) :- R(x,y), S(y,z), T(z,u) \]

- **Boolean** CQ: no head variables
 \[Q() :- R(x,y), S(y,z), T(z,u) \]

- With or without self-joins:
 \[Q(x,u) :- R(x,y), S(y,z), R(z,u) \]
 \[Q(x,u) :- R(x,y), S(y,z), T(z,u) \]
Extensions

- With inequalities $CQ^<$:
 \[Q(x) :- R(x,y), S(y,z), T(z,u), y < u \]

- With disequalities $CQ \neq$:
 \[Q(x) :- R(x,y), S(y,z), T(z,u), y \neq u \]

- With aggregates:
 \[Q(x, \text{count}(*)) :- R(x,y), S(y,z), T(z,u) \]
 \[Q(x, \text{sum}(u)) :- R(x,y), S(y,z), T(z,u) \]
Complexity of Query Evaluation

• The query evaluation problem is this: given a query Q and a database D, compute Q(D)

• Three complexity measures:
 – **Data complexity**. Fix Q. The complexity is $f(|D|)$
 Variation: $f(|Input|, |Output|)$
 – **Query (or expression) complexity**. Fix D. The complexity is $f(|Q|)$
 – **Combined complexity**. The complexity if $f(|D|, |Q|)$

• Example: data complexity of $R \bowtie S$
Complexity of Query Evaluation

• The query evaluation problem is this: given a query Q and a database D, compute Q(D)

• Three complexity measures:
 – **Data complexity.** Fix Q. The complexity is f(|D|)
 Variation: f(|Input|, |Output|)
 – **Query (or expression) complexity.** Fix D. The complexity is f(|Q|)
 – **Combined complexity.** The complexity if f(|D|,|Q|)

• Example: data complexity of R \(\bowtie \) S
 – PTIME in |R|, |S| (trivially so...)
Complexity of Query Evaluation

- The query evaluation problem is this: given a query Q and a database D, compute Q(D)

- Three complexity measures:
 - **Data complexity.** Fix Q. The complexity is $f(|D|)$
 Variation: $f(|Input|, |Output|)$
 - **Query (or expression) complexity.** Fix D. The complexity is $f(|Q|)$
 - **Combined complexity.** The complexity is $f(|D|, |Q|)$

- Example: data complexity of $R \bowtie S$
 - PTIME in $|R|$, $|S|$ (trivially so...)
 - Better: $O(|R| \times |S|)$
Complexity of Query Evaluation

• The query evaluation problem is this: given a query Q and a database D, compute Q(D)

• Three complexity measures:
 – **Data complexity.** Fix Q. The complexity is \(f(|D|) \)
 Variation: \(f(|\text{Input}|, \ |\text{Output}|) \)
 – **Query (or expression) complexity.** Fix D. The complexity is \(f(|Q|) \)
 – **Combined complexity.** The complexity if \(f(|D|,|Q|) \)

• Example: data complexity of \(R \bowtie S \)
 – PTIME in \(|R|, |S|\) (trivially so...)
 – Better: \(O(|R| \times |S|) \)
 – Even better: \(O((|R|+|S|) \log (|R|+|S|) + |\text{Output}|) \)
Complexity of Query Evaluation

- The query evaluation problem is this: given a query Q and a database D, compute Q(D)

- Three complexity measures:
 - **Data complexity.** Fix Q. The complexity is f(|D|)
 Variation: f(|Input|, |Output|)
 - **Query (or expression) complexity.** Fix D. The complexity is f(|Q|)
 - **Combined complexity.** The complexity if f(|D|,|Q|)

- Example: data complexity of R \(\bowtie \) S
 - PTIME in \(|R|, |S|\) (trivially so...)
 - Better: \(O(|R| * |S|)\)
 - Even better: \(O((|R|+|S|) \log (|R|+|S|) + |Output|)\)

- Discuss more about complexity in class...
Question in Class

- \(Q(x,w) : - R(x,y), S(y,z), T(z,u), K(u,v), L(v,w) \)

- Assume \(|R| = |S| = |T| = |K| = |L| = N\)

- What is the complexity of \(Q \)?
Question in Class

• $Q(x,w) :- R(x,y), S(y,z), T(z,u), K(u,v), L(v,w)$

• Assume $|R| = |S| = |T| = |K| = |L| = N$

• What is the complexity of Q?

• What is the complexity of this plan?
Question in Class

• Q(x,w) :- R(x,y),S(y,z),T(z,u),K(u,v),L(v,w)

• Assume |R|=|S|=|T|=|K|=|L| = N

• What is the complexity of Q?

• What is the complexity of this plan?

• Can you find a more efficient plan?
Question in Class

• Push projections down:
 What about this complexity?

