CSE 544 Principles of Database Management Systems

Alvin Cheung Fall 2015

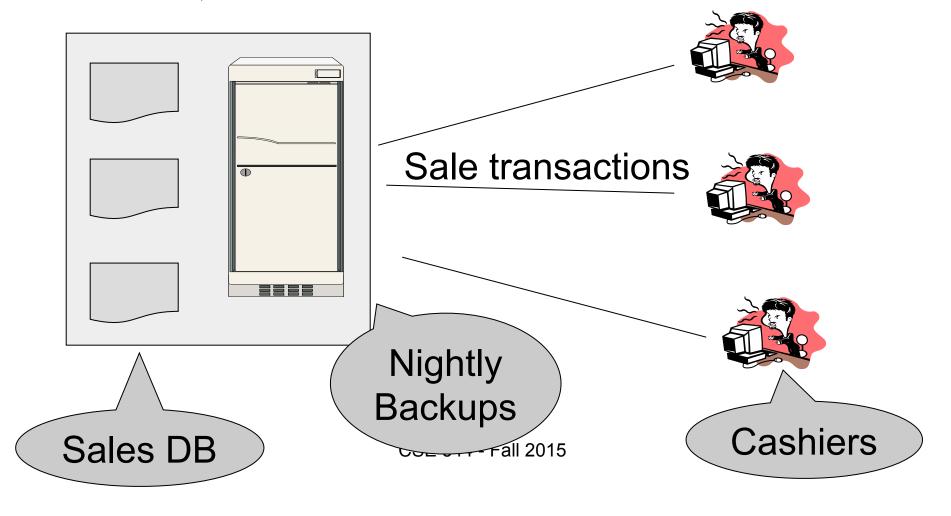
Lecture 9 – Parallel DBMSs

Announcements

- HW2 due in a week
 - Check website for OH
- Please sign up for an AWS account
 - http://aws.amazon.com/education/awseducate/
 - Free \$100 AWS credit that you can keep!
 - Use it for your projects (and also HW3)
 - See project / AWS page for details
- We will have a (first ever!) joint poster session with 550 for final projects
 - Tuesday Dec 15 from 2:30 4:30pm, CSE atrium
 - There will be free food!
 - There might be swags!!
 - Final report will be due on Friday Dec 18

Data Warehouses

Walmart, 90s



OLAP queries

- Operators:
 - Rollup
 - Drill down
 - Pivoting
 - Cube
- ETL pipeline load data into a data warehouse
- Architecture:
 - Implement using column stores
 - Any alternatives?

