CSE 544
Principles of Database Management Systems

Fall 2016
Lecture 8 - Query optimization
Announcements

• HW2 (SimpleDB) is due next Friday!

• Midterm in two weeks, Nov. 10, in class

• Project Milestone due on Nov. 16
Recommended Readings

Access path selection in a relational database management system.
Selinger. et. al. SIGMOD 1979

Additional resources:

• Database management systems.
 Ramakrishnan and Gehrke.
 Third Ed. Chapter 15.
Query Optimization Motivation

SQL query → Parse & Rewrite Query → Select Logical Plan → Select Physical Plan → Query Execution → Disk

Declarative query
Recall physical and logical data independence

Logical plan
Physical plan

Query optimization
What We Already Know…

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

For each SQL query….

SELECT S.sname
FROM Supplier S, Supply U
WHERE S.scity='Seattle' AND S.sstate='WA'
AND S.sno = U.sno
AND U.pno = 2

There exist many logical query plan…
Example Query: Logical Plan 1

\[\pi_{\text{sname}} \]

\[\sigma_{\text{sccity} = 'Seattle' \land \text{sstate} = 'WA' \land \text{pno} = 2} \]

\[\text{sno} = \text{sno} \]

Supplier

Supply
Example Query: Logical Plan 2

\[\pi_{\text{sname}} \left(\sigma_{\text{sscity}='Seattle' \land \text{sstate}='WA'} \left(\text{Supplier} \right) \land \sigma_{\text{pno}=2} \left(\text{Supply} \right) \right) \]
What We Also Know

• For each logical plan…

• There exist many physical plans
Example Query: Physical Plan 1

\[\sigma \text{ scity='Seattle' } \land \text{sstate='WA'} \land \text{ pno=2} \]

\[\pi \text{ sname} \]

(On the fly)
(On the fly)
(Nested loop)

\[\text{sno } = \text{sno} \]

Supplier
(File scan)

Supply
(File scan)
Example Query: Physical Plan 2

\[\pi_{\text{sname}} \]

\[\sigma_{\text{scity}='Seattle' \land \text{sstate}='WA' \land \text{pno}=2} \]

\[\text{(Index nested loop)} \quad \text{sno} = \text{sno} \]

\[\text{(On the fly)} \]

\[\text{(On the fly)} \]

\[\text{(Index scan)} \]

\[\text{(File scan)} \]

\[\text{Supplier} \]

\[\text{Supply} \]
Query Optimization

Three major components:

1. Cardinality and cost estimation
2. Search space
3. Plan enumeration algorithms
Estimating Cost of a Query Plan

Goal: compute the cost of an entire physical query plan

• We already know how to
 – Compute the cost of different operations in terms of number Ios, given the T(R)’s and the B(R)’s

• We still need to do
 – Access path selection: compute cost of retrieving tuples from disk with different access paths
 – Size estimation: compute the T(R)’s and the B(R)’s for intermediate relations R
Access Path

Access path: a way to retrieve tuples from a table

- A file scan
- An index *plus* a matching selection condition
Access Path Selection

- Supplier(sid, sname, scity, sstate)

- Selection condition: $sid > 300 \land scity='Seattle'$

- Indexes: B+-tree on sid and B+-tree on $scity$

- Which access path should we use?

- We should pick the most selective access path
Access Path Selectivity

• Access path selectivity is the number of pages retrieved if we use this access path
 – Most selective retrieves fewest pages

• As we saw earlier, for equality predicates
 – Selection on equality: \(\sigma_{a=v}(R) \)
 – \(V(R, a) = \# \) of distinct values of attribute a
 – \(1/V(R,a) \) is thus the reduction factor
 – Clustered index on a: cost \(B(R)/V(R,a) \)
 – Unclustered index on a: cost \(T(R)/V(R,a) \)
 – (we are ignoring I/O cost of index pages for simplicity)
Selectivity for Range Predicates