• Can we still improve?

\[
T(z,u) \bowtie R(x,y) \bowtie S(y,z) \bowtie K(u,v) \bowtie L(v,w)
\]

\[
\Pi_{xu} \bowtie \Pi_{xz} \bowtie \Pi_{xw}
\]
Law of Semijoins

- **Input:** $R(A_1, \ldots, A_n), S(B_1, \ldots, B_m)$
- **Output:** $T(A_1, \ldots, A_n)$

Definition: the semi-join operation is

$$R \Join S = \Pi_{A_1, \ldots, A_n} (R \bowtie S)$$

- Data complexity: $O(|R| + |S|)$ ignoring log-factors

- **The law** of semijoins is:

$$R \Join S = (R \Join S) \Join S$$
Laws with Semijoins

- Very important in parallel databases
- Often combined with Bloom Filters (my plan is to discuss them in the next lecture)
- Read pp. 747 in the textbook

- Also used in query optimization, sometimes called “magic sets” (see Chaudhuri’s paper)

- Historical note: magic sets were invented after semi-join reductions, and the connection became clear only later
Semijoin Reducer

• Given a query:

\[Q = R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n \]

• A **semijoin reducer** for \(Q \) is

\[
\begin{align*}
R_{i1} &= R_{i1} \bowtie R_{j1} \\
R_{i2} &= R_{i2} \bowtie R_{j2} \\
\ldots & \\
R_{ip} &= R_{ip} \bowtie R_{jp}
\end{align*}
\]

such that the query is equivalent to:

\[Q = R_{k1} \bowtie R_{k2} \bowtie \ldots \bowtie R_{kn} \]

• A **full reducer** is such that no dangling tuples remain
Example

• Example:
 \[Q = R(A,B) \boxtimes S(B,C) \]

• A semijoin reducer is:
 \[R_1(A,B) = R(A,B) \bowtie S(B,C) \]

• The rewritten query is:
 \[Q = R_1(A,B) \boxtimes S(B,C) \]
Semijoin Reducer

- More complex example:
 \[Q = R(A,B) \bowtie S(B,C) \bowtie T(C,D,E) \]
- What is a full reducer?
Semijoin Reducer

- More complex example:
 \[
 Q = R(A,B) \bowtie S(B,C) \bowtie T(C,D,E)
 \]

- A full reducer is:

 \[
 \begin{align*}
 S'(B,C) & := S(B,C) \bowtie R(A,B) \\
 T'(C,D,E) & := T(C,D,E) \bowtie S'(B,C) \\
 S''(B,C) & := S'(B,C) \bowtie T'(C,D,E) \\
 R'(A,B) & := R(A,B) \bowtie S''(B,C) \\
 \end{align*}
 \]

 \[
 Q = R'(A,B) \bowtie S''(B,C) \bowtie T'(C,D,E)
 \]
Practice at Home...

- Find semi-join reducer for $R(x,y), S(y,z), T(z,u), K(u,v), L(v,w)$
Not All Queries Have Full Reducers

- Example:

\[Q = R(A,B) \bowtie S(B,C) \bowtie T(A,C) \]

- Can write many different semi-join reducers

- But no full reducer of length \(O(1) \) exists
Acyclic Queries

• Fix a Conjunctive Query without self-joins

• Q is acyclic if its atoms can be organized in a tree such that for every variable the set of nodes that contain that variable form a connected component.

\[R(x,y), S(y,z), T(z,x) \] is cyclic.
Yannakakis Algorithm

• Given: acyclic query Q
• Compute Q on any database in time $O(|\text{Input}|+|\text{Output}|)$

• Step 1: semi-join reduction
 – Pick any root node x in the tree decomposition of Q
 – Do a semi-join reduction sweep from x to the leaves
 – Do a semi-join reduction sweep from the leaves to x

• Step 2: compute the joins bottom up, with early projections
Examples in Class

- Boolean query: $Q() : -$...
- Non-boolean: $Q(x,m) : -$...
- With aggregate: $Q(x,\text{sum}(m)) : -$...
- And also: $Q(x,\text{count}(\ast)) : -$...

In all cases: runtime = $O(|R|+|S|+\ldots+|L| + |Output|)$
Testing if Q is Acyclic

• An **ear** of Q is an atom R(X) with the following property:
 – Let X’ ⊆ X be the set of join variables (meaning: they occur in at least one other atom)
 – There exists some other atom S(Y) such that X’ ⊆ Y

• The GYO algorithm (Graham, Yu, Özsoyöglu) for testing if Q is acyclic:
 – While Q has an ear R(X), remove the atom R(X) from the query
 – If all atoms were removed, then Q is acyclic
 – If atoms remain but there is no ear, then Q is cyclic

• Show example in class
Computing Cyclic Queries

\[R(x,y), S(y,z,u), T(y,z,w), K(z,v), L(v,m) \]

\[O(n + |\text{Output}|) \]

Next lecture...