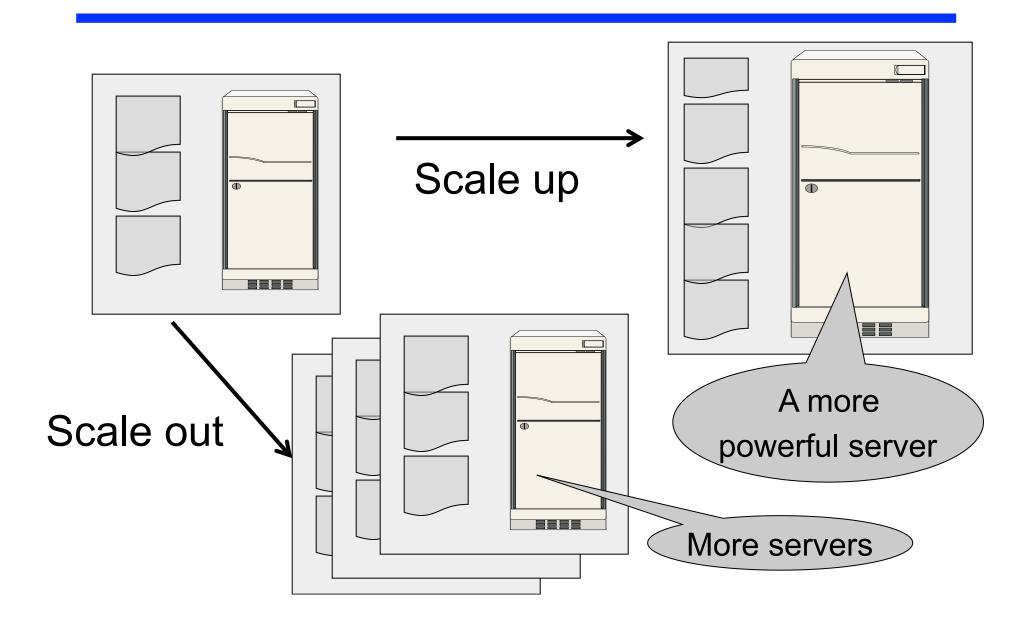
References

Parallel Database Systems: The Future of High Performance
 Database Systems. Dave DeWitt and Jim Gray. Com. of the ACM.

 1992. Sec. 1 and 2.

Database management systems. Ramakrishnan and Gehrke.
 Third Ed. Chapter 22.

Two Ways to Scale a DBMS



Two Ways to Scale a DBMS

- Obviously this can be used to:
 - Execute multiple queries in parallel
 - Speed up a single query
- For now: how to speed up a single query
- We will worry about how to scale to multiple queries later

FYI: Data Analytics Companies

DB analytics companies:

- Greenplum founded in 2003 acquired by EMC in 2010; A parallel shared-nothing DBMS
- Vertica founded in 2005 and acquired by HP in 2011; A parallel, column-store shared-nothing DBMS
- DATAllegro founded in 2003 acquired by Microsoft in 2008; A parallel, shared-nothing DBMS
- Aster Data Systems founded in 2005 acquired by Teradata in 2011; A parallel, shared-nothing, MapReduce-based data processing system. SQL on top of MapReduce
- Netezza founded in 2000 and acquired by IBM in 2010. A parallel, shared-nothing DBMS.

Parallel v.s. Distributed Databases

- Distributed database system (later):
 - Data is stored across several sites (geographically speaking),
 each site managed by a DBMS capable of running independently

- Parallel database system (today):
 - Data is stored at a single site, can be used to improve query performance through parallel implementation

Parallel DBMSs

Goal

Improve performance by executing multiple operations in parallel

Key benefit

 Cheaper to scale than relying on a single increasingly more powerful processor

Key challenge

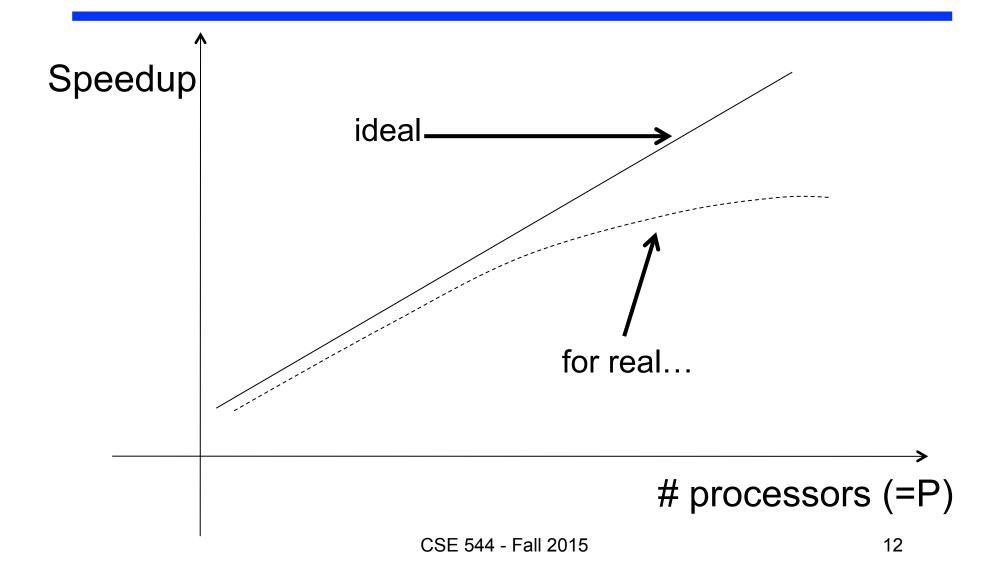
Ensure overhead and contention do not kill performance

