CSE 544

Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 9 — Parallel DBMSs

Announcements

« HW2 due in a week
— Check website for OH

» Please sign up for an AWS account
— http://aws.amazon.com/education/awseducate/
— Free $100 AWS credit that you can keep!
— Use it for your projects (and also HW3)
— See project / AWS page for details

« We will have a (first ever!) joint poster session with 550 for final
projects
— Tuesday Dec 15 from 2:30 - 4:30pm, CSE atrium
— There will be free food!
— There might be swags!!
— Final report will be due on Friday Dec 18

Data Warehouses

Walmart, 90s

.
— |
-

Sales DB

Nightly
Backups

all 2015

OLAP queries

* QOperators:
— Rollup
— Drill down
— Pivoting
— Cube

 ETL pipeline load data into a data warehouse

* Architecture:
— Implement using column stores
— Any alternatives?

CSE 544 - Fall 2015

References

- Parallel Database Systems: The Future of High Performance
Database Systems. Dave DeWitt and Jim Gray. Com. of the ACM.
1992. Sec. 1 and 2.

- Database management systems. Ramakrishnan and Gehrke.
Third Ed. Chapter 22.

CSE 544 - Fall 2015)

Two Ways to Scale a DBMS

Scale up

Scale ck

/\
) s

A more
powerful server

More servers

Two Ways to Scale a DBMS

* Obviously this can be used to:
— Execute multiple queries in parallel
— Speed up a single query

* For now: how to speed up a single query

* We will worry about how to scale to multiple queries later

CSE 544 - Fall 2015 7

FYI. Data Analytics Companies

DB analytics companies:

« Greenplum founded in 2003 acquired by EMC in 2010; A
parallel shared-nothing DBMS

* Vertica founded in 2005 and acquired by HP in 2011; A
parallel, column-store shared-nothing DBMS

 DATAIllegro founded in 2003 acquired by Microsoft in 2008; A
parallel, shared-nothing DBMS

« Aster Data Systems founded in 2005 acquired by Teradata in
2011; A parallel, shared-nothing, MapReduce-based data
processing system. SQL on top of MapReduce

* Netezza founded in 2000 and acquired by IBM in 2010. A
parallel, shared-nothing DBMS.

What does this mean? $$$$ 8

Parallel v.s. Distributed
Databases

« Distributed database system (later):

— Data is stored across several sites (geographically speaking),
each site managed by a DBMS capable of running independently

» Parallel database system (today):

— Data is stored at a single site, can be used to improve query
performance through parallel implementation

CSE 544 - Fall 2015 9

Parallel DBMSs

« Goal
— Improve performance by executing multiple operations in parallel

« Key benefit

— Cheaper to scale than relying on a single increasingly more
powerful processor

» Key challenge
— Ensure overhead and contention do not kill performance

CSE 544 - Fall 2015 10

Performance Metrics
for Parallel DBMSs

Speedup

* More processors = higher speed

 Individual queries should run faster

« Should do more transactions per second (TPS)

* Fixed problem size overall, vary # of processors ("strong
scaling”)

CSE 544 - Fall 2015 11

Linear v.s. Non-linear Speedup

A

Speedup

for real...

processors (=P)

CSE 544 - Fall 2015 12

Performance Metrics
for Parallel DBMSs

Scaleup

More processors =» can process more data

Fixed problem size per processor, vary # of processors
("weak scaling”)

Batch scaleup
— Same query on larger input data should take the same time

Transaction scaleup
— N-times as many TPS on N-times larger database
— But each transaction typically remains small

CSE 544 - Fall 2015 13

Linear v.s. Non-linear Scaleup

A

Batch
Scaleup

X1 XD x10 X195
| | | —
processors (=P) AND data size
CSE 544 - Fall 2015 14

Buzzwords, buzzwords

« Be careful. Commonly used terms today:
— “scale up” = use an increasingly more powerful server
— “scale out” = use a larger number of servers

CSE 544 - Fall 2015

15

Challenges to

Linear SEeeduE and Scaleug

« Startup cost
— Cost of starting an operation on many processors

 Interference
— Contention for resources between processors

« Skew

— Slowest processor becomes the bottleneck

CSE 544 - Fall 2015 16

Parallel DBMS Architectures

CSE 544 - Fall 2015

17

Architecture for Parallel DBMS:
Shared Memory

P P P

Interconnection Network

Global Shared Memory

18

Architecture for Parallel DBMS:

Shared Disk
M M M
P P P

Interconnection Network

19

Architecture for Parallel DBMS:
Shared Nothin

Interconnection Network

20

A Professional Picture...

