
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 7 - Query optimization

Announcements

•  HW1 due tonight at 11:45pm

•  HW2 will be due in two weeks
–  You get to implement your own DBMS!

•  We will meet with each project teams next week
–  Will send out doodle

CSE 544 - Fall 2015

CSE 544 - Fall 2015

References

•  Access path selection in a relational database
management system.
 Selinger. et. al. SIGMOD 1979

•  Database management systems.

 Ramakrishnan and Gehrke.
 Third Ed. Chapter 15.

Query Optimization Motivation

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

Declarative query
Recall physical and
logical data independence

What We Already Know…

Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)
For each SQL query….
SELECT S.sname
FROM Supplier S, Supply U
WHERE S.scity='Seattle' AND S.sstate='WA’
AND S.sno = U.sno
AND U.pno = 2

There exist many logical query plan…

CSE 544 - Fall 2015

CSE 544 - Fall 2015

Example Query: Logical Plan 1

Supplier Supply

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

Example Query: Logical Plan 2

CSE 544 - Fall 2015

Supplier Supply

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

σ pno=2

What We Also Know

•  For each logical plan…

•  There exist many physical plans

CSE 544 - Fall 2015

Example Query: Physical Plan 1

CSE 544 - Fall 2015

Supplier Supply

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Example Query: Physical Plan 2

CSE 544 - Fall 2015

Supplier Supply

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (Index scan)

(Index nested loop)

(On the fly)

(On the fly)

CSE 544 - Fall 2015

Query Optimization Algorithm

•  For a query
–  There exists many physical query plans
–  Query optimizer needs to pick a good one

•  Basic query optimization algorithm
–  Enumerate alternative plans
–  Compute estimated cost of each plan

•  Compute number of I/Os
•  Optionally take into account other resources

–  Choose plan with lowest cost
–  This is called cost-based optimization

Query Optimization

CSE 544 - Fall 2015

Three major components:

1.  Cardinality and cost estimation

2.  Search space

3.  Plan enumeration algorithms

CSE 544 - Fall 2015

Estimating Cost of a Query Plan

•  We already know how to
–  Compute the cost of different operations in terms of number IOs

•  We still need to
–  Compute cost of retrieving tuples from disk with different access

paths (for more sophisticated predicates than equality)
–  Compute cost of a complete plan

CSE 544 - Fall 2015

Access Path

•  Access path: a way to retrieve tuples from a table
–  A file scan
–  An index plus a matching selection condition

•  Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition
–  Example: Supplier(sid,sname,scity,sstate)
–  B+-tree index on (scity,sstate)

•  matches scity=‘Seattle’
•  does not match sid=3, does not match sstate=‘WA’

CSE 544 - Fall 2015

Access Path Selection

•  Supplier(sid,sname,scity,sstate)

•  Selection condition: sid > 300 ∧ scity=‘Seattle’

•  Indexes: B+-tree on sid and B+-tree on scity

•  Which access path should we use?

•  We should pick the most selective access path

CSE 544 - Fall 2015

Access Path Selectivity

•  Access path selectivity is the number of pages
retrieved if we use this access path
–  Most selective retrieves fewest pages

•  As we saw earlier, for equality predicates
–  Selection on equality: σa=v(R)
–  V(R, a) = # of distinct values of attribute a
–  1/V(R,a) is thus the reduction factor
–  Clustered index on a: cost B(R)/V(R,a)
–  Unclustered index on a: cost T(R)/V(R,a)
–  (we are ignoring I/O cost of index pages for simplicity)

CSE 544 - Fall 2015

Selectivity for Range Predicates

Selection on range: σa>v(R)

•  How to compute the selectivity?
•  Assume values are uniformly distributed
•  Reduction factor X
•  X = (Max(R,a) - v) / (Max(R,a) - Min(R,a))

