CSE 544 Principles of Database Management Systems

Fall 2016
Lecture 6 - Datalog (2)

Announcements

Homework 2 posted, due Friday, Nov. $4^{\text {th }}$

- SimpleDB

References

- Reading:

Joe Hellerstein, "The Declarative Imperative," SIGMOD Record 2010

- R\&G Chapter 24
- Phokion Kolaitis' tutorial on database theory at Simon's https://simons.berkeley.edu/sites/default/files/docs/5241/s imons16-21.pdf
- Daniel Zinn, Todd J. Green, Bertram Ludäscher: Winmove is coordination-free (sometimes). ICDT 2012

Review

- What is datalog?
- What is the naïve evaluation algorithm?
- What is the seminaive algorithm?

Outline

- Magic sets
- Extending datalog with negation and aggregates

Magic Sets

- Problem: datalog programs compute a lot, but sometimes we need only very little
- Prolog computes top-down and retrieves very little datalog computes bottom up retrieves a lot
- (Prolog has other issues: left recursive prolog never terminates!)
- Magic sets transform a datalog program P into a new program P^{\prime}, such that bottom-up($\left.\mathrm{P}^{\prime}\right)=$ top-down(P)

Example 1

$$
\begin{aligned}
& \mathrm{T}(x, y):-\mathrm{E}(x, y) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{E}(\mathrm{z}, \mathrm{y}) \\
& \mathrm{Q}(\mathrm{y}):-\mathrm{T}(3, y) \\
& \hline
\end{aligned}
$$

a constant

Bottom-up evaluation very inefficient

Example 1

Manual optimization:
$Q(y):-E(3, y)$
$Q(y):-Q(x), E(x, y)$
$T(x, y):-E(x, y)$
$T(x, y):-T(x, z), E(z, y)$
$Q(y):-T(3, y)$

Bottom-up evaluation very inefficient

Example 2

Same generation

SG(x,x) :- V(x) SG(x,y) :- Up(x,u),SG(u,v),Dn(u,y) Q(y) :- SG(1,y)

Manual optimization???

Magic Set Rewriting (simplified)

- For each IDB predicate create "adorned" versions, with binding patters
- For each adorned IDB P, create a predicate Magic ${ }_{P}$
- For each rule, create several rules, one for each possible adornment of the head:
- Allow information to flow left-to-right ("sideways information passing"), and this defines the required adornments of the IDB's in the body
- If there are k IDB's in the body, create $\mathrm{k}+1$ supplementary relations Supp ${ }_{i}$, which guard the set of bound variables passed on to the i'th IDB
- New rules defining Magicp: one for the query, and one for each Supp ${ }_{i}$ preceding an occurrence of P in a body

Adorned predicate

- $b=b o u n d, f=f r e e$
- $T^{b f}(x, y)$ means:
- The values of x are known
- The values of y are not known (need to be retrieved)
- Need to create all combinations: $\mathrm{T}^{\text {bf }}, \mathrm{T}^{\mathrm{fb}}$
- Side-ways information passing means that we adorn rules allowing information to flow left-to-right
- E.g. $\quad T(x, y):-E(x, u), T(u, v), E(v, w), T(w, z), E(z, y)$
- Adorned: $T^{b f}(x, y):-E(x, u), T^{b f}(u, v), E(v, w), T^{b f}(w, z), E(z, y)$

Supplementary Relations

- Given adornment $\mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{y})$, a new predicate $\operatorname{Supp}(\mathrm{x})$ contains the (small!) set of values x for which we want to compute $\mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{y})$
- E.g. $T^{b f}(x, y):-E(x, u), T^{b f}(u, v), E(v, w), T^{b f}(w, z), E(z, y)$

Supp Rules

- E.g. $T^{b f}(x, y):-E(x, u), T^{b f}(u, v), E(v, w), T^{b f}(w, z), E(z, y)$

Becomes:

- $\operatorname{Supp}_{0}(\mathrm{x}):-\operatorname{Magic}_{\text {Tbf }}(\mathrm{x})$
/* next slide ... */
- $\operatorname{Supp}_{1}(\mathrm{x}, \mathrm{u}):-\operatorname{Supp}_{0}(\mathrm{x}), \mathrm{E}(\mathrm{x}, \mathrm{u})$
- $\operatorname{Supp}_{2}(\mathrm{x}, \mathrm{w}):-\operatorname{Supp}_{1}(\mathrm{x}, \mathrm{u}), \mathrm{T}^{\mathrm{bf}}(\mathrm{u}, \mathrm{v}), \mathrm{E}(\mathrm{v}, \mathrm{w})$
- $\operatorname{Supp}_{3}(x, y):-\operatorname{Supp}_{2}(x, w), T^{b f}(w, z), E(z, y)$
- $\mathrm{Tb}^{\mathrm{bf}}(\mathrm{x}, \mathrm{y}):-\operatorname{Supp}_{3}(\mathrm{x}, \mathrm{y})$

