CSE 544 Principles of Database Management Systems

Fall 2016 Lecture 6 – Datalog (2)

Announcements

Homework 2 posted, due Friday, Nov. 4th

• SimpleDB

References

- Reading: Joe Hellerstein, "The Declarative Imperative," SIGMOD Record 2010
- R&G Chapter 24
- Phokion Kolaitis' tutorial on database theory at Simon's <u>https://simons.berkeley.edu/sites/default/files/docs/5241/s</u> <u>imons16-21.pdf</u>
- Daniel Zinn, Todd J. Green, Bertram Ludäscher: Winmove is coordination-free (sometimes). ICDT 2012

Review

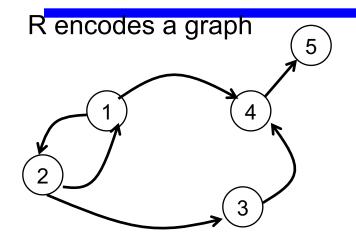
- What is datalog?
- What is the naïve evaluation algorithm?
- What is the seminaive algorithm?

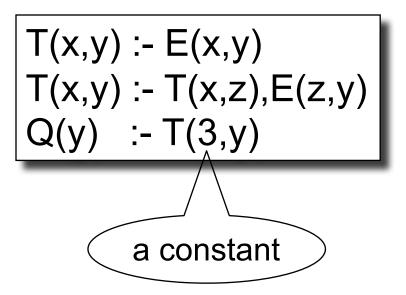
Outline

- Magic sets
- Extending datalog with negation and aggregates

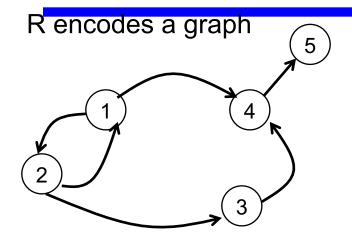
Magic Sets

- Problem: datalog programs compute <u>a lot</u>, but sometimes we need only <u>very little</u>
- Prolog computes top-down and retrieves <u>very little</u> datalog computes bottom up retrieves <u>a lot</u>
- (Prolog has other issues: left recursive prolog never terminates!)
- Magic sets transform a datalog program P into a new program P', such that bottom-up(P') = top-down(P)



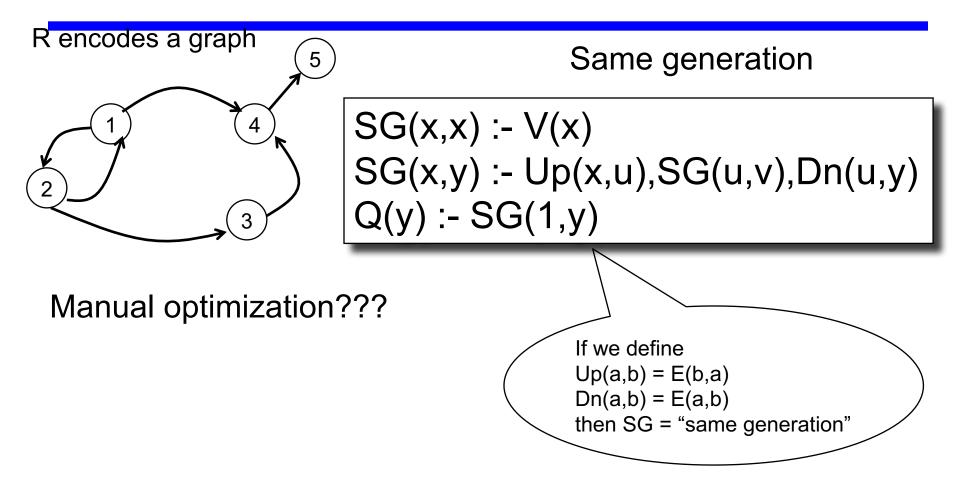


Bottom-up evaluation very inefficient



Manual optimization:

Bottom-up evaluation very inefficient



Magic Set Rewriting (simplified)

- For each IDB predicate create "adorned" versions, with binding patters
- For each adorned IDB P, create a predicate Magic_P
- For each rule, create several rules, one for each possible adornment of the head:
 - Allow information to flow left-to-right ("sideways information passing"), and this defines the required adornments of the IDB's in the body
 - If there are k IDB's in the body, create k+1 supplementary relations Supp_i, which guard the set of bound variables passed on to the i'th IDB
- New rules defining Magic_P: one for the query, and one for each Supp_i preceding an occurrence of P in a body 10

Adorned predicate

- b=bound, f=free
- T^{bf}(x,y) means:
 - The values of x are known
 - The values of y are not known (need to be retrieved)
- Need to create all combinations: T^{bf}, T^{fb}
- Side-ways information passing means that we adorn rules allowing information to flow left-to-right

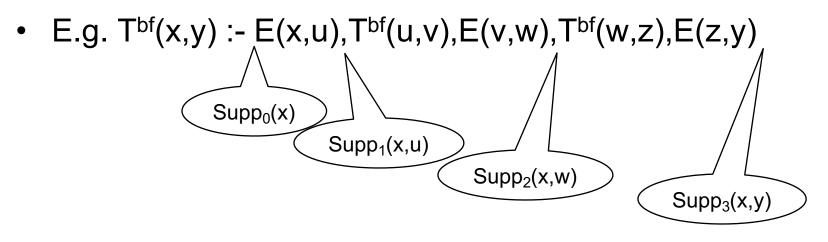
- E.g.
$$T(x,y) := E(x,u), T(u,v), E(v,w), T(w,z), E(z,y)$$

- Adorned:
$$T^{bf}(x,y)$$
:- $E(x,u)$, $T^{bf}(u,v)$, $E(v,w)$, $T^{bf}(w,z)$, $E(z,y)$

Supplementary Relations

- Given adornment T^{bf}(x,y), a new predicate Supp(x) contains the (small!) set of values x for which we want to compute T^{bf}(x,y)
- E.g. $T^{bf}(x,y) := E(x,u), T^{bf}(u,v), E(v,w), T^{bf}(w,z), E(z,y)$ $Supp_{0}(x)$ $Supp_{1}(x,u)$ $Supp_{2}(x,w)$ $Supp_{3}(x,y)$

