
CSE 544 
Principles of Database 
Management Systems 

Fall 2016 
Lecture 8 - Query optimization 



Announcements 

•  HW2 (SimpleDB) is due next Friday! 

•  Midterm in two weeks, Nov. 10, in class 

•  Project Milestone due on Nov. 16 
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Recommended Readings 

Access path selection in a relational database management 
system. 
Selinger. et. al. SIGMOD 1979 
 
Additional resources: 
•  Chaudhuri, "An Overview of Query Optimization in 

Relational Systems," Proceedings of ACM PODS, 1998 

•  Database management systems. 
Ramakrishnan and Gehrke.  
Third Ed. Chapter 15. 
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Query Optimization Motivation 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 
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Declarative query 
Recall physical and 
logical data independence 



What We Already Know… 

Supplier(sno,sname,scity,sstate) 

Part(pno,pname,psize,pcolor) 

Supply(sno,pno,price) 
For each SQL query…. 
SELECT S.sname 
FROM Supplier S, Supply U 
WHERE S.scity='Seattle' AND S.sstate='WA’ 
AND S.sno = U.sno 
AND U.pno = 2 

 
There exist many logical query plan… 
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Example Query: Logical Plan 1 

Supplier Supply 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 
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Example Query: Logical Plan 2 
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Supplier Supply 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

σ pno=2 
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What We Also Know 

•  For each logical plan… 

•  There exist many physical plans 
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Example Query: Physical Plan 1 
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Supplier Supply 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) 
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Example Query: Physical Plan 2 
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Supplier Supply 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (Index scan) 

(Index nested loop) 

(On the fly) 

(On the fly) 
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Query Optimization 
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Three major components: 

1.  Cardinality and cost estimation 

2.  Search space 

3.  Plan enumeration algorithms 
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Estimating Cost of a Query Plan 

Goal: compute the cost of an entire physical query plan 

•  We already know how to 
–  Compute the cost of different operations in terms of number Ios, 

given the T(R)’s and the B(R)’s 

•  We still need to do 
–  Access path selection: compute cost of retrieving tuples from disk 

with different access paths 
–  Size estimation: compute the T(R)’s and the B(R)’s for 

intermediate relations R  
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Access Path 

Access path: a way to retrieve tuples from a table 

•  A file scan 

•  An index plus a matching selection condition 
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Access Path Selection 

•  Supplier(sid,sname,scity,sstate) 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 

•  Indexes: B+-tree on sid and B+-tree on scity 

•  Which access path should we use? 

•  We should pick the most selective access path 
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Access Path Selectivity 

•  Access path selectivity is the number of pages 
retrieved if we use this access path 
–  Most selective retrieves fewest pages 

•  As we saw earlier, for equality predicates 
–  Selection on equality: σa=v(R) 
–  V(R, a) = # of distinct values of attribute a 
–  1/V(R,a) is thus the reduction factor 
–  Clustered index on a:  cost B(R)/V(R,a) 
–  Unclustered index on a: cost T(R)/V(R,a) 
–  (we are ignoring I/O cost of index pages for simplicity) 
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Selectivity for Range Predicates 

Selection on range: σa>v(R) 

•  How to compute the selectivity? 
•  Assume values are uniformly distributed 
•  Reduction factor X 
•  X = (Max(R,a) - v) / (Max(R,a) - Min(R,a))  

•  Clustered index on a: cost B(R)*X 
•  Unclustered index on a: cost T(R)*X 
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Back to Our Example 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 
–  Index I1: B+-tree on sid clustered 
–  Index I2: B+-tree on scity unclustered 

•  Let’s assume  
–  V(Supplier,scity) = 20 
–  Max(Supplier, sid) = 1000, Min(Supplier,sid)=1 
–  B(Supplier) = 100, T(Supplier) = 1000 

•  Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ≈ 70 
•  Cost I2: T(R) * 1/V(Supplier,scity) = 1000/20 = 50 
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Selectivity with 
Multiple Conditions 