Performance Metrics for Parallel DBMSs

Speedup

- More processors → higher speed
- Individual queries should run faster
- Should do more transactions per second (TPS)
- Fixed problem size overall, vary # of processors ("strong scaling")

Linear v.s. Non-linear Speedup



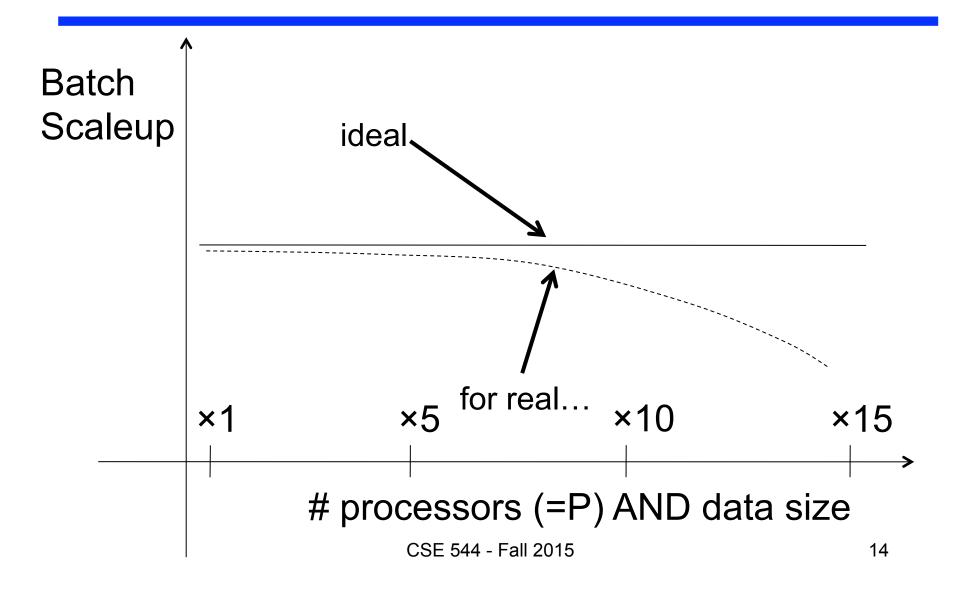
Performance Metrics for Parallel DBMSs

Scaleup

- More processors

 can process more data
- Fixed problem size per processor, vary # of processors ("weak scaling")
- Batch scaleup
 - Same query on larger input data should take the same time
- Transaction scaleup
 - N-times as many TPS on N-times larger database
 - But each transaction typically remains small

Linear v.s. Non-linear Scaleup



Buzzwords, buzzwords

- Be careful. Commonly used terms today:
 - "scale up" = use an increasingly more powerful server
 - "scale out" = use a larger number of servers

