
CSE 544
Principles of Database
Management Systems

Fall 2016
Lecture 8 - Query optimization

Announcements

•  HW2 (SimpleDB) is due next Friday!

•  Midterm in two weeks, Nov. 10, in class

•  Project Milestone due on Nov. 16

CSE 544 - Fall 2016 2

CSE 544 - Fall 2016

Recommended Readings

Access path selection in a relational database management
system.
Selinger. et. al. SIGMOD 1979

Additional resources:
•  Chaudhuri, "An Overview of Query Optimization in

Relational Systems," Proceedings of ACM PODS, 1998

•  Database management systems.
Ramakrishnan and Gehrke.
Third Ed. Chapter 15.

3

Query Optimization Motivation

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

4

Declarative query
Recall physical and
logical data independence

What We Already Know…

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)
For each SQL query….
SELECT S.sname
FROM Supplier S, Supply U
WHERE S.scity='Seattle' AND S.sstate='WA’
AND S.sno = U.sno
AND U.pno = 2

There exist many logical query plan…

CSE 544 - Fall 2016 5

CSE 544 - Fall 2016

Example Query: Logical Plan 1

Supplier Supply

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

6

Example Query: Logical Plan 2

CSE 544 - Fall 2016

Supplier Supply

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

σ pno=2

7

What We Also Know

•  For each logical plan…

•  There exist many physical plans

CSE 544 - Fall 2016 8

Example Query: Physical Plan 1

CSE 544 - Fall 2016

Supplier Supply

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

9

Example Query: Physical Plan 2

CSE 544 - Fall 2016

Supplier Supply

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (Index scan)

(Index nested loop)

(On the fly)

(On the fly)

10

Query Optimization

CSE 544 - Fall 2016

Three major components:

1.  Cardinality and cost estimation

2.  Search space

3.  Plan enumeration algorithms

11

CSE 544 - Fall 2016

Estimating Cost of a Query Plan

Goal: compute the cost of an entire physical query plan

•  We already know how to
–  Compute the cost of different operations in terms of number Ios,

given the T(R)’s and the B(R)’s

•  We still need to do
–  Access path selection: compute cost of retrieving tuples from disk

with different access paths
–  Size estimation: compute the T(R)’s and the B(R)’s for

intermediate relations R

12

CSE 544 - Fall 2016

Access Path

Access path: a way to retrieve tuples from a table

•  A file scan

•  An index plus a matching selection condition

13

CSE 544 - Fall 2016

Access Path Selection

•  Supplier(sid,sname,scity,sstate)

•  Selection condition: sid > 300 ∧ scity=‘Seattle’

•  Indexes: B+-tree on sid and B+-tree on scity

•  Which access path should we use?

•  We should pick the most selective access path

14

CSE 544 - Fall 2016

Access Path Selectivity

•  Access path selectivity is the number of pages
retrieved if we use this access path
–  Most selective retrieves fewest pages

•  As we saw earlier, for equality predicates
–  Selection on equality: σa=v(R)
–  V(R, a) = # of distinct values of attribute a
–  1/V(R,a) is thus the reduction factor
–  Clustered index on a: cost B(R)/V(R,a)
–  Unclustered index on a: cost T(R)/V(R,a)
–  (we are ignoring I/O cost of index pages for simplicity)

15

CSE 544 - Fall 2016

Selectivity for Range Predicates

Selection on range: σa>v(R)

•  How to compute the selectivity?
•  Assume values are uniformly distributed
•  Reduction factor X
•  X = (Max(R,a) - v) / (Max(R,a) - Min(R,a))

•  Clustered index on a: cost B(R)*X
•  Unclustered index on a: cost T(R)*X

16

CSE 544 - Fall 2016

Back to Our Example

•  Selection condition: sid > 300 ∧ scity=‘Seattle’
–  Index I1: B+-tree on sid clustered
–  Index I2: B+-tree on scity unclustered