Selection on range: \(\sigma_{a>v}(R) \)

- How to compute the selectivity?
- Assume values are uniformly distributed
- Reduction factor \(X \)
- \(X = \frac{(\text{Max}(R,a) - v)}{(\text{Max}(R,a) - \text{Min}(R,a))} \)

- Clustered index on \(a \): cost \(B(R) \times X \)
- Unclustered index on \(a \): cost \(T(R) \times X \)
Back to Our Example

• Selection condition: \texttt{sid > 300} \land \texttt{scity='Seattle'}
 – Index I1: B+-tree on sid clustered
 – Index I2: B+-tree on scity unclustered

• Let’s assume
 – \(V(\text{Supplier, scity}) = 20\)
 – Max(\text{Supplier, sid}) = 1000, Min(\text{Supplier, sid})=1
 – B(\text{Supplier}) = 100, T(\text{Supplier}) = 1000

• Cost I1: \(B(R) \times (\text{Max-v})/(\text{Max-Min}) = 100 \times 700/999 \approx 70\)
• Cost I2: \(T(R) \times 1/V(\text{Supplier, scity}) = 1000/20 = 50\)
Selectivity with Multiple Conditions

What if we have an index on multiple attributes?

- Example selection $\sigma_{a=v_1 \land b= v_2}(R)$ and index on $<a,b>$

How to compute the selectivity?

- Assume attributes are independent
- $X = \frac{1}{V(R,a) \cdot V(R,b)}$

- Clustered index on $<a,b>$: cost $B(R) \cdot X$
- Unclustered index on $<a,b>$: cost $T(R) \cdot X$
Estimating Cost of a Query Plan

Goal: compute the cost of an entire physical query plan

• We already know how to
 – Compute the cost of different operations in terms of number Ios, given the T(R)’s and the B(R)’s

• We still need to do
 – Access path selection: compute cost of retrieving tuples from disk with different access paths
 – Size estimation: compute the T(R)’s and the B(R)’s for intermediate relations R
Statistics on Base Data

• Collected information for each relation
 – Number of tuples (cardinality) $T(R)$
 – Number of physical pages $B(R)$, clustering info
 – Indexes, number of keys in the index $V(R,a)$
 – Statistical information on attributes
 • Min value, max value, number distinct values
 • Histograms
 – Correlations between columns (hard)

• Collection approach: periodic, using sampling
Size Estimation

Projection: output size same as input size

Selection: multiply input size by reduction factor

- Similar to what we did for estimating access path selectivity
- Assume independence between conditions in the predicate
- Examples:
 \[
 T(\sigma_{A=...}(R)) = \frac{T(R)}{V(R,A)}
 \]
 \[
 T(\sigma_{A=... \land B=...}(R)) = \frac{T(R)}{(V(R,A) \ast V(R,B))}
 \]
Estimating Result Sizes

Join $R \bowtie S$

- Take product of cardinalities of relations R and S
- Apply reduction factors for each term in join condition
- Terms are of the form: column1 = column2
- Reduction: $\frac{1}{\text{MAX}(V(R,\text{column1}), V(S,\text{column2}))}$
- Why? Will explain next...
Assumptions

• *Containment of values*: if $V(R,A) \leq V(S,B)$, then the set of A values of R is included in the set of B values of S

 – Note: this indeed holds when A is a foreign key in R, and B is a key in S

• *Preservation of values*: for any other attribute C, $V(R \bowtie_{A=B} S, C) = V(R, C)$ (or $V(S, C)$)
Selectivity of $R \bowtie_{A=B} S$

Assume $V(R,A) \leq V(S,B)$

- Each tuple t in R joins with $T(S)/V(S,B)$ tuple(s) in S

- Hence $T(R \bowtie_{A=B} S) = T(R) \times T(S) / V(S,B)$

In general: $T(R \bowtie_{A=B} S) = T(R) \times T(S) / \max(V(R,A),V(S,B))$
Complete Example