Supp Rules



Supp₀ and Supp₃

are redundant

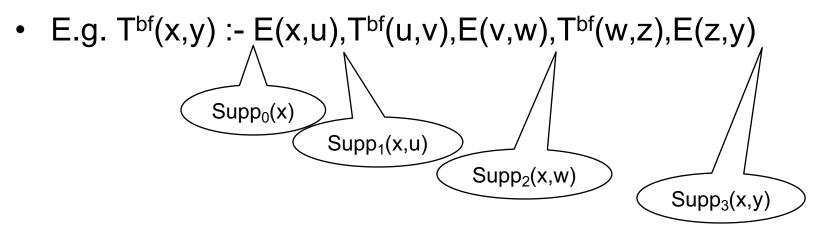
 \bigcirc

0

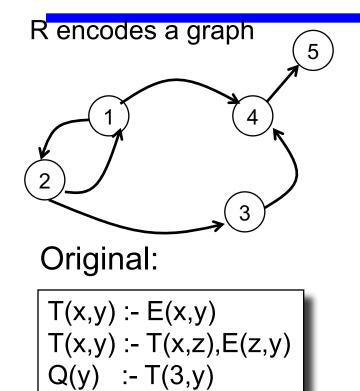
Becomes:

- Supp₀(x) :- Magic_{Tbf}(x) /* next slide ... */
- Supp₁(x,u) :- Supp₀(x), E(x,u)
- Supp₂(x,w) :- Supp₁(x,u), T^{bf}(u,v),E(v,w)
- Supp₃(x,y) :- Supp₂(x,w), T^{bf}(w,z),E(z,y)
- T^{bf}(x,y) :- Supp₃(x,y)

Adding the Magic Predicate

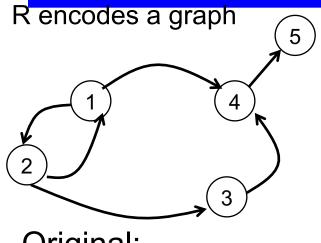


- Magic_{Tbf}(x) = the set of bounded values of x for which we need to compute T^{bf}(x,y)
- E.g.
 - Magic_{Tbf}(3) :- /* if the query is Q(y) :- T(3,y) */
 - $Magic_{Tbf}(u)$:- $Supp_1(x,u)$ /* need to compute $T^{bf}(u,v)$ */
 - Magic_{Tbf}(w) :- Supp₂(x,w) /* need to compute T^{bf}(w,z) */



Magic Sets

Adorned:



Original:

$$T(x,y) := E(x,y)$$

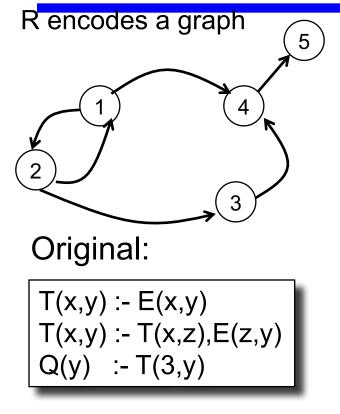
T(x,y) := T(x,z),E(z,y)
Q(y) := T(3,y)

Adorned:

$$\begin{array}{l} T^{\rm bf}(x,y) := E(x,y) \\ T^{\rm bf}(x,y) := T^{\rm bf}(x,z), E(z,y) \\ Q(y) := T^{\rm bf}(3,y) \end{array}$$

CSE 544 - Fall 2016

Magic Sets



Adorned:

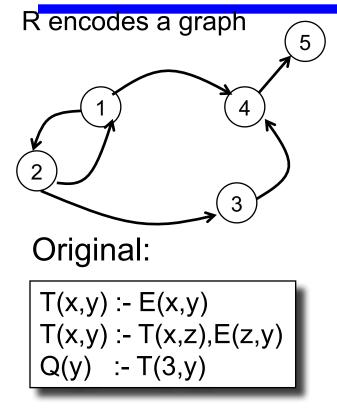
$$\begin{array}{l} T^{\rm bf}(x,y) := E(x,y) \\ T^{\rm bf}(x,y) := T^{\rm bf}(x,z), E(z,y) \\ Q(y) := T^{\rm bf}(3,y) \end{array}$$

Magic Sets

$$\begin{split} & Supp_0(x) :- Magic_{Tbf}(x) \\ & Supp_1(x,y) :- Supp_0(x), E(x,y) \\ & T^{bf}(x,y) :- Supp_1(x,y) \end{split}$$

Supp'₀(x) :- Magic_{Tbf}(x) Supp'₁(x,z) :- Supp'₀(x), T^{bf}(x,z) Supp'₂(x,y) :- Supp'₁(x,z), E(z,y) T^{bf}(x,y) :- Supp'₂(x,y)

CSE 544 - Fall 2016



Adorned:

$$\begin{array}{l} T^{\rm bf}(x,y) := E(x,y) \\ T^{\rm bf}(x,y) := T^{\rm bf}(x,z), E(z,y) \\ Q(y) & := T^{\rm bf}(3,y) \end{array}$$

Magic Sets

$$\begin{split} & \text{Supp}_0(x) :- \text{Magic}_{\text{Tbf}}(x) \\ & \text{Supp}_1(x,y) :- \text{Supp}_0(x), \text{E}(x,y) \\ & \text{T}^{\text{bf}}(x,y) :- \text{Supp}_1(x,y) \end{split}$$

 $Supp'_{0}(x) :- Magic_{Tbf}(x)$ $Supp'_{1}(x,z) :- Supp'_{0}(x), T^{bf}(x,z)$ $Supp'_{2}(x,y) :- Supp'_{1}(x,y), E(z,y)$

CSE 544 - Fall 2016

Show computation on white board

Adding Negation: Datalog[¬]

Adding Negation: Datalog[¬]

Example: compute the complement of the transitive closure

What does this mean??

Recursion and Negation Don't Like Each Other

EDB: $I = \{ R(a) \}$

What are the possible outcomes of S and T?

Recursion and Negation Don't Like Each Other

EDB: $I = \{ R(a) \}$

What are the possible outcomes of S and T?

 $J_1 = \{ \} \qquad J_2 = \{S(a)\} \qquad J_3 = \{T(a)\} \qquad J_4 = \{S(a), T(a) \}$

Adding Negation: datalog[¬]

Solution 1: Stratified Datalog[¬]

- Rules must be partitioned into strata
- IDB predicates defined in strata \leq k may be negated in strata \geq k+1

Solution 2: Inflationary-fixpoint Datalog[¬]

- Fire rules and always add facts (never retract)
- Stop when nothing new is added
- Always terminates (why ?)

Solution 3: Partial-fixpoint Datalog^{¬,*}

- Fire rules, adding/retracting facts as needed
- Stop when reaching a fixpoint
- May not terminate

• Solution 4: Well-founded semantics

What semantics does the paper use?