•  Let’s assume
–  V(Supplier,scity) = 20
–  Max(Supplier, sid) = 1000, Min(Supplier,sid)=1
–  B(Supplier) = 100, T(Supplier) = 1000

•  Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ≈ 70
•  Cost I2: T(R) * 1/V(Supplier,scity) = 1000/20 = 50

17

CSE 544 - Fall 2016

Selectivity with
Multiple Conditions

What if we have an index on multiple attributes?
•  Example selection σa=v1 ∧ b= v2(R) and index on <a,b>

How to compute the selectivity?
•  Assume attributes are independent
•  X = 1 / (V(R,a) * V(R,b))

•  Clustered index on <a,b>: cost B(R)*X
•  Unclustered index on <a,b>: cost T(R)*X

18

CSE 544 - Fall 2016

Estimating Cost of a Query Plan

Goal: compute the cost of an entire physical query plan

•  We already know how to
–  Compute the cost of different operations in terms of number Ios,

given the T(R)’s and the B(R)’s

•  We still need to do
–  Access path selection: compute cost of retrieving tuples from disk

with different access paths
–  Size estimation: compute the T(R)’s and the B(R)’s for

intermediate relations R

19

CSE 544 - Fall 2016

Statistics on Base Data

•  Collected information for each relation
–  Number of tuples (cardinality) T(R)
–  Number of physical pages B(R), clustering info
–  Indexes, number of keys in the index V(R,a)
–  Statistical information on attributes

•  Min value, max value, number distinct values
•  Histograms

–  Correlations between columns (hard)

•  Collection approach: periodic, using sampling

20

CSE 544 - Fall 2016

Size Estimation

Projection: output size same as input size

Selection: multiply input size by reduction factor
•  Similar to what we did for estimating access path

selectivity
•  Assume independence between conditions in the

predicate
•  Examples:

 T(σA=...(R)) = T(R) / V(R,A)
 T(σA=...∧ B=...	(R)) = T(R) / (V(R,A) * V(R,B))

21

CSE 544 - Fall 2016

Estimating Result Sizes

Join R ⋈ S

•  Take product of cardinalities of relations R and S
•  Apply reduction factors for each term in join condition
•  Terms are of the form: column1 = column2
•  Reduction: 1/ (MAX(V(R,column1), V(S,column2))
•  Why? Will explain next...

22

Assumptions

•  Containment of values: if V(R,A) <= V(S,B), then
the set of A values of R is included in the set of B
values of S
–  Note: this indeed holds when A is a foreign key in R,

and B is a key in S

•  Preservation of values: for any other attribute C,
V(R ⨝A=B S, C) = V(R, C) (or V(S, C))

CSE 544 - Fall 2016 23

Selectivity of R ⨝A=B S

Assume V(R,A) <= V(S,B)
•  Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))

CSE 544 - Fall 2016 24

CSE 544 - Fall 2016

Complete Example

•  Some statistics
–  T(Supplier) = 1000 records
–  T(Supply) = 10,000 records
–  B(Supplier) = 100 pages
–  B(Supply) = 100 pages
–  V(Supplier,scity) = 20, V(Suppliers,state) = 10
–  V(Supply,pno) = 2,500
–  Both relations are clustered

•  M = 11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

25

Computing the Cost of a Plan

•  Estimate cardinality in a bottom-up fashion
–  Cardinality is the size of a relation (nb of tuples)
–  Compute size of all intermediate relations in plan

•  Estimate cost by using the estimated cardinalities

CSE 544 - Fall 2016 26

CSE 544 - Fall 2016

Physical Query Plan 1

Supplier Supply

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supplies)
= 100 + 100 * 100
= 10,100 I/Os

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

27

CSE 544 - Fall 2016

Supplier Supply

sno = sno

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(2) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2
Total cost
= 100 + 100 * 1/20 * 1/10 (1)
+ 100 + 100 * 1/2500 (2)
+ 2 (3)
+ 0 (4)
Total cost ≈ 204 I/Os

