CSE 544
Principles of Database Management Systems

Magdalena Balazinska
Winter 2015
Lecture 11 – Parallel DBMSs and MapReduce
References

• **MapReduce: Simplified Data Processing on Large Clusters.** Jeffrey Dean and Sanjay Ghemawat. OSDI 2004. Sec. 1 - 4.

• **Database management systems.** Ramakrishnan and Gehrke. Third Ed. *Chapter 22.*
How to Scale a DBMS?

Scale up

Scale out

A more powerful server

More servers
Why Do I Care About Scaling Transactions Per Second?

• Amazon
• Facebook
• Twitter
• … your favorite Internet application…

• Goal is to scale OLTP workloads

• We will get back to this next week
Why Do I Care About Scaling A Single Query?

• Goal is to scale OLAP workloads

• That means the analysis of massive datasets
Today: Focus on Scaling a Single Query
Science is Facing a Data Deluge!

- **Astronomy**: High-resolution, high-frequency sky surveys (SDSS, LSST)
- **Medicine**: Ubiquitous digital records, MRI, ultrasound
- **Biology**: Lab automation, high-throughput sequencing
- **Oceanography**: High-resolution models, cheap sensors, satellites

Data holds the promise to accelerate discovery

But analyzing all this data is a challenge
Industry is Facing a Data Deluge!

- Clickstreams, search logs, network logs, social networking data, RFID data, etc.
- Examples: Facebook, Twitter, Google, Microsoft, Amazon, Walmart, etc.

Data holds the promise to deliver new and better services

But analyzing all this data is a challenge
Big Data

• Companies, organizations, scientists have data that is too big, too fast, and too complex to be managed without changing tools and processes

• Relational algebra and SQL are easy to parallelize and parallel DBMSs have already been studied in the 80's!
Data Analytics Companies

As a result, we are seeing an explosion of and a huge success of db analytics companies

- **Greenplum** founded in 2003 acquired by EMC in 2010; A parallel shared-nothing DBMS
- **Vertica** founded in 2005 and acquired by HP in 2011; A parallel, column-store shared-nothing DBMS
- **DATAllegro** founded in 2003 acquired by Microsoft in 2008; A parallel, shared-nothing DBMS
- **Aster Data Systems** founded in 2005 acquired by Teradata in 2011; A parallel, shared-nothing, MapReduce-based data processing system. SQL on top of MapReduce
- **Netezza** founded in 2000 and acquired by IBM in 2010. A parallel, shared-nothing DBMS.
Two Approaches to Parallel Data Processing

• **Parallel databases**, developed starting with the 80s
 - For both **OLTP** (transaction processing)
 - And for **OLAP** (Decision Support Queries)

• **MapReduce**, first developed by Google, published in 2004
 - Only for **Decision Support Queries**

Today we see convergence of the two approaches
Parallel v.s. Distributed Databases

- **Distributed database system (later):**
 - Data is stored across several sites, each site managed by a DBMS capable of running independently

- **Parallel database system (today):**
 - Improve performance through parallel implementation
Parallel DBMSs

• **Goal**
 – Improve performance by executing multiple operations in parallel

• **Key benefit**
 – Cheaper to scale than relying on a single increasingly more powerful processor

• **Key challenge**
 – Ensure overhead and contention do not kill performance
Performance Metrics for Parallel DBMSs

Speedup

• More processors \Rightarrow higher speed
• Individual queries should run faster
• Should do more transactions per second (TPS)
• Fixed problem size overall, vary # of processors ("strong scaling")
Linear v.s. Non-linear Speedup

Speedup

processors (=P)
Performance Metrics for Parallel DBMSs

Scaleup

- More processors can process more data
- Fixed problem size per processor, vary # of processors ("weak scaling")

- Batch scaleup
 - Same query on larger input data should take the same time

- Transaction scaleup
 - N-times as many TPS on N-times larger database
 - But each transaction typically remains small
Linear v.s. Non-linear Scaleup