Discussion in Class

The *Declarative Imperative* paper:

- What are the extensions to datalog in Dedalus?
- What is the main usage of Dedalus described in the paper?
- What limitations of datalog does the paper describe?

Semantics of a Datalog Program

Three different, equivalent semantics:

- Minimal model semantics
- Least fixpoint semantics
- Proof-theoretic semantics (will not discuss)

To each rule r: $P(x_1...x_k) := R_1(...), R_2(...), ...$

To each rule r: $P(x_1...x_k) := R_1(...), R_2(...), ...$

All variables in the rule

Associate the logical sentence Σ_r :

$$\forall z_1 ... \forall z_n. [(\mathsf{R}_1(...) \land \mathsf{R}_2(...) \land ...) \twoheadrightarrow \mathsf{P}(...)]$$

To each rule r: $P(x_1...x_k) := R_1(...), R_2(...), ...$

Associate the logical sentence Σ_r :

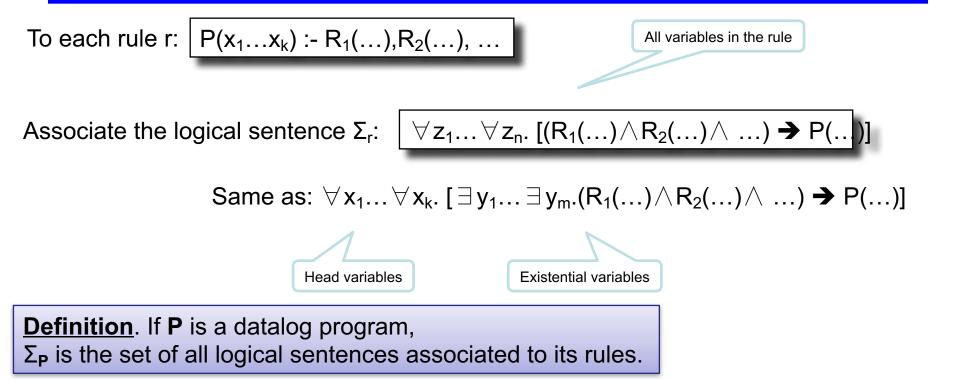
$$\forall z_1 ... \forall z_n. [(\mathsf{R}_1(...) \land \mathsf{R}_2(...) \land ...) \twoheadrightarrow \mathsf{P}(...)]$$

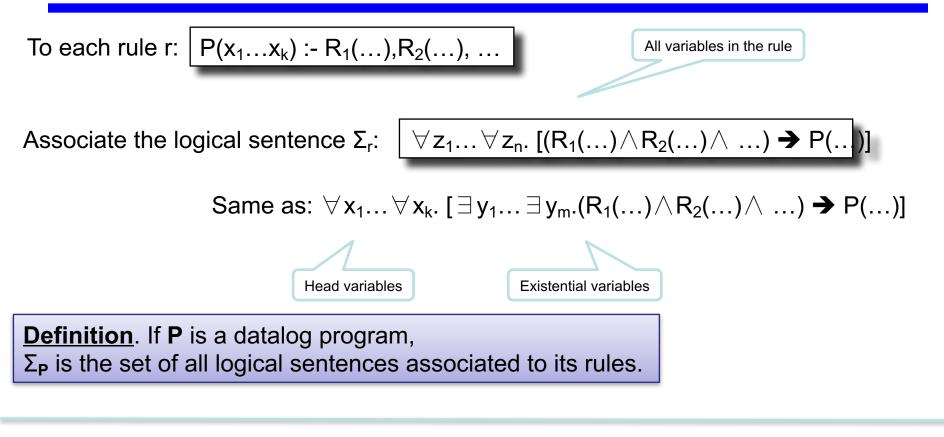
All variables in the rule

Same as: $\forall x_1 ... \forall x_k$. [$\exists y_1 ... \exists y_m .(R_1(...) \land R_2(...) \land ...) \Rightarrow P(...)$]

Head variables

Existential variables





Example. Rule:

 $\mathsf{T}(\mathsf{x},\mathsf{y}) \coloneqq \mathsf{R}(\mathsf{x},\mathsf{z}), \, \mathsf{T}(\mathsf{z},\mathsf{y})$

Sentence: $\forall x. \forall y. \forall z. (R(x,z) \land T(z,y) \rightarrow T(x,y)) \\ \equiv \forall x. \forall y. (\exists z. R(x,z) \land T(z,y) \rightarrow T(x,y))$

<u>Definition</u>. A pair (I,J) where I is an EDB and J is an IDB is a *model* for P, if (I,J) $\models \Sigma_P$

<u>Definition</u>. Given an EDB database instance I and a datalog program P, the minimal model, denoted J = P(I) is a minimal database instance J s.t. $(I,J) \models \Sigma_P$

Theorem. The minimal model always exists, and is unique.

<u>Definition</u>. A pair (I,J) where I is an EDB and J is an IDB is a *model* for P, if $(I,J) \models \Sigma_P$

<u>Definition</u>. Given an EDB database instance I and a datalog program P, the minimal model, denoted J = P(I) is a minimal database instance J s.t. $(I,J) \models \Sigma_P$

Theorem. The minimal model always exists, and is unique.

Which of these IDBs are *models*? Which are *minimal models*?

R=	1	2	
n-	1	۷	
	2	3	
	3	4	
	4	5	

T=		
1	2	
2	3	
3	4	
4	5	
1	3	
2	4	
3	5	

<u>Definition</u>. A pair (I,J) where I is an EDB and J is an IDB is a *model* for P, if $(I,J) \models \Sigma_P$

<u>Definition</u>. Given an EDB database instance I and a datalog program P, the minimal model, denoted J = P(I) is a minimal database instance J s.t. $(I,J) \models \Sigma_P$

Theorem. The minimal model always exists, and is unique.

Example:
(1)
$$T(x,y) := R(x,y)$$

 $T(x,y) := R(x,z), T(z,y)$ $\Sigma_{P}: \quad \forall x \; \forall y \; (R(x,y) \rightarrow T(x,y))$
 $\forall x \; \forall y \; (R(x,z) \land T(z,y) \rightarrow T(x,y))$ Which of these IDBs are models? $T =$ $T =$ $T =$ Which are minimal models? $T =$ $T =$ $T =$ $R =$ $1 = 2$ $3 = 4$ $4 = 5$ $3 = 4$ $4 = 5$ $1 = 3$ $3 = 4$ $3 = 4$ $4 = 5$ $1 = 3$ $3 = 5$ $1 = 3$ $2 = 4$ $3 = 5$ $1 = 4$ $2 = 3$ $1 = 3$ $2 = 4$ $3 = 5$ $1 = 3$ $2 = 4$ $1 = 4$ $2 = 5$ $1 = 5$ $1 = 5$

<u>Definition</u>. A pair (I,J) where I is an EDB and J is an IDB is a *model* for P, if (I,J) $\models \Sigma_P$

<u>Definition</u>. Given an EDB database instance I and a datalog program **P**, the minimal model, denoted J = P(I) is a minimal database instance J s.t. $(I,J) \models \Sigma_P$

Theorem. The minimal model always exists, and is unique.