Adding the Magic Predicate

- E.g. $T^{b f}(x, y):-E(x, u), T^{b f}(u, v), E(v, w), T^{b f}(w, z), E(z, y)$

- Magic $_{\text {Tbf }}(x)=$ the set of bounded values of x for which we need to compute $T^{b f}(x, y)$
- E.g.
- Magic $_{\text {Tbf }}(3): \quad /^{*}$ if the query is $Q(y):-T(3, y)$ */
- $\operatorname{Magic}_{\text {Tbf }}(\mathrm{u}):-\operatorname{Supp}_{1}(\mathrm{x}, \mathrm{u}) \quad / *$ need to compute $\mathrm{Tf}^{\mathrm{bf}}(\mathrm{u}, \mathrm{v}) * /$
- $\operatorname{Magic}_{\text {Tbf }}(\mathrm{w}):-\operatorname{Supp}_{2}(\mathrm{x}, \mathrm{w}) /^{*}$ need to compute $\mathrm{T}^{\mathrm{bf}}(\mathrm{w}, \mathrm{z})$ */

Example 1

Original:

$$
\begin{aligned}
& T(x, y):-E(x, y) \\
& T(x, y):-T(x, z), E(z, y) \\
& Q(y):-T(3, y)
\end{aligned}
$$

Adorned:

Magic Sets

Example 1

Original:

$$
\begin{aligned}
& \mathrm{T}(x, y):-\mathrm{E}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(x, y):-\mathrm{T}(x, z), \mathrm{E}(z, y) \\
& Q(y):-\mathrm{T}(3, y)
\end{aligned}
$$

Adorned:

$$
\begin{aligned}
& \mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{y}):-\mathrm{E}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}^{\mathrm{bf}(x, y):-\mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{z}), \mathrm{E}(\mathrm{z}, \mathrm{y})} \\
& \mathrm{Q}(\mathrm{y}):-\mathrm{T}^{\mathrm{bf}}(3, \mathrm{y})
\end{aligned}
$$

Example 1

Original:

$$
\begin{aligned}
& \mathrm{T}(x, y):-\mathrm{E}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(x, y):-\mathrm{T}(\mathrm{x}), \mathrm{E}(\mathrm{z}) \mathrm{y}) \\
& Q(\mathrm{y}):-\mathrm{T}(3, y)
\end{aligned}
$$

Adorned:

$$
\begin{aligned}
& T \mathrm{bf}(x, y):-E(x, y) \\
& \mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{y}):-\mathrm{Tbf}(\mathrm{x}, \mathrm{z}), \mathrm{E}(\mathrm{z}, \mathrm{y}) \\
& Q(y):-T^{b f}(3, y)
\end{aligned}
$$

Magic Sets

```
Supp
Supp
Tbf(x,y):- Supp (x,y)
```

Supp' $_{0}(x)$:- Magic $_{\text {Tbf }}(x)$
$\operatorname{Supp}_{1}(x, z):-\operatorname{Supp}_{0}(x), \mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{z})$
Supp' ${ }_{2}(x, y)$:- Supp ${ }_{1}(x, z), E(z, y)$
$\mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{y}):-$ Supp $^{\prime}(\mathrm{x}, \mathrm{y})$

Magic $_{\text {Tbf }}(3)$:-
$\operatorname{Magic}_{\text {Tbf }}(\mathrm{x})$:- Supp' $_{0}(\mathrm{x})$ /* redundant */

Example 1

Original:

$$
\begin{aligned}
& \mathrm{T}(x, y):-\mathrm{E}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(x, y):-\mathrm{T}(x, z), \mathrm{E}(z, y) \\
& Q(y):-\mathrm{T}(3, y)
\end{aligned}
$$

Adorned:

$$
\begin{aligned}
& \mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{y}):-\mathrm{E}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{y}):-\mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{z}), \mathrm{E}(\mathrm{z}, \mathrm{y}) \\
& \mathrm{Q}(\mathrm{y}):-\mathrm{T}^{\mathrm{bf}}(3, y) \\
& \hline
\end{aligned}
$$

Magic Sets

```
Supp
Supp
Tbf(x,y):- Supp (x,y)
```

Supp' $_{0}(\mathrm{x})$:- Magic $_{\text {Tbf }}(\mathrm{x})$
Supp $_{1}(\mathrm{x}, \mathrm{z})$:- Supp $^{\prime}(\mathrm{x}), \mathrm{T}^{\mathrm{bf}}(\mathrm{x}, \mathrm{z})$
$\operatorname{Supp}_{2}(\mathrm{x}, \mathrm{y}):-\operatorname{Supp}^{\prime}{ }_{1}(\mathrm{x}, \mathrm{y}), \mathrm{E}(\mathrm{z}, \mathrm{y})$

Magic $_{\text {Tbf }}(3)$:-
$\operatorname{Magic}_{\text {Tbf }}(\mathrm{x})$:- Supp' $_{0}(\mathrm{x})$ /* redundant */

Show computation on white board

Adding Negation: Datalog ${ }^{7}$

Adding Negation: Datalog ${ }{ }^{\square}$

Example: compute the complement of the transitive closure

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)
\end{aligned}
$$

What does this mean??