Figure 1 - Types of database architecture

Shared-

Everything | Shared-Disk 50.9. Oracle RAC! | |,smrodguothlng#(ﬂ) ._Gnonplum)_,l

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”

CSE 544 - Fall 2015 21

Shared Memory

Nodes share both RAM and disk
Dozens to hundreds of processors

Example: SQL Server runs on a single machine
— can leverage many threads to get a query to run faster

Easy to use and program
But very expensive to scale

CSE 544 - Fall 2015

22

Shared Disk

 All nodes access the same disks

* Found in the largest "single-box" (non-cluster)
multiprocessors

Oracle dominates this class of systems

Characteristics:

* Also hard to scale past a certain point: existing
deployments typically have fewer than 10 machines

CSE 544 - Fall 2015

23

Shared Nothing

« Cluster of machines on high-speed network
e (Called "clusters" or "blade servers”

« Each machine has its own memory and disk: lowest
contention.

NOTE: Because all machines today have many cores and many
disks, then shared-nothing systems typically run many "nodes” on
a single physical machine.

Characteristics:
« Today, this is the most scalable architecture.
 Most difficult to administer and tune.

[We discuss only Shared Nothing in class} 24

So...

* You have a parallel machine. Now what?

 How do you speed up your DBMS given a shared-nothing
architecture?

CSE 544 - Fall 2015 25

Approaches to

Parallel Query Evaluation .

* Inter-query parallelism
— Each query runs on one processor

— Only for running multiple queries (OLTP) Product purchass

 Inter-operator parallelism
— A query runs on multiple processors

— An operator runs on one processor
— For both OLTP and Decision Support

 Intra-operator parallelism

— An operator runs on multiple processors
— For both OLTP and Decision Support

Product Purchase

[We study only intra-operator parallelism

: most scalable }

Data Partitioning

CSE 544 - Fall 2015

27

Horizontal Data Partitioning

Relation R split into P chunks R,,, ..., Rp_4, stored at the P
nodes

Block partitioned
— Each group of k tuples go to a different node

Hash based partitioning on attribute A:
— Tuple t to chunk h(t.A) mod P

Range based partitioning on attribute A:
— Tuple tto chunkiif v, <t A<y,

[Need to worry about data skew } 28

Uniform Data v.s. Skewed Data

« Let R(K,A,B,C); which of the following partition methods may
result in skewed partitions?

» Block partition Uniform

« Hash-partition
— On the key K

— On the attribute A I\/Iay be skewed E.g. when all records
have the same value

. of the attribute A, then
° Range-partltlon all records end up in the

— On the key K same partition

— On the attribute A Difficult to partition
May be skewed the range of A uniformly.

CSE 544 - Fall 2015 29

: Assuming uniform
Uniform hash function

Example from Teradata

A Customer Row is Inserted—l

1. A Hash Bucket

/Hashlng AI orithm produces
2. A Hash-ID

The Hash Bucket Points
to One AMP

Node 1 Node 2 Node 3 Node 4

AMP = unit of parallelism

CSE 544 - Fall 2015 30

Horizontal Data Partitioning

 All three choices are just special cases of:
— For each tuple, compute bin = f(t)
— Different properties of the function f determine
* Hash
* Range
* Round robin
* Anything else...

CSE 544 - Fall 2015

31

Parallelizing Operator
Implementations

CSE 544 - Fall 2015

32

Parallel Selection

Compute g,_,(R), or 0,1.a<o(R)
« On a conventional database: cost = B(R)

 Q: What is the cost on a parallel database with P
processors ?
— Block partitioned
— Hash partitioned
— Range partitioned

CSE 544 - Fall 2015

33

Parallel Selection

* Q: What is the cost on a parallel database with P nodes ?

 A:B(R)/Pin all cases if cost is response time

 However, not all processors are equal (workwise):

— Block: all servers do the same amount of work
— Hash: one server for 0,_,(R), all for 0,45« »(R)
— Range: some servers only

CSE 544 - Fall 2015 34

Data Partitioning Revisited

What are the pros and cons ?

» Block based partitioning

— Good load balance but always needs to read all the data
« Hash based partitioning

— Good load balance

— Can avoid reading all the data for equality selections
« Range based partitioning

— Can suffer from skew (i.e., load imbalances)
— Can help reduce skew by creating uneven partitions

CSE 544 - Fall 2015

35

Parallel Group By: YA sum@)(R)

Step 1: server i partitions chunk R, using a hash function
h(t.A) mod P: Ry, Riy, ..., Rip.; (there are P servers total)

Step 2: server i sends partition R;; to server |

Step 3: server j computes Y gym@) ON
ROJ, R1J, "y RP'1,J

CSE 544 - Fall 2015 36

Parallel Group By: YA sum@)(R)

« If Ris partitioned on A, then each node computes the
group-by locally

« QOtherwise, hash-partition R(K,A,B,C) on A, then compute
group-by locally:

Reshuffle R
on attribute A

CSE 544 - Fall 2015 37

Parallel Group By: YA sum@)(R)

Can we do better?
Sum?