 $\Sigma_{\mathsf{P}}: \qquad \forall x \ \forall y \ (\mathsf{R}(x,y) \rightarrow \mathsf{T}(x,y))$ T(x,y) := R(x,y)Example: $\forall x \forall y (R(x,z) \land T(z,y) \rightarrow T(x,y))$ T(x,y) := R(x,z), T(z,y)T= T= T= Which of these IDBs are models? Which are minimal models? . . . R= i ∀i<i i.

Grounding

- A <u>grounding</u> of an atom is obtained by substituting its variables with constants from the active domain
- Examples:
 - T(5,2) is a grounding of T(x,y)
 - T(5,5) is a grounding of T(x,y)
 - T(5,5) is a grounding of T(x,x)
 - T(5,2) is <u>not</u> a grounding of T(x,x)
- A <u>grounding</u> of a rule is obtained by substituting its variables with constants from the active domain
- Examples:
 - $(T(5,2) \leftarrow R(5,7),T(7,2))$ is a grounding of (T(x,y) := R(x,z),T(z,y))

Minimal Fixpoint Semantics

<u>Definition</u>. Fix an EDB I, and a datalog program **P**. The <u>immediate consequence</u> operator T_P is defined as follows. For any IDB J: T_P(J) = all IDB facts that are immediate consequences from I and J: = {H | (H ← B₁, ..., B_m) ∈ ground(P), J ⊨ B₁, ..., B_m}

<u>**Fact</u></u>. For any datalog program P, the immediate consequence operator is monotone. In other words, if J_1 \subseteq J_2 then T_P(J_1) \subseteq T_P(J_2).</u>**

Minimal Fixpoint Semantics

<u>Definition</u>. Fix an EDB I, and a datalog program **P**. The <u>immediate consequence</u> operator T_P is defined as follows. For any IDB J: T_P(J) = all IDB facts that are immediate consequences from I and J: = {H | (H ← B₁, ..., B_m) ∈ ground(P), J ⊨ B₁, ..., B_m}

<u>**Fact</u></u>. For any datalog program P, the immediate consequence operator is monotone. In other words, if J_1 \subseteq J_2 then T_P(J_1) \subseteq T_P(J_2).</u>**

<u>**Theorem</u></u>. The immediate consequence operator has a unique, minimal fixpoint J: fix(T_P) = J, where J is the minimal instance with the property T_P(J) = J.</u>**

Proof: using Knaster-Tarski's theorem for monotone functions. The fixpoint is given by:

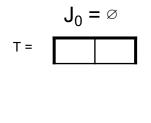
fix $(T_P) = J_0 \cup J_1 \cup J_2 \cup \dots$ where $J_0 = \emptyset$, $J_{k+1} = T_P(J_k)$

Minimal Fixpoint Semantics

T(x,y) :- R(x,y) T(x,y) :- R(x,z), T(z,y)

R=

1	2
2	3
3	4
4	5



ļ	J ₁ = ⁻	Γ _Ρ (J ₀))
	1	2	
	2	3	
	3	4	
	4	5	

J ₂ =	T _P (J	1)
1	2	
2	3	
3	4	
4	5	
1	3	
2	4	
3	5	

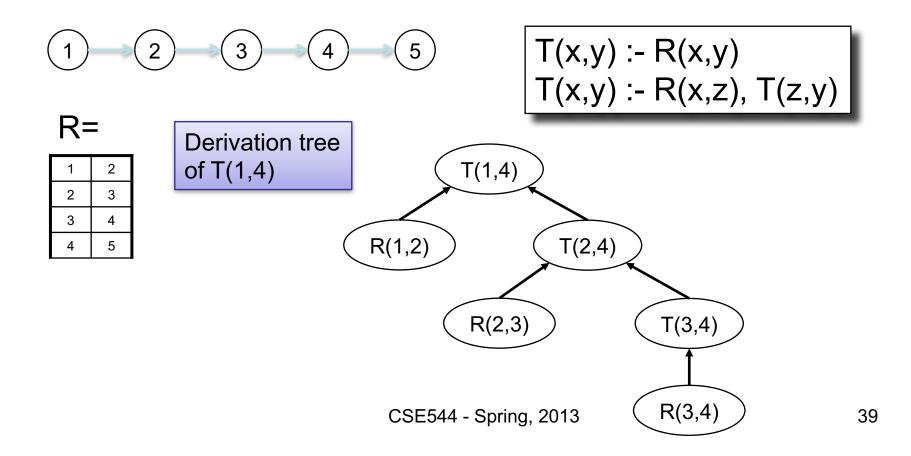
-	_	_		
	_ 7	Г /	/	
ປາ	_		U	2
- 0			<u>-</u> ۱	~

$J_4 = 1$	T _P (J	3)
-----------	-------------------	----

_	
1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5
1	5

Proof Theoretic Semantics

Every fact in the IDB has a *derivation tree*, or *proof tree* justifying its existence.



Adding Negation: Datalog[¬]

Example: compute the complement of the transitive closure

What does this mean??

Recursion and Negation Don't Like Each Other

EDB: $I = \{ R(a) \}$

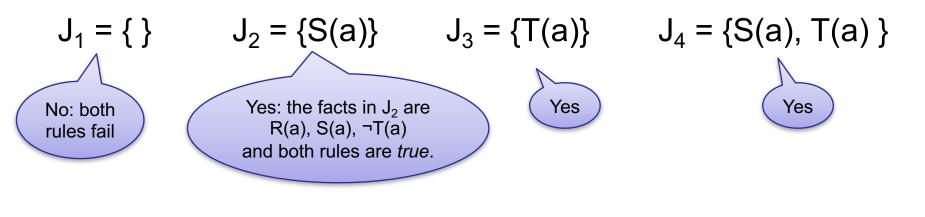
Which IDBs are models of **P**?

$$J_1 = \{ \} \qquad J_2 = \{S(a)\} \qquad J_3 = \{T(a)\} \qquad J_4 = \{S(a), T(a) \}$$

Recursion and Negation Don't Like Each Other

EDB: $I = \{ R(a) \}$

Which IDBs are models of **P**?