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$
$S(x):-R(x), n o t T(x)$
$T(x):-R(x), n o t S(x)$

What are the possible outcomes of S and T ?

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), n o t T(x) \\
& T(x):-R(x), n o t S(x)
\end{aligned}
$$

What are the possible outcomes of S and T ?

$$
J_{1}=\{ \} \quad J_{2}=\{S(a)\} \quad J_{3}=\{T(a)\} \quad J_{4}=\{S(a), T(a)\}
$$

Adding Negation: datalog \urcorner

- Solution 1: Stratified Datalog ${ }^{-}$
- Rules must be partitioned into strata
- IDB predicates defined in strata $\leq k$ may be negated in strata $\geq k+1$
- Solution 2: Inflationary-fixpoint Datalog ${ }^{-}$
- Fire rules and always add facts (never retract)
- Stop when nothing new is added
- Always terminates (why ?)
- Solution 3: Partial-fixpoint Datalogᄀ,*
- Fire rules, adding/retracting facts as needed
- Stop when reaching a fixpoint
- May not terminate
- Solution 4: Well-founded semantics

Discussion in Class

The Declarative Imperative paper:

- What are the extensions to datalog in Dedalus?
- What is the main usage of Dedalus described in the paper?
- What limitations of datalog does the paper describe?

Semantics of a Datalog Program

Three different, equivalent semantics:

- Minimal model semantics
- Least fixpoint semantics
- Proof-theoretic semantics (will not discuss)

Minimal Model Semantics

To each rule $r: P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Minimal Model Semantics

To each rule $r: \quad P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Associate the logical sentence Σ_{r} :

$$
\forall z_{1} \ldots \forall z_{n} \cdot\left[\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]
$$

Minimal Model Semantics

To each rule r: $P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Associate the logical sentence Σ_{r} :

$$
\forall \mathrm{z}_{1} \ldots \forall \mathrm{z}_{\mathrm{n}} \cdot\left[\left(\mathrm{R}_{1}(\ldots) \wedge \mathrm{R}_{2}(\ldots) \wedge \ldots\right) \rightarrow \mathrm{P}(. . \mathrm{P})\right]
$$

Same as: $\forall x_{1} \ldots \forall x_{k} \cdot\left[\exists y_{1} \ldots \exists y_{m} \cdot\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]$

Minimal Model Semantics

To each rule $r: \quad P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Associate the logical sentence Σ_{r} : $\forall z_{1} \ldots \forall z_{n .}\left[\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(.).\right]$

Same as: $\forall \mathrm{x}_{1} \ldots \forall \mathrm{x}_{\mathrm{k}} \cdot\left[\exists \mathrm{y}_{1} \ldots \exists \mathrm{y}_{\mathrm{m}} \cdot\left(\mathrm{R}_{1}(\ldots) \wedge \mathrm{R}_{2}(\ldots) \wedge \ldots\right) \rightarrow \mathrm{P}(\ldots)\right]$

Definition. If \mathbf{P} is a datalog program, Σ_{p} is the set of all logical sentences associated to its rules.

Minimal Model Semantics

To each rule r: $P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Associate the logical sentence Σ_{r} :

$$
\forall \mathrm{z}_{1} \ldots \forall \mathrm{z}_{\mathrm{n} \cdot}\left[\left(\mathrm{R}_{1}(\ldots) \wedge \mathrm{R}_{2}(\ldots) \wedge \ldots\right) \rightarrow \mathrm{P}(. . .)\right]
$$

Same as: $\forall x_{1} \ldots \forall x_{k} \cdot\left[\exists y_{1} \ldots \exists y_{m} \cdot\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]$

Definition. If \mathbf{P} is a datalog program, Σ_{p} is the set of all logical sentences associated to its rules.

Example. Rule: $T(x, y):-R(x, z), T(z, y)$

$$
\text { Sentence: } \begin{aligned}
& \forall \mathrm{x} . \\
\equiv \mathrm{y} . & \forall \mathrm{z} .(\mathrm{R}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{T}(\mathrm{z}, \mathrm{y}) \rightarrow \mathrm{T}(\mathrm{x}, \mathrm{y})) \\
\equiv & \forall \mathrm{x} .
\end{aligned} \forall \mathrm{y} \cdot(\exists \mathrm{z} \cdot \mathrm{R}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{T}(\mathrm{z}, \mathrm{y}) \rightarrow \mathrm{T}(\mathrm{x}, \mathrm{y})),
$$

Minimal Model Semantics

Definition. A pair $(1, \mathrm{~J})$ where I is an EDB and J is an IDB is a model for P , if $(\mathrm{I}, \mathrm{J}) \vDash \Sigma_{\mathrm{P}}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=P(I)$ is a minimal database instance J s.t. $(I, J) \vDash \Sigma_{p}$

Theorem. The minimal model always exists, and is unique.