Batch Scaleup

processors (=P) AND data size

CSE 544 - Magda Balazinska, Winter 2015
Warning

• Be careful. Commonly used terms today:
 – “scale up” = use an increasingly more powerful server
 – “scale out” = use a larger number of servers
Challenges to Linear Speedup and Scaleup

- **Startup cost**
 - Cost of starting an operation on many processors

- **Interference**
 - Contention for resources between processors

- **Skew**
 - Slowest processor becomes the bottleneck
Architectures for Parallel Databases

Figure 1 - Types of database architecture

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”
Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine and can leverage many threads to get a query to run faster (see query plans)

- Easy to use and program
- But very expensive to scale
Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

Oracle dominates this class of systems

Characteristics:
- Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines
Shared Nothing

• Cluster of machines on high-speed network
• Called "clusters" or "blade servers"
• Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:
• Today, this is the most scalable architecture.
• Most difficult to administer and tune.

We discuss only Shared Nothing in class
In Class

• You have a parallel machine. Now what?

• How do you speed up your DBMS?
Approaches to Parallel Query Evaluation

- **Inter-query parallelism**
 - Each query runs on one processor
 - Only for OLTP queries

- **Inter-operator parallelism**
 - A query runs on multiple processors
 - An operator runs on one processor
 - For both OLTP and Decision Support

- **Intra-operator parallelism**
 - An operator runs on multiple processors
 - For both OLTP and Decision Support

We study only intra-operator parallelism: most scalable
Horizontal Data Partitioning

• Relation R split into P chunks R_0, \ldots, R_{P-1}, stored at the P nodes

• Block partitioned
 – Each group of k tuples go to a different node

• Hash based partitioning on attribute A:
 – Tuple t to chunk $h(t.A) \mod P$

• Range based partitioning on attribute A:
 – Tuple t to chunk i if $v_{i-1} < t.A < v_i$
Uniform Data v.s. Skewed Data

- Let $R(K,A,B,C)$; which of the following partition methods may result in skewed partitions?

- **Block partition**
- **Hash-partition**
 - On the key K
 - On the attribute A
- **Range-partition**
 - On the key K
 - On the attribute A

<table>
<thead>
<tr>
<th>Method</th>
<th>Uniform</th>
<th>May be skewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block partition</td>
<td>Uniform</td>
<td>May be skewed</td>
</tr>
<tr>
<td>Hash-partition</td>
<td>Uniform</td>
<td>May be skewed</td>
</tr>
<tr>
<td>Range-partition</td>
<td>Uniform</td>
<td>May be skewed</td>
</tr>
</tbody>
</table>

Assuming uniform hash function

E.g. when all records have the same value of the attribute A, then all records end up in the same partition.

Difficult to partition the range of A uniformly.
Example from Teradata

AMP = unit of parallelism
Horizontal Data Partitioning

- All three choices are just special cases:
 - For each tuple, compute $bin = f(t)$
 - Different properties of the function f determine hash vs. range vs. round robin vs. anything
Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v_1<A<v_2}(R)$

- On a conventional database: cost = $B(R)$

- Q: What is the cost on a parallel database with P processors?
 - Block partitioned
 - Hash partitioned
 - Range partitioned
Parallel Selection

• Q: What is the cost on a parallel database with P nodes?

• A: $B(R) / P$ in all cases if cost is response time

• However, different processors do the work:
 – Block: all servers do the work
 – Hash: one server for $\sigma_{A=v}(R)$, all for $\sigma_{v_1<A<v_2}(R)$
 – Range: some servers only
Data Partitioning Revisited

What are the pros and cons?

- **Block based partitioning**
 - Good load balance but always needs to read all the data

- **Hash based partitioning**
 - Good load balance
 - Can avoid reading all the data for equality selections

- **Range based partitioning**
 - Can suffer from skew (i.e., load imbalances)
 - Can help reduce skew by creating uneven partitions
Parallel Group By: \(\gamma_{A, \text{sum}(B)}(R) \)

- Step 1: server \(i \) partitions chunk \(R_i \) using a hash function \(h(t.A) \mod P: R_{i0}, R_{i1}, \ldots, R_{i,P-1} \)

- Step 2: server \(i \) sends partition \(R_{ij} \) to serve \(j \)