Count?

Avg?

Max?

Median?

Yes!

CSE 544 - Fall 2015

38

Parallel Group By: YA sum@)(R)

« Sum(B) = Sum(B,) + Sum(B,) + ... + Sum(B,)
* Count(B) = Count(B,) + Count(B,) + ... + Count(B,)

« Max(B) = Max(Max(B,), Max(B,), ..., Max(B,))

distributive

. Avg(B) = Sum(B) / Count(B)

algebraic

. Median(B) = 227

holistic

CSE 544 - Fall 2015

39

Parallel Join: R X,_g S

o Step 1
— For all servers in [0,k], server i partitions chunk R, using a hash
function h(t.A) mod P: Ry, Ry, ..., Rip.4
— For all servers in [k+1,P], server j partitions chunk Sj using a hash
function h(t.A) mod P: Sy, Sy, ..., Rip4

o Step 2:
— Server i sends partition R, to server u
— Server j sends partition S, to server u

« Steps 3: Server u computes the join of R,, with Sju

CSE 544 - Fall 2015 40

Overall Architecture

Figure 5 - Master server performs global planning and dispatch

SQL Qu_ery
1

Y

AT

;}q' Compute
e -

Master Parallel query Parallel

server planning & query

optimization dispatch

- =~ local
- storage
Network interconnect

W AN | ae e AW am
Segment 9 » . ‘8 ' ‘w
servers B g J B g - B J

From: Greenplum Database Whitepaper

Example of Parallel Query Plan

Find all orders from today, along with the items
ordered

SELECT *
FROM Orders o, Lines 1

WHERE o.item = i.item :>

AND o.date today ()

o.item = i.item

date = today()

Order o

ltem i

CSE 544 - Fall 2015 42

Example Parallel Plan

Node 1 Node 2

hash hash
h(o.item) h(o.item)
select @
date=today() date=today()
Order o ©Order o]

CSE 544 - Fall 2015

o.item = i.item

< scan > Order o h

~

date = today()

——

hash

h(o.item)

select

Scan

date=today()

Order o

43

Example Parallel Plan

Node 1

ha

sh

Scan

h(i.item)

ltem i

%ode1

Node 2

hash

h(i.item)

scan _
Iltem i

Node 2

CSE 544 - Fall 2015

o.item = i.item

- Order o Jh

~

date = today()

Node 3

hash

Scan

h(i.item)

ltem |

Node 3

44

Example Parallel Plan

o.item = i.item o.item = i.item o.item = i.item
Node 1 Node 2 Node 3

@talns all orders and aII

lines where hash(item) =

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSE 544 - Fall 2015 45

Optimization for Small Relations

 When joining R and S
» If[R[>>]S]
— Leave Rwhere itis
— Replicate entire S relation across nodes

« Sometimes called a “small join”

CSE 544 - Fall 2015 46

Other Interesting Parallel
Join Implementation

Problem of skew during join computation

— Some join partitions get more input tuples than others

« Reason 1: Base data unevenly distributed across machines
— Because used a range-partition function
— Or used hashing but some values are very popular

» Reason 2: Selection before join with different selectivities

« Reason 3: Input data got unevenly rehashed (or otherwise
repartitioned before the join)

— Some partitions output more tuples than others

CSE 544 - Fall 2015 47

Some Skew Handling Techniques

1. Use range- instead of hash-partitions
— Ensure that each range gets same number of tuples
— Example: {1,1,1,2,3,4,5,6} > [1,2] and [3,6]

2. Create more partitions than nodes
— And be smart about scheduling the partitions

3. Use subset-replicate (i.e., “skewedJoin”)
— Given an extremely common value v’

— Distribute R tuples with value v randomly across k nodes (R is
the build relation)

— Replicate S tuples with value v to same k machines (S is the
probe relation)

CSE 544 - Fall 2015 48

Parallel Dataflow Implementation

* Use relational operators unchanged

* Add a special shuffle operator
— Handle data routing, buffering, and flow control
— Inserted between consecutive operators in the query plan
— Two components: ShuffleProducer and ShuffleConsumer

— Producer pulls data from operator and sends to n consumers
* Producer acts as driver for operators below it in query plan

— Consumer buffers input data from n producers and makes it
available to operator through getNext interface

CSE 544 - Fall 2015 49

Conclusion

 Making databases parallel is another way to speed up
guery processing

« Many algorithms for parallelizing different relational
operators

* Next time: Alternatives to using SQL for large-scale
analytical data processing

CSE 544 - Fall 2015 50