Challenges to Linear Speedup and Scaleup

Startup cost

Cost of starting an operation on many processors

Interference

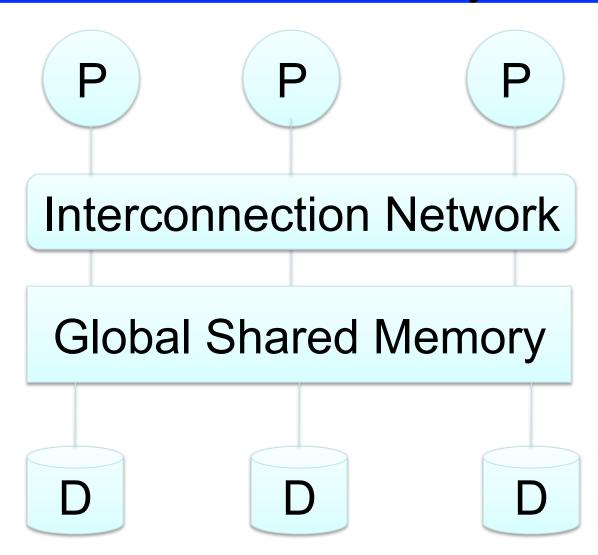
Contention for resources between processors

Skew

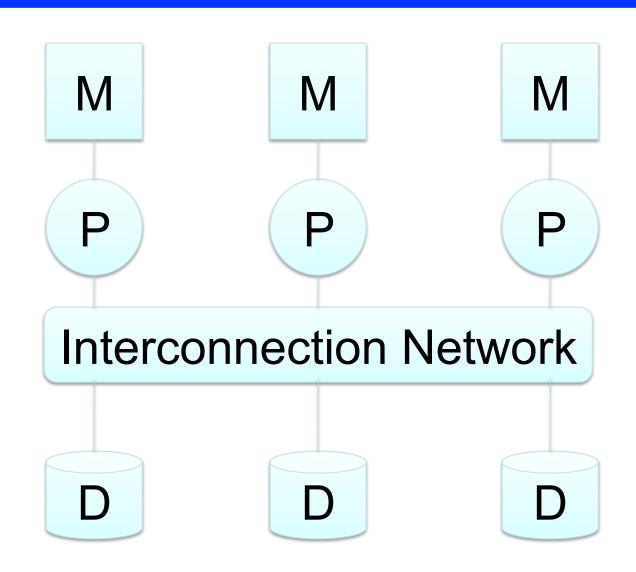
Slowest processor becomes the bottleneck

Parallel DBMS Architectures

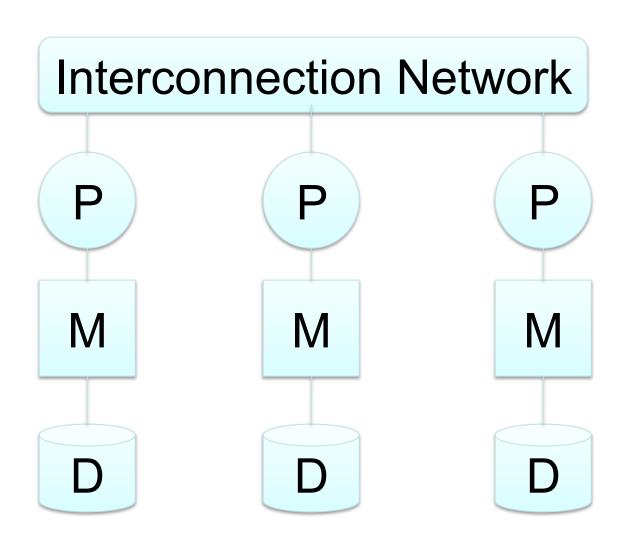
Architecture for Parallel DBMS: Shared Memory



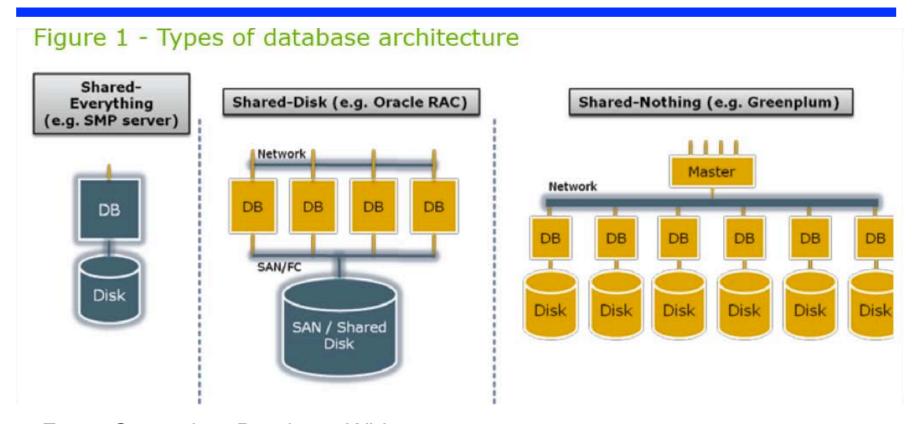
Architecture for Parallel DBMS: Shared Disk