•  Clustered index on a: cost B(R)*X
•  Unclustered index on a: cost T(R)*X

CSE 544 - Fall 2015

Back to Our Example

•  Selection condition: sid > 300 ∧ scity=‘Seattle’
–  Index I1: B+-tree on sid clustered
–  Index I2: B+-tree on scity unclustered

•  Let’s assume
–  V(Supplier,scity) = 20
–  Max(Supplier, sid) = 1000, Min(Supplier,sid)=1
–  B(Supplier) = 100, T(Supplier) = 1000

•  Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ≈ 70
•  Cost I2: T(R) * 1/V(Supplier,scity) = 1000/20 = 50

CSE 544 - Fall 2015

Selectivity with
Multiple Conditions

What if we have an index on multiple attributes?
•  Example selection σa=v1 ∧ b= v2(R) and index on <a,b>

How to compute the selectivity?
•  Assume attributes are independent
•  X = 1 / (V(R,a) * V(R,b))

•  Clustered index on <a,b>: cost B(R)*X
•  Unclustered index on <a,b>: cost T(R)*X

CSE 544 - Fall 2015

Back to Estimating
Cost of a Query Plan

•  We already know how to
–  Compute the cost of different operations
–  Compute cost of retrieving tuples from disk with different access

paths

•  We still need to
–  Compute cost of a complete plan

CSE 544 - Fall 2015

Computing the Cost of a Plan

•  Collect statistical summaries of stored data

•  Compute cost in a bottom-up fashion

•  For each operator compute
–  Estimate cost of executing the operation
–  Estimate statistical summary of the output data

CSE 544 - Fall 2015

Statistics on Base Data

•  Collected information for each relation
–  Number of tuples (cardinality)
–  Indexes, number of keys in the index
–  Number of physical pages, clustering info
–  Statistical information on attributes

•  Min value, max value, number distinct values
•  Histograms

–  Correlations between columns (hard)

•  Collection approach: periodic, using sampling

CSE 544 - Fall 2015

Computing Cost of an Operator

•  The cost of executing an operator depends
–  On the operator implementation
–  On the input data

•  We learned how to compute this in the previous lecture

CSE 544 - Fall 2015

Statistics on the Output Data

•  Most important piece of information
–  Size of operator result
–  I.e., the number of output tuples

•  Projection: output size same as input size
•  Selection: multiply input size by reduction factor

–  Similar to what we did for estimating access path selectivity
–  Assume independence between conditions in the predicate
–  (use product of the reduction factors for the terms)

CSE 544 - Fall 2015

Estimating Result Sizes

•  For joins R ⋈ S

–  Take product of cardinalities of relations R and S
–  Apply reduction factors for each term in join condition
–  Terms are of the form: column1 = column2
–  Reduction: 1/ (MAX(V(R,column1), V(S,column2))
–  Assumes each value in smaller set has a matching value in

the larger set

Assumptions

•  Containment of values: if V(R,A) <= V(S,B), then
the set of A values of R is included in the set of B
values of S
–  Note: this indeed holds when A is a foreign key in R,

and B is a key in S

•  Preservation of values: for any other attribute C,
V(R ⨝A=B S, C) = V(R, C) (or V(S, C))

CSE 544 - Fall 2015

Selectivity of R ⨝A=B S

Assume V(R,A) <= V(S,B)
•  Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B)

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B))

CSE 544 - Fall 2015

CSE 544 - Fall 2015

Complete Example

•  Some statistics
–  T(Supplier) = 1000 records
–  T(Supply) = 10,000 records
–  B(Supplier) = 100 pages
–  B(Supply) = 100 pages
–  V(Supplier,scity) = 20, V(Suppliers,state) = 10
–  V(Supply,pno) = 2,500
–  Both relations are clustered

•  M = 11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

Computing the Cost of a Plan

•  Estimate cardinality in a bottom-up fashion
–  Cardinality is the size of a relation (nb of tuples)
–  Compute size of all intermediate relations in plan

•  Estimate cost by using the estimated cardinalities

CSE 544 - Fall 2015

CSE 544 - Fall 2015

Physical Query Plan 1

Supplier Supply

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supplies)
= 100 + 100 * 100
= 10,100 I/Os