(3)

(4)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

28

CSE 544 - Fall 2016

Supplier Supply

sno = sno

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(2) σ pno=2

(Scan
 write to T1)

Plan 2 with Different Numbers
Total cost
= 10000 + 50 (1)
+ 10000 + 4 (2)
+ 4*50 + 2*4 + 4 + 50 (3)
+ 0 (4)
Total cost ≈ 20,316 I/Os

What if we had:
10K pages of Suppliers
10K pages of Supplies

Assuming naive
two-pass sort
algorithm

(3)

(4)

29

Supply Supplier

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Hash index on sno)
Clustering does not matter

(On the fly)

(1) σ pno=2

(Hash index on pno)
Assume: clustered

Physical Query Plan 3
Total cost
= 1 (1)
+ 4 (2)
+ 0 (3)
+ 0 (3)
Total cost ≈ 5 I/Os

(Use hash index)

(2)

(3)

(4)

(On the fly)

4 tuples

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

30

CSE 544 - Fall 2016

Simplifications

•  In the previous examples, we assumed that all index
pages were in memory

•  When this is not the case, we need to add the cost of
fetching index pages from disk

31

Different Cost Models

•  In previous examples, we considered IO costs

•  Typically, want IO+CPU

•  For parallel/distributed queries, add network bandwidth

•  If need to compare logical plans
–  Compute the cardinality of each intermediate relation
–  Sum up all the cardinalities

CSE 544 - Fall 2016 32

CSE 544 - Fall 2016

Summary

Goal: compute the cost of an entire physical query plan

•  We already know how to
–  Compute the cost of different operations in terms of number Ios,

given the T(R)’s and the B(R)’s

•  We still need to do
–  Access path selection: compute cost of retrieving tuples from disk

with different access paths
–  Size estimation: compute the T(R)’s and the B(R)’s for

intermediate relations R

33

Query Optimization

CSE 544 - Fall 2016

Three major components:

1.  Cardinality and cost estimation

2.  Search space

3.  Plan enumeration algorithms

34

CSE 544 - Fall 2016

Relational Algebra Laws

•  Selections
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R))
–  Cascading: σc1∧c2(R) same as σc2(σc1(R))

•  Projections
–  Cascading

•  Joins
–  Commutative : R ⋈ S same as S ⋈ R

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T

35

CSE 544 - Fall 2016

Left-Deep Plans and
Bushy Plans

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

36

CSE 544 - Fall 2016

Relational Algebra Laws

•  Selects, projects, and joins
–  We can commute and combine all three types of operators
–  We just have to be careful that the fields we need are available

when we apply the operator
–  Relatively straightforward. See book 15.3.

•  More info in optional paper (by Chaudhuri), Section 4.

37

Group-by and Join

CSE 544 - Fall 2016

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) = ?

R(A, B), S(C,D)

38

Group-by and Join

CSE 544 - Fall 2016

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =
 γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D)))

These are very powerful laws.
They were introduced only in the 90’s.

R(A, B), S(C,D)

39

Search Space Challenges

•  Search space is huge!
–  Many possible equivalent trees (logical)
–  Many implementations for each operator (physical)
–  Many access paths for each relation (physical)

•  Cannot consider ALL plans
•  Want a search space that includes low-cost plans

•  Typical compromises:
–  Only left-deep plans
–  Only plans without cartesian products
–  Always push selections down to the leaves

40

Query Optimization

CSE 544 - Fall 2016

Three major components:

1.  Cardinality and cost estimation

2.  Search space

3.  Plan enumeration algorithms

41

Two Types of Optimizers

•  Heuristic-based optimizers:
–  Apply greedily rules that always improve plan

•  Typically: push selections down
–  Very limited: no longer used today

•  Cost-based optimizers:
–  Use a cost model to estimate the cost of each plan
–  Select the “cheapest” plan
–  We focus on cost-based optimizers

CSE 544 - Fall 2016 42

Three Approaches to Search
Space Enumeration

•  Complete plans

•  Bottom-up plans

•  Top-down plans

CSE 544 - Fall 2016 43

Complete Plans

CSE 544 - Fall 2016

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

Why is this
search space
inefficient ?