Architecture for Parallel DBMS: Shared Nothing



A Professional Picture...



From: Greenplum Database Whitepaper

SAN = "Storage Area Network"

Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors
- Example: SQL Server runs on a single machine
 - can leverage many threads to get a query to run faster
- Easy to use and program
- But very expensive to scale

Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (non-cluster) multiprocessors

Oracle dominates this class of systems

Characteristics:

 Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines

Shared Nothing

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:

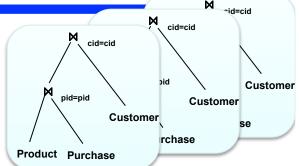
- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

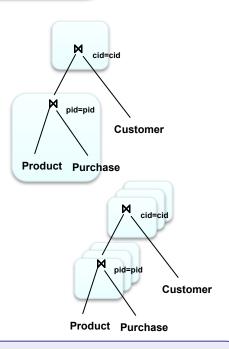
So...

- You have a parallel machine. Now what?
- How do you speed up your DBMS given a shared-nothing architecture?

Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - Each query runs on one processor
 - Only for running multiple queries (OLTP)
- Inter-operator parallelism
 - A query runs on multiple processors
 - An operator runs on one processor
 - For both OLTP and Decision Support
- Intra-operator parallelism
 - An operator runs on multiple processors
 - For both OLTP and Decision Support





We study only intra-operator parallelism: most scalable

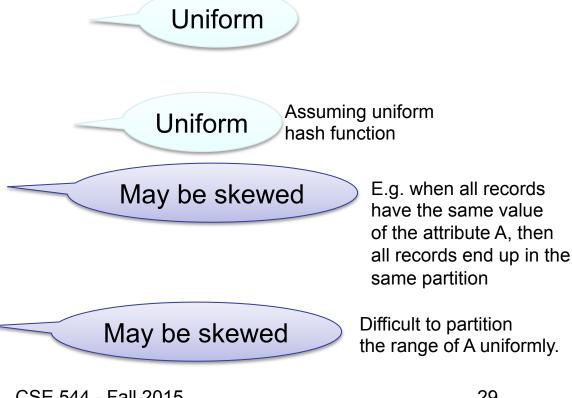
Data Partitioning

Horizontal Data Partitioning

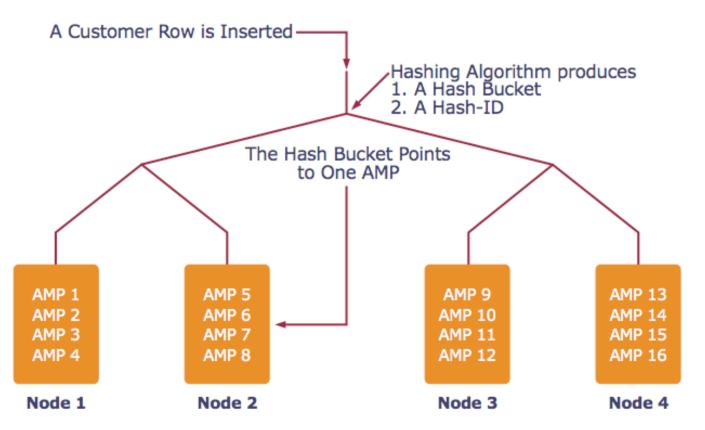
- Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes
- Block partitioned
 - Each group of k tuples go to a different node
- Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$