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

CSE 544 - Fall 2015

Supplier Supply

sno = sno

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(2) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2
Total cost
= 100 + 100 * 1/20 * 1/10 (1)
+ 100 + 100 * 1/2500 (2)
+ 2 (3)
+ 0 (4)
Total cost ≈ 204 I/Os

(3)

(4)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

CSE 544 - Fall 2015

Supplier Supply

sno = sno

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(2) σ pno=2

(Scan
 write to T1)

Plan 2 with Different Numbers
Total cost
= 10000 + 50 (1)
+ 10000 + 4 (2)
+ 4*50 + 2*4 + 4 + 50 (3)
+ 0 (4)
Total cost ≈ 20,316 I/Os

What if we had:
10K pages of Suppliers
10K pages of Supplies

Assuming naive
two-pass sort
algorithm

(3)

(4)

Supply Supplier

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Hash index on sno)
Clustering does not matter

(On the fly)

(1) σ pno=2

(Hash index on pno)
Assume: clustered

Physical Query Plan 3
Total cost
= 1 (1)
+ 4 (2)
+ 0 (3)
+ 0 (3)
Total cost ≈ 5 I/Os

(Use hash index)

(2)

(3)

(4)

(On the fly)

4 tuples

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

CSE 544 - Fall 2015

Simplifications

•  In the previous examples, we assumed that all index
pages were in memory

•  When this is not the case, we need to add the cost of
fetching index pages from disk

Different Cost Models

•  In previous examples, we considered IO costs

•  Typically, want IO+CPU

•  For parallel/distributed queries, add network bandwidth

•  If need to compare logical plans
–  Compute the cardinality of each intermediate relation
–  Sum up all the cardinalities

CSE 544 - Fall 2015

CSE 544 - Fall 2015

Summary

•  What we know
–  Different types of physical query plans
–  How to compute the cost of a query plan
–  Although it is hard to compute the cost accurately

•  We can now compare query plans

•  Let’s now consider how the query optimizer searches
through the space of possible plans

Query Optimization

CSE 544 - Fall 2015

Three major components:

1.  Cardinality and cost estimation

2.  Search space

3.  Plan enumeration algorithms

CSE 544 - Fall 2015

Relational Algebra Laws

•  Selections
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R))
–  Cascading: σc1∧c2(R) same as σc2(σc1(R))

•  Projections
–  Cascading

•  Joins
–  Commutative : R ⋈ S same as S ⋈ R

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T

CSE 544 - Fall 2015

Left-Deep Plans and
Bushy Plans

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

CSE 544 - Fall 2015

Relational Algebra Laws

•  Selects, projects, and joins
–  We can commute and combine all three types of operators
–  We just have to be careful that the fields we need are available

when we apply the operator
–  Relatively straightforward. See book 15.3.

•  More info in optional paper (by Chaudhuri), Section 4.

Group-by and Join

CSE 544 - Fall 2015

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) = ?

R(A, B), S(C,D)

Group-by and Join

CSE 544 - Fall 2015

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =
 γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D)))

These are very powerful laws.
They were introduced only in the 90’s.

R(A, B), S(C,D)

CSE 544 - Fall 2015

Search Space Challenges

•  Search space is huge!
–  Many possible equivalent trees (logical)
–  Many implementations for each operator (physical)
–  Many access paths for each relation (physical)

•  Cannot consider ALL plans
•  Want a search space that includes low-cost plans

Query Optimization

CSE 544 - Fall 2015

Three major components:

1.  Cardinality and cost estimation

2.  Search space

3.  Plan enumeration algorithms

Two Types of Optimizers

•  Heuristic-based optimizers:
–  Apply greedily rules that always improve plan

•  Typically: push selections down
–  Very limited: no longer used today

•  Cost-based optimizers:
–  Use a cost model to estimate the cost of each plan
–  Select the “cheapest” plan
–  We focus on cost-based optimizers

CSE 544 - Fall 2015

Three Approaches to Search
Space Enumeration

•  Complete plans

•  Bottom-up plans

•  Top-down plans

CSE 544 - Fall 2015

Complete Plans

CSE 544 - Fall 2015

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

Why is this
search space
inefficient ?