R(A,B)
S(B,C)
T(C,D)

44

Bottom-up Partial Plans

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

Why is this
better ?

CSE 544 - Fall 2016 45

Top-down Partial Plans

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40 SELECT *

FROM R
WHERE R.A < 40

CSE 544 - Fall 2016 46

Two Types of Plan
Enumeration Algorithms

•  Dynamic programming (in class)
–  Based on System R (aka Selinger) style optimizer[1979]
–  Limited to joins: join reordering algorithm
–  Bottom-up

•  Rule-based algorithm (will not discuss)
–  Database of rules (=algebraic laws)
–  Usually: dynamic programming
–  Usually: top-down

CSE 544 - Fall 2016 47

CSE 544 - Fall 2016

System R Search Space

•  Only left-deep plans
–  Enable dynamic programming for enumeration
–  Facilitate tuple pipelining from outer relation

•  Consider plans with all “interesting orders”
•  Perform cross-products after all other joins (heuristic)
•  Only consider nested loop & sort-merge joins
•  Consider both file scan and indexes
•  Try to evaluate predicates early

48

CSE 544 - Fall 2016

Plan Enumeration Algorithm

•  Idea: use dynamic programming
•  For each subset of {R1, …, Rn}, compute the best plan

for that subset
•  In increasing order of set cardinality:

–  Step 1: for {R1}, {R2}, …, {Rn}
–  Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
–  …
–  Step n: for {R1, …, Rn}

•  It is a bottom-up strategy
•  A subset of {R1, …, Rn} is also called a subquery

49

CSE 544 - Fall 2016

Dynamic Programming Algo.

•  For each subquery Q ⊆{R1, …, Rn} compute the
following:
–  Size(Q)
–  A best plan for Q: Plan(Q)
–  The cost of that plan: Cost(Q)

50

CSE 544 - Fall 2016

Dynamic Programming Algo.

•  Step 1: Enumerate all single-relation plans

–  Consider selections on attributes of relation
–  Consider all possible access paths
–  Consider attributes that are not needed

–  Compute cost for each plan

–  Keep cheapest plan per “interesting” output order

51

CSE 544 - Fall 2016

Dynamic Programming Algo.

•  Step 2: Generate all two-relation plans

–  For each each single-relation plan from step 1
–  Consider that plan as outer relation
–  Consider every other relation as inner relation

–  Compute cost for each plan

–  Keep cheapest plan per “interesting” output order

52

CSE 544 - Fall 2016

Dynamic Programming Algo.

•  Step 3: Generate all three-relation plans

–  For each each two-relation plan from step 2
–  Consider that plan as outer relation
–  Consider every other relation as inner relation
–  Compute cost for each plan
–  Keep cheapest plan per “interesting” output order

•  Steps 4 through n: repeat until plan contains all the
relations in the query

53

CSE 544 - Fall 2016

Commercial Query Optimizers

DB2, Informix, Microsoft SQL Server, Oracle 8

•  Inspired by System R
–  Left-deep plans and dynamic programming
–  Cost-based optimization (CPU and IO)

•  Go beyond System R style of optimization
–  Also consider right-deep and bushy plans (e.g., Oracle and DB2)
–  Variety of additional strategies for generating plans (e.g., DB2

and SQL Server)

54

CSE 544 - Fall 2016

Other Query Optimizers

•  Randomized plan generation
–  Genetic algorithm
–  PostgreSQL uses it for queries with many joins

•  Rule-based
–  Extensible collection of rules
–  Rule = Algebraic law with a direction
–  Algorithm for firing these rules

•  Generate many alternative plans, in some order
•  Prune by cost

–  Startburst (later DB2) and Volcano (later SQL Server)

55