What if we have an index on multiple attributes? 
•  Example selection σa=v1 ∧ b= v2(R)  and index on <a,b> 

How to compute the selectivity? 
•  Assume attributes are independent 
•  X = 1  /  (V(R,a) *  V(R,b)) 

•  Clustered index on <a,b>:  cost B(R)*X 
•  Unclustered index on <a,b>: cost T(R)*X 
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Estimating Cost of a Query Plan 

Goal: compute the cost of an entire physical query plan 

•  We already know how to 
–  Compute the cost of different operations in terms of number Ios, 

given the T(R)’s and the B(R)’s 

•  We still need to do 
–  Access path selection: compute cost of retrieving tuples from disk 

with different access paths 
–  Size estimation: compute the T(R)’s and the B(R)’s for 

intermediate relations R  
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Statistics on Base Data 

•  Collected information for each relation 
–  Number of tuples (cardinality)  T(R) 
–  Number of physical pages B(R), clustering info 
–  Indexes, number of keys in the index  V(R,a) 
–  Statistical information on attributes 

•  Min value, max value, number distinct values 
•  Histograms 

–  Correlations between columns (hard) 

•  Collection approach: periodic, using sampling 
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Size Estimation 

Projection: output size same as input size 

Selection: multiply input size by reduction factor 
•  Similar to what we did for estimating access path 

selectivity 
•  Assume independence between conditions in the 

predicate 
•  Examples: 

 T(σA=...(R)) = T(R) / V(R,A) 
 T(σA=...∧ B=...	(R)) = T(R) / (V(R,A) * V(R,B)) 
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Estimating Result Sizes 

Join R  ⋈ S 

•  Take product of cardinalities of relations R and S 
•  Apply reduction factors for each term in join condition 
•  Terms are of the form: column1 = column2 
•  Reduction: 1/ ( MAX( V(R,column1), V(S,column2)) 
•  Why? Will explain next... 
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Assumptions 

•  Containment of values: if V(R,A) <= V(S,B), then 
the set of A values of R is included in the set of B 
values of S 
–  Note: this indeed holds when A is a foreign key in R, 

and B is a key in S 

•  Preservation of values: for any other attribute C,  
V(R ⨝A=B S, C) = V(R, C)   (or V(S, C)) 
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Selectivity of R ⨝A=B S 

Assume V(R,A) <= V(S,B) 
•  Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S 

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B) 

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B)) 
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Complete Example 

•  Some statistics 
–  T(Supplier) = 1000 records 
–  T(Supply) = 10,000 records 
–  B(Supplier) = 100 pages 
–  B(Supply) = 100 pages 
–  V(Supplier,scity) = 20, V(Suppliers,state) = 10 
–  V(Supply,pno) = 2,500 
–  Both relations are clustered 

•  M = 11 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

SELECT sname 
FROM Supplier x, Supply y 
WHERE x.sid = y.sid 
    and  y.pno = 2 
    and x.scity = ‘Seattle’ 
    and x.sstate = ‘WA’ 
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Computing the Cost of a Plan 

•  Estimate cardinality in a bottom-up fashion 
–  Cardinality is the size of a relation (nb of tuples) 
–  Compute size of all intermediate relations in plan  

•  Estimate cost by using the estimated cardinalities 
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Physical Query Plan 1 

Supplier Supply 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) Selection and project on-the-fly 
-> No additional cost. 
 
 
 
 
Total cost of plan is thus cost of join: 
= B(Supplier)+B(Supplier)*B(Supplies) 
= 100 + 100 * 100 
= 10,100 I/Os 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 11 
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Supplier Supply 

sno = sno 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(On the fly) 

(2) σ pno=2 

(Scan 
 write to T1) 

Physical Query Plan 2 
Total cost 
= 100 + 100 * 1/20 * 1/10 (1) 
+ 100 + 100 * 1/2500 (2) 
+ 2 (3) 
+ 0 (4) 
Total cost  ≈  204 I/Os 

(3) 