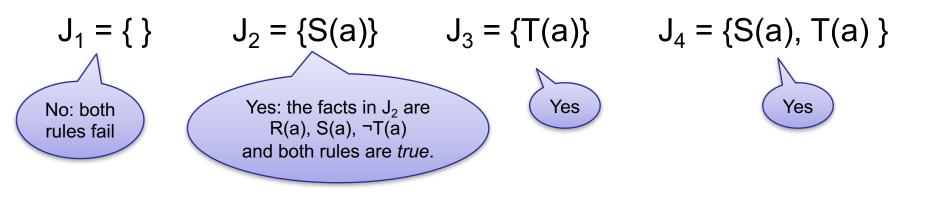


There is no *minimal* model!

Recursion and Negation Don't Like Each Other

EDB: $I = \{ R(a) \}$

Which IDBs are models of **P**?



There is no *minimal* model!

There is no minimal fixpoint! (Why does Knaster-Tarski's theorem fail?)

Adding Negation: datalog[¬]

Solution 1: Stratified Datalog[¬]

- Rules must be partitioned into strata
- IDB predicates defined in strata \leq k may be negated in strata \geq k+1

Solution 2: Inflationary-fixpoint Datalog[¬]

- Fire rules and always add facts (never retract)
- Stop when nothing new is added
- Always terminates (why ?)

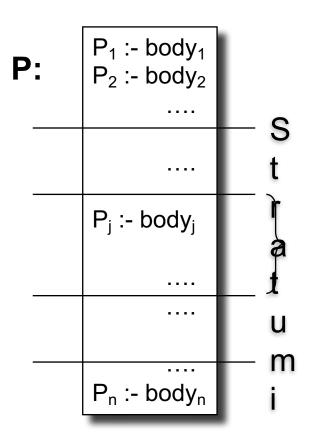
• Solution 3: Partial-fixpoint Datalog^{¬,*}

- Fire rules, adding/retracting facts as needed
- Stop when reaching a fixpoint
- May not terminate

• Solution 4: Well-founded semantics

Stratified datalog[¬]

A datalog program is <u>stratified</u> if its rules can be partitioned into k strata, such that:
If an IDB predicate P appears negated in a rule in stratum i, then it can only appear in the head of a rule in strata 1, 2, ..., i-1



Note: a datalog¬ program either is stratified or it ain't!

Which programs are stratified?

T(x,y) :- R(x,y) T(x,y) :- T(x,z), R(z,y) CT(x,y) :- Node(x), Node(y), not T(x,y)

S(x) :- R(x), not T(x) T(x) :- R(x), not S(x)

Stratified datalog[¬]

- Evaluation algorithm for stratified datalog[¬]:
- For each stratum i = 1, 2, ..., do:
 - Treat all IDB's defined in prior strata as EBS
 - Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?

T(x,y) := R(x,y)T(x,y) := T(x,z), R(z,y)

CT(x,y) := Node(x), Node(y), not T(x,y)

Stratified datalog[¬]

- Evaluation algorithm for stratified datalog[¬]:
- For each stratum i = 1, 2, ..., do:
 - Treat all IDB's defined in prior strata as EBS
 - Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?

NO: $J_1 = \{ T = transitive closure, CT = its complement \}$ $J_2 = \{ T = all pairs of nodes, CT = empty \}$ T(x,y) := R(x,y)T(x,y) := T(x,z), R(z,y)

CT(x,y) := Node(x), Node(y), not T(x,y)

Inflationary-fixpoint datalog¬

Let **P** be any datalog¬ program, and I an EDB. Let $T_P(J)$ be the <u>immediate consequence</u> operator. Let $F(J) = J \cup T_P(J)$ be the <u>inflationary immediate consequence</u> operator.

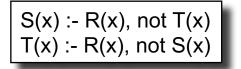
Define the sequence: $J_0 = \emptyset$, $J_{n+1} = F(J_n)$, for $n \ge 0$.

<u>Definition</u>. The inflationary fixpoint semantics of **P** is $J = J_n$ where n is such that $J_{n+1} = J_n$

Why does there always exists an n such that $J_n = F(J_n)$?

Find the inflationary semantics for:

T(x,y) := R(x,y) T(x,y) := T(x,z), R(z,y)CT(x,y) := Node(x), Node(y), not T(x,y)

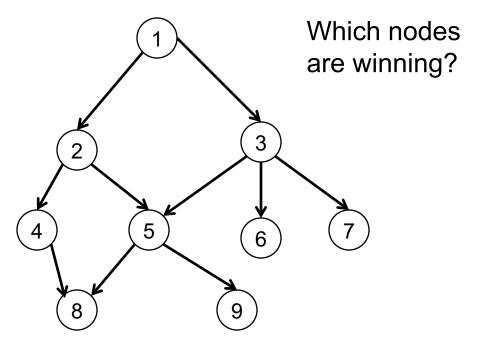


Inflationary-fixpoint datalog¬

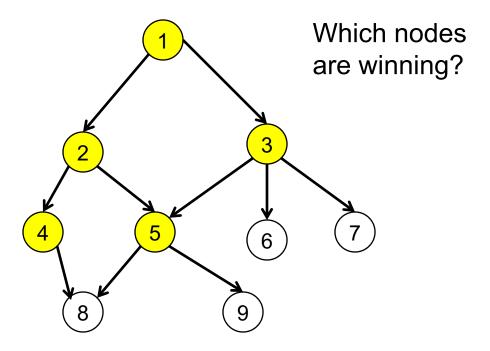
- Evaluation for Inflationary-fixpoint datalog
- Use the naïve, of the semi-naïve algorithm
- Inhibit any optimization that rely on monotonicity (e.g. out of order execution)

Well-Founded Semantics

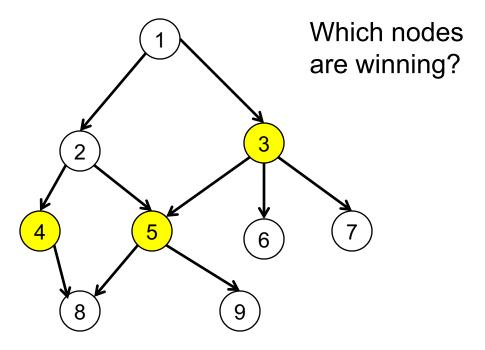
 The lecture follows: Daniel Zinn, Todd J. Green, Bertram Ludäscher: Winmove is coordination-free (sometimes). ICDT 2012