Minimal Model Semantics

Definition. A pair (I, J) where I is an EDB and J is an IDB is a model for P, if $(I, J) \vDash \Sigma_{P}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=\mathbf{P}(\mathrm{I})$ is a minimal database instance J s.t. $(\mathrm{I}, \mathrm{J}) \vDash \Sigma_{\mathbf{P}}$

Theorem. The minimal model always exists, and is unique.

Which of these IDBs are models? Which are minimal models?

$R=$| 1 | 2 |
| :--- | :--- |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

$$
\mathrm{T}=
$$

1	2
2	3
3	4
4	5
1	3
2	4
3	5

Minimal Model Semantics

Definition. A pair (I, J) where I is an EDB and J is an IDB is a model for P, if $(I, J) \vDash \Sigma_{P}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=\mathbf{P}(\mathrm{I})$ is a minimal database instance J s.t. $(\mathrm{I}, \mathrm{J}) \vDash \Sigma_{\mathbf{P}}$

Theorem. The minimal model always exists, and is unique.

Example: (1) (2) (3) 5			$\begin{array}{\|l\|} \hline T(x, y):-R(x, y) \\ T(x, y):-R(x, z), T(z, y) \\ \hline \end{array}$			$\begin{array}{cr} \Sigma_{\mathrm{p}}: & \forall \mathrm{x} \forall \mathrm{y}(\mathrm{R}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{T}(\mathrm{x}, \mathrm{y})) \\ \forall \mathrm{x} \forall \mathrm{y}(\mathrm{R}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{T}(\mathrm{z}, \mathrm{y}) \rightarrow \mathrm{T}(\mathrm{x}, \mathrm{y})) \end{array}$		
					T=	1	-	
Which of these IDBs are models? Which are minimal models?						2	3	
			1	2		3	4	
			2	3		4	5	
$\mathrm{R}=$			3	4		1	3	
	1	2	4	5		2	4	
	2	3	1	3		3	5	
	3	4	2	4		1	4	
	4	5	3	5		2	5	
						1	5	

Minimal Model Semantics

Definition. A pair (I, J) where I is an EDB and J is an IDB is a model for P, if $(I, J) \vDash \Sigma_{P}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=\mathbf{P}(\mathrm{I})$ is a minimal database instance J s.t. $(\mathrm{I}, \mathrm{J}) \vDash \Sigma_{\mathbf{P}}$

Theorem. The minimal model always exists, and is unique.

Grounding

- A grounding of an atom is obtained by substituting its variables with constants from the active domain
- Examples:
$-T(5,2)$ is a grounding of $T(x, y)$
$-T(5,5)$ is a grounding of $T(x, y)$
- $T(5,5)$ is a grounding of $T(x, x)$
- $T(5,2)$ is not a grounding of $T(x, x)$
- A grounding of a rule is obtained by substituting its variables with constants from the active domain
- Examples:
$-(T(5,2) \leftarrow R(5,7), T(7,2))$ is a grounding of $(T(x, y):-R(x, z), T(z, y))$

Minimal Fixpoint Semantics

Definition. Fix an EDB I, and a datalog program \mathbf{P}.
The immediate consequence operator T_{p} is defined as follows.
For any IDB J:
$T_{P}(J)=$ all IDB facts that are immediate consequences from I and J : $=\left\{H \mid\left(H \leftarrow B_{1}, \ldots, B_{m}\right) \in \operatorname{ground}(P), J \vDash B_{1}, \ldots, B_{m}\right\}$

Fact. For any datalog program P, the immediate consequence operator is monotone. In other words, if $J_{1} \subseteq J_{2}$ then $T_{P}\left(J_{1}\right) \subseteq T_{P}\left(J_{2}\right)$.

Minimal Fixpoint Semantics

Definition. Fix an EDBI, and a datalog program \mathbf{P}.
The immediate consequence operator T_{p} is defined as follows.
For any IDB J:
$\mathrm{T}_{\mathrm{P}}(\mathrm{J})=$ all IDB facts that are immediate consequences from I and J :

$$
=\left\{H \mid\left(H \leftarrow B_{1}, \ldots, B_{m}\right) \in \operatorname{ground}(P), J=B_{1}, \ldots, B_{m}\right\}
$$

Fact. For any datalog program P, the immediate consequence operator is monotone. In other words, if $J_{1} \subseteq J_{2}$ then $T_{P}\left(J_{1}\right) \subseteq T_{P}\left(J_{2}\right)$.