(4) 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 11 
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Supplier Supply 

sno = sno 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(2) σ pno=2 

(Scan 
 write to T1) 

Plan 2 with Different Numbers 
Total cost 
= 10000 + 50 (1) 
+ 10000 + 4 (2) 
+ 4*50 + 2*4 + 4 + 50  (3) 
+ 0 (4) 
Total cost  ≈  20,316 I/Os 

What if we had: 
10K pages of Suppliers 
10K pages of Supplies 

Assuming naive 
two-pass sort 
algorithm 

(3) 

(4) 
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Supply Supplier 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Hash index on sno) 
Clustering does not matter 

(On the fly) 

(1) σ pno=2 

(Hash index on pno ) 
Assume: clustered 

Physical Query Plan 3 
Total cost 
= 1 (1) 
+ 4 (2) 
+ 0 (3) 
+ 0 (3) 
Total cost  ≈  5 I/Os 

(Use hash index) 

(2) 

(3) 

(4) 

(On the fly) 

4 tuples 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 11 
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Simplifications 

•  In the previous examples, we assumed that all index 
pages were in memory 

•  When this is not the case, we need to add the cost of 
fetching index pages from disk 
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Different Cost Models 

•  In previous examples, we considered IO costs 

•  Typically, want IO+CPU 

•  For parallel/distributed queries, add network bandwidth 

•  If need to compare logical plans 
–  Compute the cardinality of each intermediate relation 
–  Sum up all the cardinalities 
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Summary 

Goal: compute the cost of an entire physical query plan 

•  We already know how to 
–  Compute the cost of different operations in terms of number Ios, 

given the T(R)’s and the B(R)’s 

•  We still need to do 
–  Access path selection: compute cost of retrieving tuples from disk 

with different access paths 
–  Size estimation: compute the T(R)’s and the B(R)’s for 

intermediate relations R  
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Query Optimization 
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Three major components: 

1.  Cardinality and cost estimation 

2.  Search space 

3.  Plan enumeration algorithms 
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Relational Algebra Laws 

•  Selections 
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R)) 
–  Cascading:  σc1∧c2(R) same as σc2(σc1(R)) 

•  Projections 
–  Cascading 

•  Joins 
–  Commutative : R ⋈ S same as S ⋈ R  

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T  
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Left-Deep Plans and 
Bushy Plans 

R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 
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Relational Algebra Laws 

•  Selects, projects, and joins 
–  We can commute and combine all three types of operators 
–  We just have to be careful that the fields we need are available 

when we apply the operator 
–  Relatively straightforward. See book 15.3. 

•  More info in optional paper (by Chaudhuri), Section 4. 
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Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =        ? 
      

R(A, B),  S(C,D) 
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Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =   
     γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D))) 

These are very powerful laws. 
They were introduced only in the 90’s. 

R(A, B),  S(C,D) 
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Search Space Challenges 

•  Search space is huge! 
–  Many possible equivalent trees (logical) 
–  Many implementations for each operator (physical) 
–  Many access paths for each relation (physical) 

•  Cannot consider ALL plans 
•  Want a search space that includes low-cost plans 

•  Typical compromises: 
–  Only left-deep plans 
–  Only plans without cartesian products 
–  Always push selections down to the leaves 
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Query Optimization 
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Three major components: 

1.  Cardinality and cost estimation 

2.  Search space 

3.  Plan enumeration algorithms 
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Two Types of Optimizers 

•  Heuristic-based optimizers: 
–  Apply greedily rules that always improve plan 

•  Typically: push selections down 
–  Very limited: no longer used today 

•  Cost-based optimizers: 
–  Use a cost model to estimate the cost of each plan 
–  Select the “cheapest” plan 
–  We focus on cost-based optimizers 
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Three Approaches to Search 
Space Enumeration 

•  Complete plans 

•  Bottom-up plans 

•  Top-down plans 
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Complete Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

⨝ 

S σA<40 

R 

⨝ 

T 

⨝ 

S 

σA<40 

R 

⨝ 

T 

Why is this 
search space 
inefficient ? 