- Step 3: server \(j \) computes \(\gamma_{A, \text{sum}(B)} \) on \(R_{0j}, R_{1j}, \ldots, R_{P-1,j} \)
Parallel GroupBy

$γ_{A, \text{sum}(C)}(R)$
- If R is partitioned on A, then each node computes the group-by locally
- Otherwise, hash-partition $R(K, A, B, C)$ on A, then compute group-by locally:

Reshuffle R on attribute A
Parallel Group By: $\gamma_A, \text{sum}(B)(R)$

- Can we do better?
- Sum?
- Count?
- Avg?
- Max?
- Median?
Parallel Group By: $\gamma_{A, \text{sum}(B)}(R)$

- $\text{Sum}(B) = \text{Sum}(B_0) + \text{Sum}(B_1) + \ldots + \text{Sum}(B_n)$
- $\text{Count}(B) = \text{Count}(B_0) + \text{Count}(B_1) + \ldots + \text{Count}(B_n)$
- $\text{Max}(B) = \text{Max}(\text{Max}(B_0), \text{Max}(B_1), \ldots, \text{Max}(B_n))$

 - **distributive**

- $\text{Avg}(B) = \frac{\text{Sum}(B)}{\text{Count}(B)}$

 - **algebraic**

- $\text{Median}(B) =$

 - **holistic**
Parallel Join: \(R \bowtie_{A=B} S \)

- **Step 1**
 - For all servers in \([0,k]\), server \(i \) partitions chunk \(R_i \) using a hash function \(h(t.A) \mod P: R_{i0}, R_{i1}, \ldots, R_{i,P-1} \)
 - For all servers in \([k+1,P]\), server \(j \) partitions chunk \(S_j \) using a hash function \(h(t.A) \mod P: S_{j0}, S_{j1}, \ldots, R_{j,P-1} \)

- **Step 2:**
 - Server \(i \) sends partition \(R_{iu} \) to server \(u \)
 - Server \(j \) sends partition \(S_{ju} \) to server \(u \)

- **Steps 3:** Server \(u \) computes the join of \(R_{iu} \) with \(S_{ju} \)
Overall Architecture

Figure 5 - Master server performs global planning and dispatch

SQL Query

Master server

Parallel query planning & optimization

Parallel query dispatch

Local storage

Network interconnect

Segment servers

From: Greenplum Database Whitepaper
Example of Parallel Query Plan

Find all orders from today, along with the items ordered

SELECT *
FROM Orders o, Lines i
WHERE o.item = i.item
AND o.date = today()
Example Parallel Plan

Node 1
- hash
- select
 - date=today()
- scan
 - Order o

Node 2
- hash
- select
 - date=today()
- scan
 - Order o

Node 3
- hash
- select
 - date=today()
- scan
 - Order o

join
- o.item = i.item

CSE 544 - Magda Balazinska, Winter 2015
Example Parallel Plan

Node 1

hash
h(i.item)
scan
Item i

Node 2

hash
h(i.item)
scan
Item i

Node 3

hash
h(i.item)
scan
Item i

join
o.item = i.item

date = today()

Order o
Example Parallel Plan

Node 1

Node 2

Node 3

join

join

join

o.item = i.item

o.item = i.item

o.item = i.item

contains all orders and all lines where hash(item) = 1

contains all orders and all lines where hash(item) = 2

contains all orders and all lines where hash(item) = 3
Optimization for Small Relations

- When joining R and S
- If $|R| >> |S|$
 - Leave R where it is
 - Replicate entire S relation across nodes
- Sometimes called a “small join”
Other Interesting Parallel Join Implementation

Problem of skew during join computation

– Some join partitions get more **input** tuples than others
 • Reason 1: Base data unevenly distributed across machines
 – Because used a range-partition function
 – Or used hashing but some values are very popular
 • Reason 2: Selection before join with different selectivities
 • Reason 3: Input data got unevenly rehashed (or otherwise repartitioned before the join)

– Some partitions **output** more tuples than others
Some Skew Handling Techniques