Uniform Data v.s. Skewed Data

- Let R(K,A,B,C); which of the following partition methods may result in skewed partitions?
- **Block** partition
- Hash-partition
 - On the key K
 - On the attribute A
- Range-partition
 - On the key K
 - On the attribute A



Example from Teradata



AMP = unit of parallelism

Horizontal Data Partitioning

- All three choices are just special cases of:
 - For each tuple, compute bin = f(t)
 - Different properties of the function f determine
 - Hash
 - Range
 - Round robin
 - Anything else...

Parallelizing Operator Implementations

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$

- On a conventional database: cost = B(R)
- Q: What is the cost on a parallel database with P processors?
 - Block partitioned
 - Hash partitioned
 - Range partitioned

Parallel Selection

- Q: What is the cost on a parallel database with P nodes?
- A: B(R) / P in all cases if cost is response time
- However, not all processors are equal (workwise):
 - Block: all servers do the same amount of work
 - Hash: one server for $\sigma_{A=v}(R)$, all for $\sigma_{v1<A< v2}(R)$
 - Range: some servers only

Data Partitioning Revisited

What are the pros and cons?

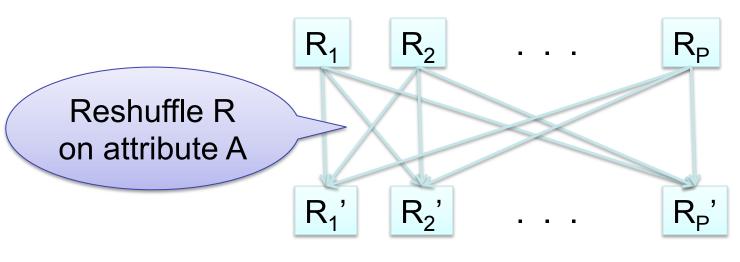
- Block based partitioning
 - Good load balance but always needs to read all the data
- Hash based partitioning
 - Good load balance
 - Can avoid reading all the data for equality selections
- Range based partitioning
 - Can suffer from skew (i.e., load imbalances)
 - Can help reduce skew by creating uneven partitions

Parallel Group By: $\gamma_{A, sum(B)}(R)$

- Step 1: server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i.P-1} (there are P servers total)
- Step 2: server i sends partition R_{ij} to server j
- Step 3: server j computes $\gamma_{A, \text{ sum}(B)}$ on $R_{0j}, \, R_{1j}, \, ..., \, R_{P\text{-}1,j}$

Parallel Group By: $\gamma_{A, sum(B)}(R)$

- If R is partitioned on A, then each node computes the group-by locally
- Otherwise, hash-partition R(K,A,B,C) on A, then compute group-by locally:



Parallel Group By: $\gamma_{A, sum(B)}(R)$

- Can we do better?
- Sum?
- Count?
- Avg?
- Max?
- Median?
- Yes!

Parallel Group By: $\gamma_{A, sum(B)}(R)$

- Sum(B) = Sum(B₀) + Sum(B₁) + ... + Sum(B_n)
- Count(B) = Count(B₀) + Count(B₁) + ... + Count(B_n)
- $Max(B) = Max(Max(B_0), Max(B_1), ..., Max(B_n))$

distributive

Avg(B) = Sum(B) / Count(B)

algebraic

Median(B) = ???