R(A,B) 
S(B,C) 
T(C,D) 

44 



Bottom-up Partial Plans 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

R S T 

⨝ 

S σA<40 

R 

⨝ 

R S 

⨝ 

S σA<40 

R 

⨝ 

T 

….. 

Why is this 
better ? 
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Top-down Partial Plans 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

T 
⨝ 

S 

⨝ 

T 

….. 

SELECT R.A, T.D 
FROM R, S, T 
WHERE R.B=S.B 
        and S.C=T.C 

SELECT * 
FROM R, S 
WHERE R.B=S.B 
        and R.A < 40 SELECT * 

FROM R 
WHERE R.A < 40 
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Two Types of Plan 
Enumeration Algorithms 

•  Dynamic programming  (in class) 
–  Based on System R (aka Selinger) style optimizer[1979] 
–  Limited to joins: join reordering algorithm 
–  Bottom-up 

•  Rule-based algorithm (will not discuss) 
–  Database of rules (=algebraic laws) 
–  Usually: dynamic programming 
–  Usually: top-down 
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System R Search Space 

•  Only left-deep plans 
–  Enable dynamic programming for enumeration 
–  Facilitate tuple pipelining from outer relation 

•  Consider plans with all “interesting orders” 
•  Perform cross-products after all other joins (heuristic) 
•  Only consider nested loop & sort-merge joins 
•  Consider both file scan and indexes 
•  Try to evaluate predicates early 
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Plan Enumeration Algorithm 

•  Idea: use dynamic programming 
•  For each subset of {R1, …, Rn}, compute the best plan 

for that subset 
•  In increasing order of set cardinality: 

–  Step 1: for {R1}, {R2}, …, {Rn} 
–  Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn} 
–  … 
–  Step n: for {R1, …, Rn} 

•  It is a bottom-up strategy 
•  A subset of {R1, …, Rn} is also called a subquery 
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Dynamic Programming Algo. 

•  For each subquery Q ⊆{R1, …, Rn} compute the 
following: 
–  Size(Q) 
–  A best plan for Q: Plan(Q) 
–  The cost of that plan: Cost(Q) 
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Dynamic Programming Algo. 

•  Step 1: Enumerate all single-relation plans 

–  Consider selections on attributes of relation 
–  Consider all possible access paths 
–  Consider attributes that are not needed 

–  Compute cost for each plan 

–  Keep cheapest plan per “interesting” output order 
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Dynamic Programming Algo. 

•  Step 2: Generate all two-relation plans 

–  For each each single-relation plan from step 1 
–  Consider that plan as outer relation 
–  Consider every other relation as inner relation 

–  Compute cost for each plan 

–  Keep cheapest plan per “interesting” output order 
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Dynamic Programming Algo. 

•  Step 3: Generate all three-relation plans 

–  For each each two-relation plan from step 2 
–  Consider that plan as outer relation 
–  Consider every other relation as inner relation 
–  Compute cost for each plan 
–  Keep cheapest plan per “interesting” output order 

•  Steps 4 through n: repeat until plan contains all the 
relations in the query 
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Commercial Query Optimizers 

DB2, Informix, Microsoft SQL Server, Oracle 8 

•  Inspired by System R 
–  Left-deep plans and dynamic programming 
–  Cost-based optimization (CPU and IO) 

•  Go beyond System R style of optimization 
–  Also consider right-deep and bushy plans (e.g., Oracle and DB2) 
–  Variety of additional strategies for generating plans (e.g., DB2 

and SQL Server) 

54 



CSE 544 - Fall 2016 

Other Query Optimizers 

•  Randomized plan generation 
–  Genetic algorithm 
–  PostgreSQL uses it for queries with many joins 

•  Rule-based 
–  Extensible collection of rules 
–  Rule = Algebraic law with a direction 
–  Algorithm for firing these rules 

•  Generate many alternative plans, in some order 
•  Prune by cost 

–  Startburst (later DB2) and Volcano (later SQL Server) 
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