Supplier(sid, surname, scity, sstate)
Supply(sid, pno, quantity)

• Some statistics
 – T(Supplier) = 1000 records
 – T(Supply) = 10,000 records
 – B(Supplier) = 100 pages
 – B(Supply) = 100 pages
 – V(Supplier, scity) = 20, V(Suppliers, state) = 10
 – V(Supply, pno) = 2,500
 – Both relations are clustered

• M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = 'Seattle'
 and x.sstate = 'WA'
Computing the Cost of a Plan

- Estimate **cardinality** in a bottom-up fashion
 - Cardinality is the **size** of a relation (nb of tuples)
 - Compute size of *all* intermediate relations in plan

- Estimate **cost** by using the estimated cardinalities
Physical Query Plan 1

(On the fly) \(\pi_{sname}\)

Selection and project on-the-fly
\(\rightarrow\) No additional cost.

(On the fly) \(\sigma_{\text{scity}='\text{Seattle}' \land \text{sstate}='\text{WA}' \land \text{pno}=2}\)

(Nested loop) \(sno = sno\)

Total cost of plan is thus cost of join:
\[= B(\text{Supplier}) + B(\text{Supplier}) \times B(\text{Supplies})\]
\[= 100 + 100 \times 100\]
\[= 10,100 \text{ I}/\text{Os}\]

T(\text{Supplier}) = 1000
T(\text{Supply}) = 10,000
B(\text{Supplier}) = 100
B(\text{Supply}) = 100
V(\text{Supplier,scity}) = 20
V(\text{Supplier,state}) = 10
V(\text{Supply,pno}) = 2,500

\(M = 11\)
Physical Query Plan 2

\[\text{(On the fly)} \quad \pi_{\text{sname}} \quad (4) \]
\[\text{(Sort-merge join)} \quad \text{sno} = \text{sno} \quad (3) \]

\[\text{(Scan write to T1)} \quad (1) \quad \sigma_{\text{scity}=\text{'Seattle'} \land \text{sstate}='WA'} \]
\[\text{(Scan write to T2)} \quad (2) \quad \sigma_{\text{pno}=2} \]

\[\text{Total cost} \approx 204 \text{ I/Os} \]

\[= 100 + 100 \times 1/20 \times 1/10 \quad (1) \]
\[+ 100 + 100 \times 1/2500 \quad (2) \]
\[+ 2 \quad (3) \]
\[+ 0 \quad (4) \]

\[\text{T(Supplier)} = 1000 \quad \text{T(Supply)} = 10,000 \quad \text{B(Supplier)} = 100 \quad \text{B(Supply)} = 100 \quad \text{V(Supplier, scity)} = 20 \quad \text{V(Supplier, state)} = 10 \quad \text{V(Supply, pno)} = 2,500 \]
Plan 2 with Different Numbers

What if we had:
10K pages of Suppliers
10K pages of Supplies

(Sort-merge join)
\(\pi \ \text{sname} \)
\(\sigma \ \text{sno} = \text{sno} \)

(1) \(\sigma \ \text{scity='Seattle' \land sstate='WA'} \)

(2) \(\sigma \ \text{pno=2} \)

(Scan write to T1)

(Scan write to T2)

Total cost
= 10000 + 50 (1)
+ 10000 + 4 (2)
+ 4*50 + 2*4 + 4 + 50 (3)
+ 0 (4)
Total cost \(\approx 20,316 \) I/Os

Assuming naive two-pass sort algorithm
Physical Query Plan 3

(On the fly) (4) \(\pi_{\text{sname}} \)

(On the fly)

(3) \(\sigma_{\text{scity}=\text{Seattle} \land \text{sstate}=\text{WA}} \)

(2) \(\sigma_{\text{sno} = \text{sno}} \) (Index nested loop)

(Use hash index) 4 tuples

(1) \(\sigma_{\text{pno}=2} \)