R(A,B)
S(B,C)
T(C,D)

Bottom-up Partial Plans

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

Why is this
better ?

CSE 544 - Fall 2015

Top-down Partial Plans

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40 SELECT *

FROM R
WHERE R.A < 40

CSE 544 - Fall 2015

Two Types of Plan
Enumeration Algorithms

•  Dynamic programming (in class)
–  Based on System R (aka Selinger) style optimizer[1979]
–  Limited to joins: join reordering algorithm
–  Bottom-up

•  Rule-based algorithm (will not discuss)
–  Database of rules (=algebraic laws)
–  Usually: dynamic programming
–  Usually: top-down

CSE 544 - Fall 2015

CSE 544 - Fall 2015

System R Search Space

•  Only left-deep plans
–  Enable dynamic programming for enumeration
–  Facilitate tuple pipelining from outer relation

•  Consider plans with all “interesting orders”
•  Perform cross-products after all other joins (heuristic)
•  Only consider nested loop & sort-merge joins
•  Consider both file scan and indexes
•  Try to evaluate predicates early

CSE 544 - Fall 2015

Plan Enumeration Algorithm

•  Idea: use dynamic programming
•  For each subset of {R1, …, Rn}, compute the best plan

for that subset
•  In increasing order of set cardinality:

–  Step 1: for {R1}, {R2}, …, {Rn}
–  Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
–  …
–  Step n: for {R1, …, Rn}

•  It is a bottom-up strategy
•  A subset of {R1, …, Rn} is also called a subquery

CSE 544 - Fall 2015

Dynamic Programming Algo.

•  For each subquery Q ⊆{R1, …, Rn} compute the
following:
–  Size(Q)
–  A best plan for Q: Plan(Q)
–  The cost of that plan: Cost(Q)

CSE 544 - Fall 2015

Dynamic Programming Algo.

•  Step 1: Enumerate all single-relation plans

–  Consider selections on attributes of relation
–  Consider all possible access paths
–  Consider attributes that are not needed

–  Compute cost for each plan

–  Keep cheapest plan per “interesting” output order

CSE 544 - Fall 2015

Dynamic Programming Algo.

•  Step 2: Generate all two-relation plans

–  For each each single-relation plan from step 1
–  Consider that plan as outer relation
–  Consider every other relation as inner relation

–  Compute cost for each plan

–  Keep cheapest plan per “interesting” output order

CSE 544 - Fall 2015

Dynamic Programming Algo.

•  Step 3: Generate all three-relation plans

–  For each each two-relation plan from step 2
–  Consider that plan as outer relation
–  Consider every other relation as inner relation
–  Compute cost for each plan
–  Keep cheapest plan per “interesting” output order

•  Steps 4 through n: repeat until plan contains all the
relations in the query

CSE 544 - Fall 2015

Commercial Query Optimizers

DB2, Informix, Microsoft SQL Server, Oracle 8

•  Inspired by System R
–  Left-deep plans and dynamic programming
–  Cost-based optimization (CPU and IO)

•  Go beyond System R style of optimization
–  Also consider right-deep and bushy plans (e.g., Oracle and DB2)
–  Variety of additional strategies for generating plans (e.g., DB2

and SQL Server)

CSE 544 - Fall 2015

Other Query Optimizers

•  Randomized plan generation
–  Genetic algorithm
–  PostgreSQL uses it for queries with many joins

•  Rule-based
–  Extensible collection of rules
–  Rule = Algebraic law with a direction
–  Algorithm for firing these rules

•  Generate many alternative plans, in some order
•  Prune by cost

–  Startburst (later DB2) and Volcano (later SQL Server)