Theorem. The immediate consequence operator has a unique, minimal fixpoint J : fix $\left(T_{P}\right)=J$, where J is the minimal instance with the property $T_{P}(J)=J$.

Proof: using Knaster-Tarski's theorem for monotone functions.
The fixpoint is given by:

$$
\operatorname{fix}\left(T_{P}\right)=J_{0} \cup J_{1} \cup J_{2} \cup \ldots \quad \text { where } J_{0}=\varnothing, \quad J_{k+1}=T_{P}\left(J_{k}\right)
$$

Minimal Fixpoint Semantics

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

$R=$

1	2
2	3
3	4
4	5

$J_{1}=T_{P}\left(J_{0}\right)$

1	2
2	3
3	4
4	5

$J_{3}=T_{P}\left(J_{2}\right)$

1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5

$J_{4}=T_{P}\left(J_{3}\right)$

1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5
1	5

Proof Theoretic Semantics

Every fact in the IDB has a derivation tree, or proof tree justifying its existence.

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-R(x, z), T(z, y)
\end{aligned}
$$

$\mathrm{R}=$

1	2
2	3
3	4
4	5

Adding Negation: Datalog ${ }{ }^{\square}$

Example: compute the complement of the transitive closure

$$
\begin{aligned}
& \mathrm{T}(x, y):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{z}, \mathrm{y}) \\
& \mathrm{CT}(\mathrm{x}, \mathrm{y}):-\operatorname{Node}(\mathrm{x}), \operatorname{Node}(\mathrm{y}), \operatorname{not} \mathrm{T}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

What does this mean??

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$
$S(x):-R(x), \operatorname{not} T(x)$ $T(x):-R(x)$, not $S(x)$

Which IDBs are models of \mathbf{P} ?

$$
J_{1}=\{ \} \quad J_{2}=\{S(a)\} \quad J_{3}=\{T(a)\} \quad J_{4}=\{S(a), T(a)\}
$$

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

```
\(S(x):-R(x), \operatorname{not} T(x)\) \(T(x):-R(x), \operatorname{not} S(x)\)
```

Which IDBs are models of \mathbf{P} ?

There is no minimal model!

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), n o t T(x) \\
& T(x):-R(x), n o t S(x)
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

There is no minimal model!

There is no minimal fixpoint! (Why does Knaster-Tarski's theorem fail?)

Adding Negation: datalog \urcorner

- Solution 1: Stratified Datalog $ᄀ$
- Rules must be partitioned into strata
- IDB predicates defined in strata $\leq k$ may be negated in strata $\geq k+1$
- Solution 2: Inflationary-fixpoint Datalog ${ }^{-}$
- Fire rules and always add facts (never retract)
- Stop when nothing new is added
- Always terminates (why ?)
- Solution 3: Partial-fixpoint Datalogᄀ,*
- Fire rules, adding/retracting facts as needed
- Stop when reaching a fixpoint
- May not terminate
- Solution 4: Well-founded semantics

Stratified datalog \urcorner

A datalog \urcorner program is stratified if its rules can be partitioned into k strata, such that:

- If an IDB predicate P appears negated in a rule in stratum i , then it can only appear in the head of a rule in strata $1,2, \ldots, i-1$

Note: a datalog \neg program either is stratified or it ain't!

Which programs are stratified?

```
T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y):- Node(x),Node(y), not T(x,y)
```

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x)
\end{aligned}
$$

Stratified datalog \urcorner

- Evaluation algorithm for stratified datalog?:
- For each stratum $\mathrm{i}=1,2, \ldots$, do:
- Treat all IDB's defined in prior strata as EBS
- Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?

$$
\begin{array}{|l}
\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
\mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{z}, \mathrm{y}) \\
\hline \mathrm{CT}(\mathrm{x}, \mathrm{y}):-\operatorname{Node}(\mathrm{x}), \operatorname{Node}(\mathrm{y}), \operatorname{not} T(x, y) \\
\hline
\end{array}
$$

Stratified datalog \urcorner

- Evaluation algorithm for stratified datalog?:
- For each stratum $\mathrm{i}=1,2, \ldots$, do:
- Treat all IDB's defined in prior strata as EBS
- Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?

```
NO:
J
J
```

$T(x, y):-R(x, y)$ $T(x, y):-T(x, z), R(z, y)$
$C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)$

Inflationary-fixpoint datalog \urcorner

Let \mathbf{P} be any datalog \neg program, and I an EDB.
Let $T_{p}(J)$ be the immediate consequence operator.
Let $\mathrm{F}(\mathrm{J})=\mathrm{J} \cup \mathrm{T}_{\mathrm{P}}(\mathrm{J})$ be the inflationary immediate consequence operator.
Define the sequence: $J_{0}=\varnothing, J_{n+1}=F\left(J_{n}\right)$, for $n \geq 0$.
Definition. The inflationary fixpoint semantics of \mathbf{P} is $\mathrm{J}=\mathrm{J}_{n}$ where n is such that $\mathrm{J}_{\mathrm{n}+1}=\mathrm{J}_{\mathrm{n}}$

Find the inflationary semantics for:
Why does there always exists an n such that $J_{n}=F\left(J_{n}\right)$?