Supply

(Hash index on pno)

Assume: clustered

Supplier

(Hash index on sno)

Clustering does not matter

Total cost

= 1 (1) + 4 (2) + 0 (3) + 0 (3)

Total cost \(\approx 5 \) I/Os

\(T(\text{Supplier}) = 1000 \quad B(\text{Supplier}) = 100 \quad V(\text{Supplier,scity}) = 20 \quad M = 11 \)
\(T(\text{Supply}) = 10,000 \quad B(\text{Supply}) = 100 \quad V(\text{Supplier,state}) = 10 \quad V(\text{Supply,pno}) = 2,500 \)
Simplifications

- In the previous examples, we assumed that all index pages were in memory.

- When this is not the case, we need to add the cost of fetching index pages from disk.
Different Cost Models

- In previous examples, we considered IO costs
- Typically, want IO+CPU
- For parallel/distributed queries, add network bandwidth
- If need to compare *logical* plans
 - Compute the cardinality of each *intermediate* relation
 - Sum up all the cardinalities
Summary

Goal: compute the cost of an entire physical query plan

- We already know how to
 - Compute the cost of different operations in terms of number Ios, given the T(R)'s and the B(R)'s

- We still need to do
 - Access path selection: compute cost of retrieving tuples from disk with different access paths
 - Size estimation: compute the T(R)'s and the B(R)'s for intermediate relations R
Query Optimization

Three major components:

1. Cardinality and cost estimation
2. Search space
3. Plan enumeration algorithms
Relational Algebra Laws

- **Selections**
 - Commutative: $\sigma_{c1}(\sigma_{c2}(R))$ same as $\sigma_{c2}(\sigma_{c1}(R))$
 - Cascading: $\sigma_{c1\land c2}(R)$ same as $\sigma_{c2}(\sigma_{c1}(R))$

- **Projections**
 - Cascading

- **Joins**
 - Commutative: $R \bowtie S$ same as $S \bowtie R$
 - Associative: $R \bowtie (S \bowtie T)$ same as $(R \bowtie S) \bowtie T$
Left-Deep Plans and Bushy Plans

Left-deep plan

Bushy plan
Relational Algebra Laws

• Selects, projects, and joins
 – We can *commute* and *combine* all three types of operators
 – We just have to be careful that the fields we need are available when we apply the operator
 – Relatively straightforward. See book 15.3.

• More info in optional paper (by Chaudhuri), Section 4.
Group-by and Join

\[\gamma_{A, \text{sum}(D)}(R(A,B) \Join_{B=C} S(C,D)) = \ ? \]
Group-by and Join

\[\gamma_A, \text{sum}(D)(R(A,B) \bowtie_{B=C} S(C,D)) = \]
\[\gamma_A, \text{sum}(D) (R(A,B) \bowtie_{B=C} (\gamma_C, \text{sum}(D) S(C,D))) \]

These are very powerful laws. They were introduced only in the 90’s.
Search Space Challenges

• Search space is huge!
 – Many possible equivalent trees (logical)
 – Many implementations for each operator (physical)
 – Many access paths for each relation (physical)

• Cannot consider ALL plans
• Want a search space that includes low-cost plans

• Typical compromises:
 – Only left-deep plans
 – Only plans without cartesian products
 – Always push selections down to the leaves
Three major components:

1. Cardinality and cost estimation

2. Search space

3. Plan enumeration algorithms
Two Types of Optimizers

• **Heuristic-based optimizers:**
 – Apply greedily rules that always improve plan
 • Typically: push selections down
 – Very limited: no longer used today

• **Cost-based optimizers:**
 – Use a cost model to estimate the cost of each plan
 – Select the “cheapest” plan
 – We focus on cost-based optimizers
Three Approaches to Search Space Enumeration

• Complete plans
• Bottom-up plans
• Top-down plans
Complete Plans

R(A,B) S(B,C) T(C,D)