1. Use range- instead of hash-partitions
 - Ensure that each range gets same number of tuples
 - Example: \{1, 1, 1, 2, 3, 4, 5, 6\} → [1,2] and [3,6]

2. Create more partitions than nodes
 - And be smart about scheduling the partitions

3. Use subset-replicate (i.e., “skewedJoin”)
 - Given an extremely common value ‘v’
 - Distribute R tuples with value v randomly across k nodes (R is the build relation)
 - Replicate S tuples with value v to same k machines (S is the probe relation)
Parallel Dataflow Implementation

- Use relational operators unchanged

- Add a special *shuffle* operator
 - Handle data routing, buffering, and flow control
 - Inserted between consecutive operators in the query plan
 - Two components: ShuffleProducer and ShuffleConsumer
 - Producer pulls data from operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
 - Consumer buffers input data from n producers and makes it available to operator through getNext interface
Map Reduce

• Google: [Dean 2004]
• Open source implementation: Hadoop

• MapReduce = high-level programming model and implementation for large-scale parallel data processing
MapReduce Motivation

• Not designed to be a DBMS
• Designed to simplify task of writing parallel programs
 – A simple programming model that applies to many large-scale computing problems
• Hides messy details in MapReduce runtime library:
 – Automatic parallelization
 – Load balancing
 – Network and disk transfer optimizations
 – Handling of machine failures
 – Robustness
 – Improvements to core library benefit all users of library!
Data Processing at Massive Scale

• Want to process petabytes of data and more

• Massive parallelism:
 – 100s, or 1000s, or 10000s servers (think data center)
 – Many hours

• Failure:
 – If medium-time-between-failure is 1 year
 – Then 10000 servers have one failure / hour
Data Storage: GFS/HDFS

- MapReduce job input is a file

- Common implementation is to store files in a highly scalable file system such as GFS/HDFS
 - GFS: Google File System
 - HDFS: Hadoop File System

 - Each data file is split into M blocks (64MB or more)
 - Blocks are stored on random machines & replicated
 - Files are append only
Observation: Your favorite parallel algorithm…

Reduce

(Shuffle)

Map
Typical Problems Solved by MR

- Read a lot of data
- **Map**: extract something you care about from each record
- Shuffle and Sort
- **Reduce**: aggregate, summarize, filter, transform
- Write the results

Outline stays the same, map and reduce change to fit the problem
Data Model

Files!

A file = a bag of (key, value) pairs

A MapReduce program:

- Input: a bag of (inputkey, value) pairs
- Output: a bag of (outputkey, value) pairs
Step 1: the **MAP** Phase

User provides the **MAP**-function:

- **Input:** *(input key, value)*
- **Output:** bag of *(intermediate key, value)*

System applies map function in parallel to all *(input key, value)* pairs in the input file.
Step 2: the **REDUCE** Phase

User provides the **REDUCE** function:

- **Input:**
 - *(intermediate key, bag of values)*

- **Output (original MR paper):** bag of output *(values)*

- **Output (Hadoop):** bag of *(output key, values)*

System groups all pairs with the same intermediate key, and passes the bag of values to the **REDUCE** function.
Example

• Counting the number of occurrences of each word in a large collection of documents
• Each Document
 – The key = document id (did)
 – The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
 result += ParseInt(v);
Emit(AsString(result));
(did1, v1)	(w1, 1)	(w2, 1)	(w3, 1)	...	(w1, (1, 1, 1, ...), 1)	(w2, (1, 1, ...))	(w3, (1, ...))	...	(w1, 25)	(w2, 77)	(w3, 12)		
(did2, v2)	(w1, 1)	(w2, 1)	...	(w1, 1)	(w2, 1)	
(did3, v3)

MAP

REDUCE

Shuffle
Jobs v.s. Tasks

• **A MapReduce Job**
 – One single “query”, e.g. count the words in all docs
 – More complex queries may consist of multiple jobs

• **A Map Task, or a Reduce Task**
 – A group of instantiations of the map-, or reduce-function, which are scheduled on a single worker
Workers