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \text { not } T(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x)
\end{aligned}
$$

Inflationary-fixpoint datalog \urcorner

- Evaluation for Inflationary-fixpoint datalog \neg
- Use the naïve, of the semi-naïve algorithm
- Inhibit any optimization that rely on monotonicity (e.g. out of order execution)

Well-Founded Semantics

- The lecture follows:

Daniel Zinn, Todd J. Green, Bertram Ludäscher: Winmove is coordination-free (sometimes). ICDT 2012

Example: Win-Move Game

Win(X) :- Move(X,Y), ᄀWin(Y)

Example: Win-Move Game

Win(X) :- Move(X,Y), $\urcorner W i n(Y)$

Example: Win-Move Game

Win(X) :- Move(X,Y), ᄀWin(Y)

Example: Win-Move Game

Win(X) :- Move(X,Y), $\urcorner W i n(Y)$

Example: Win-Move Game

> Win(X) :- Move(X,Y), ᄀWin(Y)

$$
\begin{aligned}
& \operatorname{Win}(1), \operatorname{Win}(3), \operatorname{Win}(4), \operatorname{Win}(5) \\
& \neg \operatorname{Win}(2), \neg \operatorname{Win}(6), \neg \operatorname{Win}(7), \neg \operatorname{Win}(8), \neg \operatorname{Win}(9)
\end{aligned}
$$

Example: Win-Move Game

Win(X) :- Move(X,Y), $\neg \operatorname{Win}(Y)$

What about these?

$$
\begin{aligned}
& \operatorname{Win}(1), \operatorname{Win}(3), \operatorname{Win}(4), \operatorname{Win}(5) \\
& \neg \operatorname{Win}(2), \neg \operatorname{Win}(6), \neg \operatorname{Win}(7), \neg \operatorname{Win}(8), \neg \operatorname{Win}(9)
\end{aligned}
$$

Example: Win-Move Game

Win(X) :- Move(X,Y), $\neg \operatorname{Win}(Y)$

What about these?

$$
\begin{aligned}
& \operatorname{Win}(1), \operatorname{Win}(3), \operatorname{Win}(4), \operatorname{Win}(5) \\
& \neg \operatorname{Win}(2), \neg \operatorname{Win}(6), \neg \operatorname{Win}(7), \neg \operatorname{Win}(8), \neg \operatorname{Win}(9)
\end{aligned}
$$

Example: Win-Move Game

Win(X) :- Move(X,Y), $\neg \operatorname{Win}(Y)$

What about these?

Win(c), \neg Win(d)
CSE 544 - Fall 2016
a and b are neither winning nor losing

Well-founded Semantics

Let \mathbf{P} be any datalog \neg program
Let I be instances of both EDB and IDB (note: was only EDB before) Let $T_{p, 1}(J)$ be the immediate consequence operator defined as follows:
$T_{p, 1}(J)=\left\{H \mid\left(H:-B_{1}, \ldots, B_{m}, \neg C_{1}, \ldots, \neg C_{n}\right) \in \operatorname{ground}(P)\right.$, $\left.J \vDash B_{1}, \ldots, B_{m}, I \vDash \neg C_{1}, \ldots, \neg C_{n}\right\}$

Note that $\mathrm{T}_{\mathrm{p}, 1}(\mathrm{~J})$ is monotone in J , hence has a Least Fix Point (Ifp).
Let $\Gamma_{\mathrm{P}}(\mathrm{I})=\operatorname{Ifp}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\right)$
Note that $\Gamma_{\mathrm{P}}(\mathrm{I})$ is antimonotone in the IDB's: $\mathrm{I} \subseteq \mathrm{I}^{\prime}$ implies $\Gamma_{\mathrm{P}}(\mathrm{I}) \supseteq \Gamma_{\mathrm{P}}\left(\mathrm{I}^{\prime}\right)$
$\Gamma_{\mathrm{P}}{ }^{2}(\mathrm{I})\left(:=\Gamma_{\mathrm{P}}\left(\Gamma_{\mathrm{P}}(\mathrm{I})\right)\right.$) is monotone: has Least Fix Point (lfp), Greatest Fix Point (gfp)
Definition. The well-founded semantics is defined on ground facts A as:

$$
\begin{array}{ll}
W_{P}(A)=\text { true } & \text { if } A \in \operatorname{Ifp}\left(\Gamma_{P^{2}}\right) \\
W_{P}(A)=\text { false } & \text { if } A \notin \operatorname{gfp}\left(\Gamma_{P}^{2}\right) \\
W_{P}(A)=\text { undefined } & \text { if } A \in \operatorname{gfp}\left(\Gamma_{P}^{2}\right)-\operatorname{Ifp}\left(\Gamma_{P}^{2}\right)
\end{array}
$$