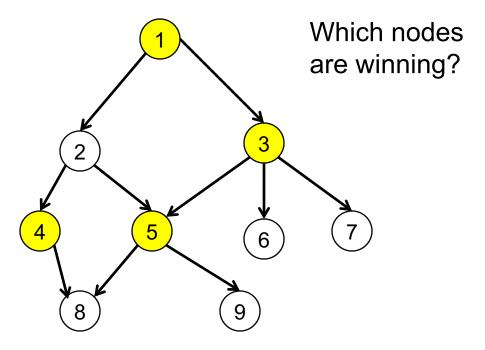
$$Win(X) :- Move(X,Y), \neg Win(Y)$$



Win(X) :- Move(X,Y),
$$\neg$$
Win(Y)

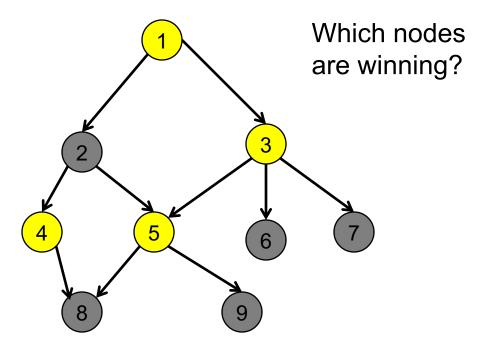


$$Win(X) :- Move(X,Y), \neg Win(Y)$$

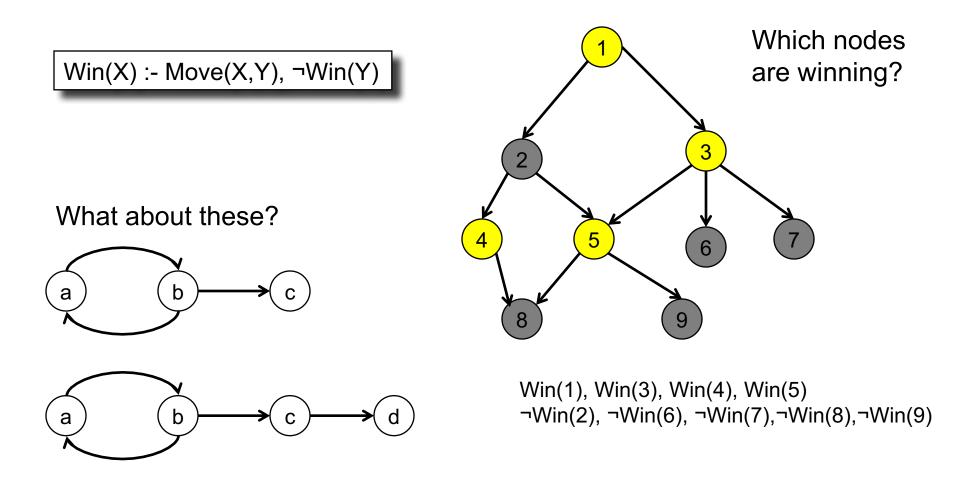


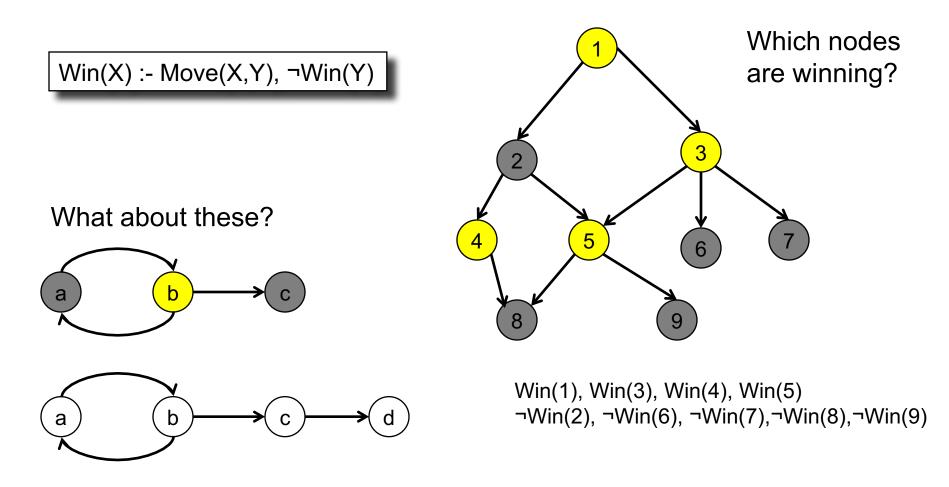
$$Win(X) := Move(X,Y), \neg Win(Y)$$

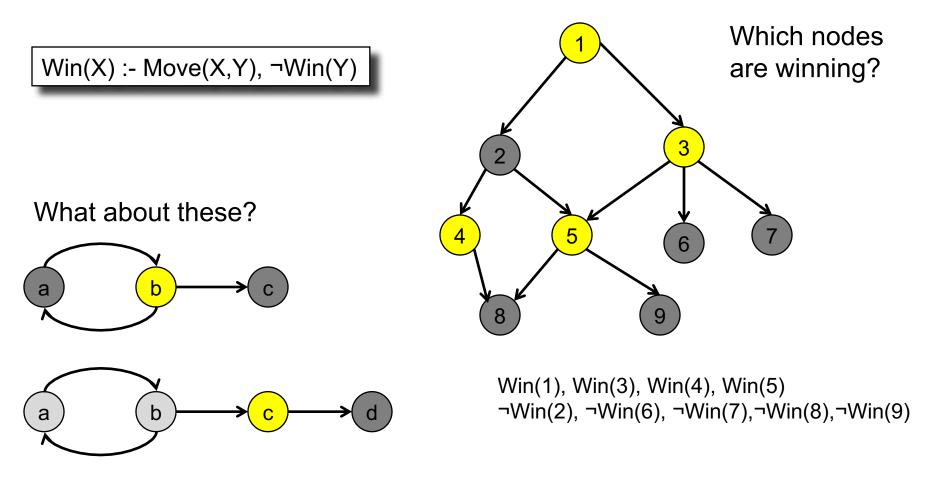
 $Win(X) := Move(X,Y), \neg Win(Y)$



Win(1), Win(3), Win(4), Win(5) ¬Win(2), ¬Win(6), ¬Win(7),¬Win(8),¬Win(9)







Win(c), ¬Win(d) a and b are neither winning nor losing

CSE 544 - Fall 2016

Well-founded Semantics

Let **P** be any datalog¬ program Let I be instances of both EDB and IDB (note: was only EDB before) Let $T_{P,I}(J)$ be the *immediate consequence* operator defined as follows:

 $\begin{aligned} \mathsf{T}_{\textbf{P},\textbf{I}}(J) &= \{ \mathsf{H} \mid (\mathsf{H} := \mathsf{B}_1, \, ..., \, \mathsf{B}_m, \neg \mathsf{C}_1, ..., \neg \mathsf{C}_n) \in \mathsf{ground}(\mathsf{P}), \\ & \mathsf{J} \vDash \mathsf{B}_1, \, ..., \, \mathsf{B}_m, \ \mathsf{I} \vDash \neg \mathsf{C}_1, ..., \neg \mathsf{C}_n \ \end{aligned}$

Note that $T_{P,I}(J)$ is monotone in J, hence has a Least Fix Point (Ifp).