holistic

Parallel Join: $R \bowtie_{A=B} S$

Step 1

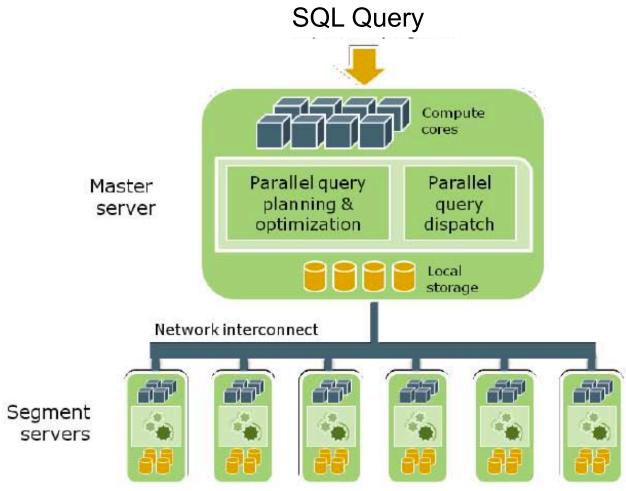
- For all servers in [0,k], server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i,P-1}
- For all servers in [k+1,P], server j partitions chunk S_j using a hash function h(t.A) mod P: S_{i0}, S_{i1}, ..., R_{i,P-1}

• Step 2:

- Server i sends partition R_{iu} to server u
- Server j sends partition S_{iu} to server u
- Steps 3: Server u computes the join of R_{iu} with S_{ju}

Overall Architecture

Figure 5 - Master server performs global planning and dispatch



From: Greenplum Database Whitepaper

Example of Parallel Query Plan

Find all orders from today, along with the items ordered

```
SELECT *

FROM Orders o, Lines i

WHERE o.item = i.item

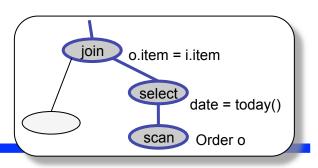
AND o.date = today()

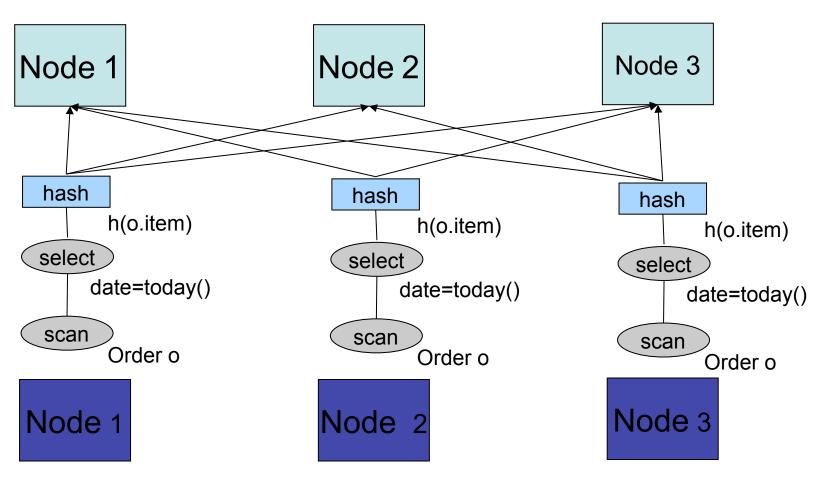
scan

Item i

Order o
```