Well-founded Semantics

Note how we compute the Ifp and gfp of $\Gamma_{\mathrm{p}}{ }^{2}(\mathrm{I})$.
Apply Γ_{P} repeatedly:

- Odd iterations increase $\quad \rightarrow$ towards Ifp
- Even iterations decrease $\quad \rightarrow$ towards gfp

Denoting $I_{k}=T_{p, 1}\left(T_{p, 1}\left(T_{p, 1}\left(\ldots T_{p, 1}(\varnothing) \ldots\right)\right)\right.$ (k times)
$\varnothing \subseteq \mathrm{I}_{2} \subseteq \mathrm{I}_{4} \subseteq \mathrm{I}_{6} \subseteq \ldots \subseteq \mathrm{Ifp}\left(\Gamma_{\mathrm{p}}{ }^{2}(\mathrm{I})\right) \subseteq \operatorname{gfp}\left(\Gamma_{\mathrm{p}^{2}}(\mathrm{I})\right) \subseteq \ldots \subseteq \mathrm{I}_{5} \subseteq \mathrm{I}_{3} \subseteq \mathrm{I}_{1} \subseteq$ Domaink $^{\mathrm{K}}$

Example: Win-Move Game

Win(X) :- Move(X,Y), $\neg \operatorname{Win}(Y)$

$T_{P, I}(J)$ says: "fix \neg Win according to I, and Win according to J"

Example: Win-Move Game

Win $(X):-\operatorname{Move}(X, Y), \neg \operatorname{Win}(Y)$

$T_{P, I}(J)$ says: "fix \neg Win according to I, and Win according to J "

Start with $\mathrm{I}_{0}=\varnothing \quad(=\{\neg \mathrm{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \neg \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$ $I_{1}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$

Example: Win-Move Game

$$
\text { Win(X) :- Move(X,Y), } \neg \operatorname{Win}(Y)
$$

$T_{\text {P, }}(J)$ says: "fix \neg Win according to I , and Win according to J"

Start with $\mathrm{I}_{0}=\varnothing \quad(=\{\neg \mathrm{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \neg \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$ $I_{1}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$
$\mathrm{I}_{1}=\{\operatorname{Win}(\mathrm{a}), \operatorname{Win}(\mathrm{b}), \operatorname{Win}(\mathrm{c}), \neg \operatorname{Win}(\mathrm{d})\}$

Example: Win-Move Game
Win(X) :- Move(X,Y), ᄀWin(Y)

$T_{P, I}(J)$ says: "fix \neg Win according to I , and Win according to J "

Start with $\mathrm{I}_{0}=\varnothing \quad(=\{\neg \operatorname{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \neg \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$

$$
\begin{aligned}
& I_{1}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{p, I}\right)=\varnothing \cup T_{p, 1}(\varnothing) \cup T_{p, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots \\
& \mathrm{I}_{1}=\{\operatorname{Win}(\mathrm{a}), \operatorname{Win}(\mathrm{b}), \operatorname{Win}(\mathrm{c}), \neg \operatorname{Win}(\mathrm{d})\} \\
& I_{2}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots
\end{aligned}
$$

Example: Win-Move Game

> Win(X) :- Move(X,Y), ᄀWin(Y)

$T_{\text {P, }}(J)$ says: "fix \neg Win according to I , and Win according to J"

Start with $\mathrm{I}_{0}=\varnothing \quad(=\{\neg \mathrm{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \neg \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$
$I_{1}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$
$I_{1}=\{\operatorname{Win}(a), \operatorname{Win}(b), \operatorname{Win}(c), \neg \operatorname{Win}(d)\}$
$\mathrm{I}_{2}=\Gamma_{\mathrm{P}}(\mathrm{I})=\operatorname{Ifp}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\right)=\varnothing \cup \mathrm{T}_{\mathrm{P},(}(\varnothing) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P},(}(\varnothing)\right) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing)\right)\right) \cup \ldots$
$\mathrm{I}_{2}=\{\neg \operatorname{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$

Example: Win-Move Game

$$
\operatorname{Win}(X):-\operatorname{Move}(X, Y), \neg \operatorname{Win}(Y)
$$