Let $\Gamma_{P}(I) = Ifp(T_{P,I})$

Note that $\Gamma_P(I)$ is antimonotone in the IDB's: $I \subseteq I'$ implies $\Gamma_P(I) \supseteq \Gamma_P(I')$

 $\Gamma_{P^{2}}(I)$ (:= $\Gamma_{P}(\Gamma_{P}(I))$) is monotone: has Least Fix Point (Ifp), Greatest Fix Point (gfp)

Well-founded Semantics

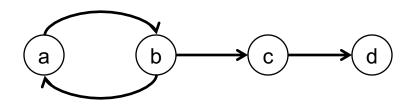
Note how we compute the lfp and gfp of $\Gamma_{P}^{2}(I)$. Apply Γ_{P} repeatedly:

- Odd iterations increase → towards lfp
- Even iterations decrease \rightarrow towards gfp

Denoting $I_k = T_{P,I}(T_{P,I}(T_{P,I}(\dots T_{P,I}(\varnothing) \dots)))$ (k times)

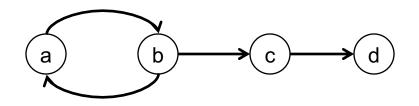
 $^{\varnothing} \subseteq I_2 \subseteq I_4 \subseteq I_6 \subseteq \, ... \subseteq \mathsf{lfp}(\Gamma_{\mathsf{P}}{}^2(\mathsf{I})) \subseteq \mathsf{gfp}(\Gamma_{\mathsf{P}}{}^2(\mathsf{I})) \subseteq \, ... \subseteq I_5 \subseteq I_3 \subseteq I_1 \subseteq \mathsf{Domain}^k$

Win(X) :- Move(X,Y), ¬Win(Y)



T_{P,I}(J) says: "fix ¬Win according to I, and Win according to J"

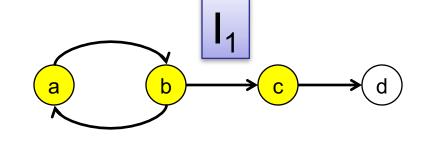
Win(X) :- Move(X,Y), ¬Win(Y)



T_{P,I}(J) says: "fix ¬Win according to I, and Win according to J"

Start with $I_0 = \emptyset$ (= {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)} $I_1 = \Gamma_P(I) = Ifp(T_{P,I}) = \emptyset \cup T_{P,I}(\emptyset) \cup T_{P,I}(T_{P,I}(\emptyset)) \cup T_{P,I}(T_{P,I}((\emptyset))) \cup \dots$

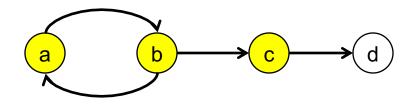
 $Win(X) := Move(X,Y), \neg Win(Y)$



T_{P.I}(J) says: "fix ¬Win according to I, and Win according to J"

Start with $I_0 = \emptyset$ (= {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)} $I_1 = \Gamma_P(I) = Ifp(T_{P,I}) = \emptyset \cup T_{P,I}(\emptyset) \cup T_{P,I}(T_{P,I}(\emptyset)) \cup T_{P,I}(T_{P,I}(T_{P,I}(\emptyset))) \cup \dots$ $I_1 = \{Win(a), Win(b), Win(c), ¬Win(d)\}$

Win(X) :- Move(X,Y), ¬Win(Y)

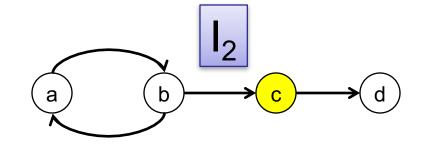


T_{P,I}(J) says: "fix ¬Win according to I, and Win according to J"

Start with $I_0 = \emptyset$ (= {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)} $I_1 = \Gamma_P(I) = Ifp(T_{P,I}) = \emptyset \cup T_{P,I}(\emptyset) \cup T_{P,I}(T_{P,I}(\emptyset)) \cup T_{P,I}(T_{P,I}(T_{P,I}(\emptyset))) \cup \dots$ $I_1 =$ {Win(a), Win(b), Win(c), ¬Win(d)}

 $\mathsf{I}_2 = \mathsf{\Gamma}_\mathsf{P}(\mathsf{I}) = \mathsf{lfp}(\mathsf{T}_{\mathsf{P},\mathsf{I}}) = \emptyset \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\emptyset) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\emptyset)) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\emptyset))) \ \cup \ \ldots$

 $Win(X) := Move(X,Y), \neg Win(Y)$

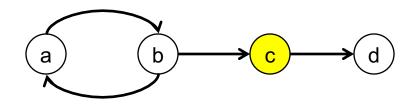


T_{P.I}(J) says: "fix ¬Win according to I, and Win according to J"

Start with $I_0 = \emptyset$ (= {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)} $I_1 = \Gamma_P(I) = Ifp(T_{P,I}) = \emptyset \cup T_{P,I}(\emptyset) \cup T_{P,I}(T_{P,I}(\emptyset)) \cup T_{P,I}(T_{P,I}(T_{P,I}(\emptyset))) \cup \dots$ $I_1 =$ {Win(a), Win(b), Win(c), ¬Win(d)}

$$\begin{split} I_2 &= \Gamma_{\mathsf{P}}(\mathsf{I}) = \mathsf{lfp}(\mathsf{T}_{\mathsf{P},\mathsf{I}}) = \varnothing \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing)) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing))) \ \cup \ \ldots \\ I_2 &= \{\neg\mathsf{Win}(a), \ \neg\mathsf{Win}(b), \ \mathsf{Win}(c), \ \neg\mathsf{Win}(d)\} \end{split}$$

Win(X) :- Move(X,Y), ¬Win(Y)



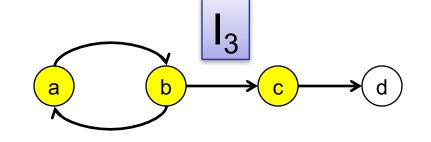
T_{P,I}(J) says: "fix ¬Win according to I, and Win according to J"