• A worker is a process that executes one task at a time
• Typically there is one worker per processor, hence 4 or 8 per node

• Often talk about “slots”
 – E.g., Each server has 2 map slots and 2 reduce slots
Parallel MapReduce Details

Map (Shuffle)

Reduce

Task

Data not necessarily local

Intermediate data goes to local disk

Output to disk, replicated in cluster

File system: GFS or HDFS

CSE 544 - Magda Balazinska, Winter 2015
MapReduce Implementation

- There is one master node
- Input file gets partitioned further into M' splits
 - Each split is a contiguous piece of the input file
- Master assigns workers (=servers) to the M' map tasks, keeps track of their progress
- Workers write their output to local disk
- Output of each map task is partitioned into R regions
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers’ local disks
Example MapReduce Execution

PageRank Application
CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.
MapReduce Phases

Map Task

- Split
- Record Reader
- Map
- Combine

Reduce Task

- Copy
- Sort
- Reduce

Local storage

HDFS

CSE 544 - Magda Balazinska, Winter 2015
Interesting Implementation Details

• Worker failure:
 – Master pings workers periodically,
 – If down then reassigns its task to another worker
 – (≠ a parallel DBMS restarts whole query)

• How many map and reduce tasks:
 – Larger is better for load balancing
 – But more tasks also add overheads
 – (≠ parallel DBMS spreads ops across all nodes)
MapReduce Granularity Illustration

Relative Runtime

<table>
<thead>
<tr>
<th></th>
<th>Astro</th>
<th>Seaflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>14.1</td>
<td>67.2</td>
</tr>
<tr>
<td>Fine</td>
<td>8.8</td>
<td>63.1</td>
</tr>
<tr>
<td>Finer</td>
<td>4.1</td>
<td>77.7</td>
</tr>
<tr>
<td>Finest</td>
<td>5.7</td>
<td>98.7</td>
</tr>
<tr>
<td>Manual</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>SkewReduce</td>
<td>1.6</td>
<td>14.1</td>
</tr>
</tbody>
</table>

Hours

Minutes
Interesting Implementation Details

Backup tasks:

- **Straggler** = a machine that takes unusually long time to complete one of the last tasks. Eg:
 - Bad disk forces frequent correctable errors (30MB/s \rightarrow 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine

- Stragglers are a main reason for slowdown

- Solution: *pre-emptive backup execution of the last few remaining in-progress tasks*
Parallel DBMS vs MapReduce

- Parallel DBMS
 - Relational data model and schema
 - Declarative query language: SQL
 - Many pre-defined operators: relational algebra
 - Can easily combine operators into complex queries
 - Query optimization, indexing, and physical tuning
 - Streams data from one operator to the next without blocking
 - Can do more than just run queries: Data management
 - Updates and transactions, constraints, security, etc.
Parallel DBMS vs MapReduce

• MapReduce
 – Data model is a file with key-value pairs!
 – No need to “load data” before processing it
 – Easy to write user-defined operators
 – Can easily add nodes to the cluster (no need to even restart)
 – Uses less memory since processes one key-group at a time
 – Intra-query fault-tolerance thanks to results on disk
 – Intermediate results on disk also facilitate scheduling
 – Handles adverse conditions: e.g., stragglers
 – Arguably more scalable… but also needs more nodes!
Declarative Languages on MR

- PIG Latin (Yahoo!)
 - New language, like Relational Algebra
 - Open source

- HiveQL (Facebook)
 - SQL-like language
 - Open source

- SQL / Tenzing (Google)
 - SQL on MR
 - Proprietary
Example: Pig system

A = LOAD 'file1' AS (sid,pid, mass, px: double);
B = LOAD 'file2' AS (sid,pid, mass, px: double);
C = FILTER A BY px < 1.0;
D = JOIN C BY sid,
 B BY sid;
STORE g INTO 'output.txt';
MapReduce State

• Lots of extensions to address limitations
 – Capabilities to write DAGs of MapReduce jobs
 – Declarative languages
 – Ability to read from structured storage (e.g., indexes)
 – Etc.

• Most companies use both types of engines
• Increased integration of both engines