$T_{P, I}(J)$ says: "fix \neg Win according to I, and Win according to J "
Start with $\mathrm{I}_{0}=\varnothing \quad(=\{\neg \mathrm{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \neg \mathrm{Win}(\mathrm{c}), \neg \operatorname{Win}(\mathrm{d})\}$
$I_{1}=\Gamma_{\mathrm{P}}(\mathrm{I})=\operatorname{Ifp}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\right)=\varnothing \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing)\right) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing)\right)\right) \cup \ldots$
$I_{1}=\{\operatorname{Win}(a), \operatorname{Win}(b), \operatorname{Win}(c), \neg \operatorname{Win}(d)\}$
$I_{2}=\Gamma_{P}(I)=\operatorname{lfp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$
$\mathrm{I}_{2}=\{\neg \operatorname{Win}(\mathrm{a}), \neg \operatorname{Win}(\mathrm{b}), \operatorname{Win}(\mathrm{c}), \neg \operatorname{Win}(\mathrm{d})\}$
$I_{3}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$

Example: Win-Move Game

```
Win(X) :- Move(X,Y), \(\neg \operatorname{Win}(Y)\)
```


$T_{\text {P, }}(J)$ says: "fix \neg Win according to I , and Win according to J"

Start with $\mathrm{I}_{0}=\varnothing \quad(=\{\neg \mathrm{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \neg \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$ $\mathrm{I}_{1}=\Gamma_{\mathrm{P}}(\mathrm{I})=\operatorname{Ifp}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\right)=\varnothing \cup \mathrm{T}_{\mathrm{P},(}(\varnothing) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing)\right) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing)\right)\right) \cup \ldots$ $I_{1}=\{\operatorname{Win}(a), \operatorname{Win}(b), \operatorname{Win}(c), \neg \operatorname{Win}(d)\}$
$I_{2}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$
$\mathrm{I}_{2}=\{\neg \mathrm{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$
$I_{3}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$
$I_{3}=I_{1}=$ have reached the gfp

Example: Win-Move Game

```
Win(X) :- Move(X,Y), \(\neg \operatorname{Win}(Y)\)
```


$T_{\text {P, }}(J)$ says: "fix \neg Win according to I , and Win according to J"

Start with $\mathrm{I}_{0}=\varnothing \quad(=\{\neg \mathrm{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \neg \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$ $\mathrm{I}_{1}=\Gamma_{\mathrm{P}}(\mathrm{I})=\operatorname{Ifp}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\right)=\varnothing \cup \mathrm{T}_{\mathrm{P},(}(\varnothing) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing)\right) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing)\right)\right) \cup \ldots$ $I_{1}=\{\operatorname{Win}(a), \operatorname{Win}(b), \operatorname{Win}(c), \neg \operatorname{Win}(d)\}$
$I_{2}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$
$\mathrm{I}_{2}=\{\neg \mathrm{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$
$I_{3}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$
$I_{3}=I_{1}=$ have reached the gfp
$I_{4}=I_{2}=$ have reached the Ifp

Example: Win-Move Game

Win(X) :- Move(X,Y), $\neg \operatorname{Win}(Y)$
Win(X) :- $\operatorname{Move(X,Y),~} \neg \operatorname{Win}(Y)$

Start with $\mathrm{I}_{0}=\varnothing \quad(=\{\neg \mathrm{Win}(\mathrm{a}), \neg \mathrm{Win}(\mathrm{b}), \neg \mathrm{Win}(\mathrm{c}), \neg \mathrm{Win}(\mathrm{d})\}$ $\mathrm{I}_{1}=\Gamma_{\mathrm{P}}(\mathrm{I})=\operatorname{Ifp}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\right)=\varnothing \cup \mathrm{T}_{\mathrm{P},(}(\varnothing) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing)\right) \cup \mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}\left(\mathrm{T}_{\mathrm{P}, \mathrm{I}}(\varnothing)\right)\right) \cup \ldots$ $I_{1}=\{\operatorname{Win}(a), \operatorname{Win}(b), \operatorname{Win}(c), \neg \operatorname{Win}(d)\}$
$I_{2}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$
$I_{2}=\{\neg \operatorname{Win}(a), \neg W i n(b), W i n(c), \neg \operatorname{Win}(d)\}$
$I_{3}=\Gamma_{P}(I)=\operatorname{Ifp}\left(T_{P, I}\right)=\varnothing \cup T_{P, I}(\varnothing) \cup T_{P, I}\left(T_{P, I}(\varnothing)\right) \cup T_{P, I}\left(T_{P, I}\left(T_{P, I}(\varnothing)\right)\right) \cup \ldots$
$I_{3}=I_{1}=$ have reached the gfp
$I_{4}=I_{2}=$ have reached the Ifp

Discussion

- Which semantics does Daedalus adopt?

Discussion

Comparing datalog \neg

- Compute the complement of the transitive closure in inflationary datalog \urcorner
- Compare the expressive power of:
- Stratified datalog ${ }^{\circ}$
- Inflationary fixpoint datalog \neg
- Partial fixpoint datalog ${ }^{-}$