Start with $I_0 = \emptyset$ (= {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)} $I_1 = \Gamma_P(I) = Ifp(T_{P,I}) = \emptyset \cup T_{P,I}(\emptyset) \cup T_{P,I}(T_{P,I}(\emptyset)) \cup T_{P,I}(T_{P,I}(T_{P,I}(\emptyset))) \cup \dots$ $I_1 = \{Win(a), Win(b), Win(c), ¬Win(d)\}$

$$\begin{split} I_2 &= \Gamma_{\mathsf{P}}(\mathsf{I}) = \mathsf{lfp}(\mathsf{T}_{\mathsf{P},\mathsf{I}}) = \varnothing \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing)) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing))) \ \cup \ \ldots \\ I_2 &= \{\neg\mathsf{Win}(a), \ \neg\mathsf{Win}(b), \ \mathsf{Win}(c), \ \neg\mathsf{Win}(d)\} \end{split}$$

 $\mathsf{I}_3 = \mathsf{\Gamma}_\mathsf{P}(\mathsf{I}) = \mathsf{lfp}(\mathsf{T}_{\mathsf{P},\mathsf{I}}) = \emptyset \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\emptyset) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\emptyset)) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\emptyset))) \ \cup \ \ldots$

 $Win(X) := Move(X,Y), \neg Win(Y)$



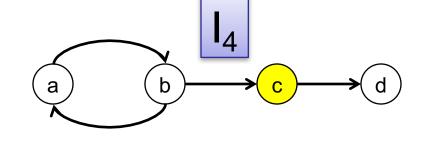
T_{P.I}(J) says: "fix ¬Win according to I, and Win according to J"

Start with $I_0 = \emptyset$ (= {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)} $I_1 = \Gamma_P(I) = Ifp(T_{P,I}) = \emptyset \cup T_{P,I}(\emptyset) \cup T_{P,I}(T_{P,I}(\emptyset)) \cup T_{P,I}(T_{P,I}(T_{P,I}(\emptyset))) \cup \dots$ $I_1 = \{Win(a), Win(b), Win(c), ¬Win(d)\}$

$$\begin{split} I_2 &= \Gamma_{\mathsf{P}}(\mathsf{I}) = \mathsf{lfp}(\mathsf{T}_{\mathsf{P},\mathsf{I}}) = \varnothing \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing)) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing))) \ \cup \ \ldots \\ I_2 &= \{\neg\mathsf{Win}(a), \ \neg\mathsf{Win}(b), \ \mathsf{Win}(c), \ \neg\mathsf{Win}(d)\} \end{split}$$

$$\begin{split} I_3 &= \Gamma_P(I) = Ifp(T_{P,I}) = \varnothing \ \cup \ T_{P,I}(\varnothing) \ \cup \ T_{P,I}(T_{P,I}(\varnothing)) \ \cup \ T_{P,I}(T_{P,I}(T_{P,I}(\varnothing))) \ \cup \ \dots \\ I_3 &= I_1 = have reached the gfp \end{split}$$

 $Win(X) := Move(X,Y), \neg Win(Y)$



T_{P.I}(J) says: "fix ¬Win according to I, and Win according to J"

Start with $I_0 = \emptyset$ (= {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)} $I_1 = \Gamma_P(I) = Ifp(T_{P,I}) = \emptyset \cup T_{P,I}(\emptyset) \cup T_{P,I}(T_{P,I}(\emptyset)) \cup T_{P,I}(T_{P,I}(T_{P,I}(\emptyset))) \cup \dots$ $I_1 = \{Win(a), Win(b), Win(c), ¬Win(d)\}$

$$\begin{split} I_2 &= \Gamma_{\mathsf{P}}(\mathsf{I}) = \mathsf{lfp}(\mathsf{T}_{\mathsf{P},\mathsf{I}}) = \varnothing \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing)) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing))) \ \cup \ \ldots \\ I_2 &= \{\neg\mathsf{Win}(a), \ \neg\mathsf{Win}(b), \ \mathsf{Win}(c), \ \neg\mathsf{Win}(d)\} \end{split}$$

$$\begin{split} I_3 &= \Gamma_P(I) = Ifp(T_{P,I}) = \varnothing \ \cup \ T_{P,I}(\varnothing) \ \cup \ T_{P,I}(T_{P,I}(\varnothing)) \ \cup \ T_{P,I}(T_{P,I}(T_{P,I}(\varnothing))) \ \cup \ \dots \\ I_3 &= I_1 = have reached the gfp \\ I_4 &= I_2 = have reached the Ifp \end{split}$$



Start with $I_0 = \emptyset$ (= {¬Win(a), ¬Win(b), ¬Win(c), ¬Win(d)} $I_1 = \Gamma_P(I) = Ifp(T_{P,I}) = \emptyset \cup T_{P,I}(\emptyset) \cup T_{P,I}(T_{P,I}(\emptyset)) \cup T_{P,I}(T_{P,I}(T_{P,I}(\emptyset))) \cup \dots$ $I_1 =$ {Win(a), Win(b), Win(c), ¬Win(d)}

$$\begin{split} I_2 &= \Gamma_{\mathsf{P}}(\mathsf{I}) = \mathsf{lfp}(\mathsf{T}_{\mathsf{P},\mathsf{I}}) = \varnothing \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing)) \ \cup \ \mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\mathsf{T}_{\mathsf{P},\mathsf{I}}(\varnothing))) \ \cup \ \ldots \\ I_2 &= \{\neg\mathsf{Win}(a), \ \neg\mathsf{Win}(b), \ \mathsf{Win}(c), \ \neg\mathsf{Win}(d)\} \end{split}$$

$$\begin{split} I_3 &= \Gamma_P(I) = Ifp(T_{P,I}) = \varnothing \ \cup \ T_{P,I}(\varnothing) \ \cup \ T_{P,I}(T_{P,I}(\varnothing)) \ \cup \ T_{P,I}(T_{P,I}(T_{P,I}(\varnothing))) \ \cup \ \dots \\ I_3 &= I_1 = have reached the gfp \\ I_4 &= I_2 = have reached the Ifp \end{split}$$

Discussion

• Which semantics does Daedalus adopt?

Discussion

Comparing datalog[¬]

- Compute the complement of the transitive closure in inflationary datalog[¬]
- Compare the expressive power of:
 - Stratified datalog[¬]
 - Inflationary fixpoint datalog[¬]
 - Partial fixpoint datalog[¬]