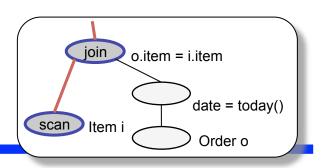
Example Parallel Plan

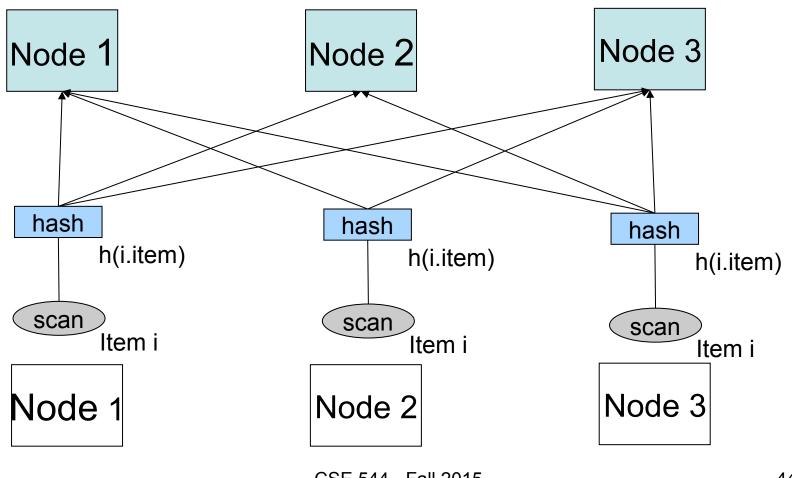




CSE 544 - Fall 2015

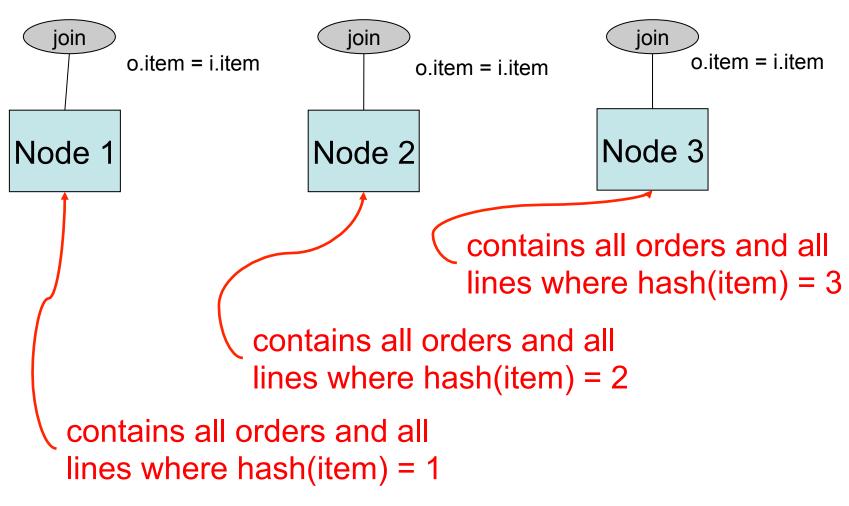
Example Parallel Plan





CSE 544 - Fall 2015

Example Parallel Plan



Optimization for Small Relations

- When joining R and S
- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Sometimes called a "small join"

Other Interesting Parallel Join Implementation

Problem of skew during join computation

- Some join partitions get more input tuples than others
 - Reason 1: Base data unevenly distributed across machines
 - Because used a range-partition function
 - Or used hashing but some values are very popular
 - Reason 2: Selection before join with different selectivities
 - Reason 3: Input data got unevenly rehashed (or otherwise repartitioned before the join)
- Some partitions output more tuples than others

Some Skew Handling Techniques

- 1. Use range- instead of hash-partitions
 - Ensure that each range gets same number of tuples
 - Example: {1, 1, 1, 2, 3, 4, 5, 6} → [1,2] and [3,6]
- 2. Create more partitions than nodes
 - And be smart about scheduling the partitions
- 3. Use subset-replicate (i.e., "skewedJoin")
 - Given an extremely common value 'v'
 - Distribute R tuples with value v randomly across k nodes (R is the build relation)
 - Replicate S tuples with value v to same k machines (S is the probe relation)

Parallel Dataflow Implementation

- Use relational operators unchanged
- Add a special shuffle operator
 - Handle data routing, buffering, and flow control
 - Inserted between consecutive operators in the query plan
 - Two components: ShuffleProducer and ShuffleConsumer
 - Producer pulls data from operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
 - Consumer buffers input data from n producers and makes it available to operator through getNext interface

Conclusion

- Making databases parallel is another way to speed up query processing
- Many algorithms for parallelizing different relational operators
- Next time: Alternatives to using SQL for large-scale analytical data processing