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

Why is this search space inefficient?
Bottom-up Partial Plans

R(A,B) S(B,C) T(C,D)

\[\text{SELECT} \ * \ \text{FROM} \ R, \ S, \ T \ \text{WHERE} \ R.B=S.B \ \text{and} \ S.C=T.C \ \text{and} \ R.A<40 \]

Why is this better?
Top-down Partial Plans

\[
\begin{align*}
R(A,B) & \quad \text{SELECT *} \\
S(B,C) & \quad \text{FROM } R, S, T \\
T(C,D) & \quad \text{WHERE } R.B=S.B \text{ and } S.C=T.C \text{ and } R.A<40
\end{align*}
\]
Two Types of Plan Enumeration Algorithms

- **Dynamic programming (in class)**
 - Based on System R (aka Selinger) style optimizer [1979]
 - Limited to joins: *join reordering algorithm*
 - Bottom-up

- **Rule-based algorithm (will not discuss)**
 - Database of rules (=algebraic laws)
 - Usually: dynamic programming
 - Usually: top-down
System R Search Space

- Only left-deep plans
 - Enable dynamic programming for enumeration
 - Facilitate tuple pipelining from outer relation
- Consider plans with all “interesting orders”
- Perform cross-products after all other joins (heuristic)
- Only consider nested loop & sort-merge joins
- Consider both file scan and indexes
- Try to evaluate predicates early
Plan Enumeration Algorithm

- **Idea**: use dynamic programming
- For each subset of \{R1, ..., Rn\}, compute the best plan for that subset
- In increasing order of set cardinality:
 - Step 1: for \{R1\}, \{R2\}, ..., \{Rn\}
 - Step 2: for \{R1,R2\}, \{R1,R3\}, ..., \{Rn-1, Rn\}
 - ...
 - Step n: for \{R1, ..., Rn\}
- It is a bottom-up strategy
- A subset of \{R1, ..., Rn\} is also called a *subquery*
Dynamic Programming Algo.

• For each subquery $Q \subseteq \{ R_1, \ldots, R_n \}$ compute the following:
 – Size(Q)
 – A best plan for Q: Plan(Q)
 – The cost of that plan: Cost(Q)
Dynamic Programming Algo.

• **Step 1**: Enumerate all single-relation plans

 – Consider selections on attributes of relation
 – Consider all possible access paths
 – Consider attributes that are not needed

 – Compute cost for each plan

 – Keep cheapest plan per “interesting” output order
Dynamic Programming Algo.

• **Step 2**: Generate all two-relation plans

 – For each single-relation plan from step 1
 – Consider that plan as outer relation
 – Consider every other relation as inner relation

 – Compute cost for each plan

 – Keep cheapest plan per “interesting” output order
Dynamic Programming Algo.

- **Step 3:** Generate all three-relation plans
 - For each each two-relation plan from step 2
 - Consider that plan as outer relation
 - Consider every other relation as inner relation
 - Compute cost for each plan
 - Keep cheapest plan per “interesting” output order

- **Steps 4 through n:** repeat until plan contains all the relations in the query
Commercial Query Optimizers

DB2, Informix, Microsoft SQL Server, Oracle 8

- Inspired by System R
 - Left-deep plans and dynamic programming
 - Cost-based optimization (CPU and IO)

- Go beyond System R style of optimization
 - Also consider right-deep and bushy plans (e.g., Oracle and DB2)
 - Variety of additional strategies for generating plans (e.g., DB2 and SQL Server)
Other Query Optimizers

- Randomized plan generation
 - Genetic algorithm
 - PostgreSQL uses it for queries with many joins

- Rule-based
 - *Extensible* collection of rules
 - Rule = Algebraic law with a direction
 - Algorithm for firing these rules
 - Generate many alternative plans, in some order
 - Prune by cost
 - Startburst (later DB2) and Volcano (later SQL Server)