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Announcements 

•  HW1 due tonight at 11:45pm 

•  HW2 will be due in two weeks 
–  You get to implement your own DBMS! 

•  We will meet with each project teams next week 
–  Will send out doodle 
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Query Optimization Motivation 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 

Declarative query 
Recall physical and 
logical data independence 



What We Already Know… 

Supplier(sno,sname,scity,sstate) 

Part(pno,pname,psize,pcolor) 

Supply(sno,pno,price) 
For each SQL query…. 
SELECT S.sname 
FROM Supplier S, Supply U 
WHERE S.scity='Seattle' AND S.sstate='WA’ 
AND S.sno = U.sno 
AND U.pno = 2 

 
There exist many logical query plan… 
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Example Query: Logical Plan 1 

Supplier Supply 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 



Example Query: Logical Plan 2 
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Supplier Supply 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

σ pno=2 



What We Also Know 

•  For each logical plan… 

•  There exist many physical plans 
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Example Query: Physical Plan 1 
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Supplier Supply 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) 



Example Query: Physical Plan 2 
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Supplier Supply 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (Index scan) 

(Index nested loop) 

(On the fly) 

(On the fly) 
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Query Optimization Algorithm 

•  For a query  
–  There exists many physical query plans 
–  Query optimizer needs to pick a good one 

•  Basic query optimization algorithm 
–  Enumerate alternative plans 
–  Compute estimated cost of each plan 

•  Compute number of I/Os 
•  Optionally take into account other resources 

–  Choose plan with lowest cost 
–  This is called cost-based optimization 



Query Optimization 
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Three major components: 

1.  Cardinality and cost estimation 

2.  Search space 

3.  Plan enumeration algorithms 
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Estimating Cost of a Query Plan 

•  We already know how to 
–  Compute the cost of different operations in terms of number IOs 

•  We still need to 
–  Compute cost of retrieving tuples from disk with different access 

paths (for more sophisticated predicates than equality) 
–  Compute cost of a complete plan 
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Access Path 

•  Access path: a way to retrieve tuples from a table 
–  A file scan 
–  An index plus a matching selection condition 

•  Index matches selection condition if it can be used to 
retrieve just tuples that satisfy the condition 
–  Example: Supplier(sid,sname,scity,sstate) 
–  B+-tree index on (scity,sstate)  

•  matches scity=‘Seattle’ 
•  does not match sid=3, does not match sstate=‘WA’ 
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Access Path Selection 

•  Supplier(sid,sname,scity,sstate) 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 

•  Indexes: B+-tree on sid and B+-tree on scity 

•  Which access path should we use? 

•  We should pick the most selective access path 
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Access Path Selectivity 

•  Access path selectivity is the number of pages 
retrieved if we use this access path 
–  Most selective retrieves fewest pages 

•  As we saw earlier, for equality predicates 
–  Selection on equality: σa=v(R) 
–  V(R, a) = # of distinct values of attribute a 
–  1/V(R,a) is thus the reduction factor 
–  Clustered index on a:  cost B(R)/V(R,a) 
–  Unclustered index on a: cost T(R)/V(R,a) 
–  (we are ignoring I/O cost of index pages for simplicity) 
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Selectivity for Range Predicates 

Selection on range: σa>v(R) 

•  How to compute the selectivity? 
•  Assume values are uniformly distributed 
•  Reduction factor X 
•  X = (Max(R,a) - v) / (Max(R,a) - Min(R,a))  

•  Clustered index on a: cost B(R)*X 
•  Unclustered index on a: cost T(R)*X 
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Back to Our Example 

•  Selection condition: sid > 300 ∧ scity=‘Seattle’ 
–  Index I1: B+-tree on sid clustered 
–  Index I2: B+-tree on scity unclustered 

•  Let’s assume  
–  V(Supplier,scity) = 20 
–  Max(Supplier, sid) = 1000, Min(Supplier,sid)=1 
–  B(Supplier) = 100, T(Supplier) = 1000 

•  Cost I1: B(R) * (Max-v)/(Max-Min) = 100*700/999 ≈ 70 
•  Cost I2: T(R) * 1/V(Supplier,scity) = 1000/20 = 50 
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Selectivity with 
Multiple Conditions 

What if we have an index on multiple attributes? 
•  Example selection σa=v1 ∧ b= v2(R)  and index on <a,b> 

How to compute the selectivity? 
•  Assume attributes are independent 
•  X = 1  /  (V(R,a) *  V(R,b)) 

•  Clustered index on <a,b>:  cost B(R)*X 
•  Unclustered index on <a,b>: cost T(R)*X 
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Back to Estimating  
Cost of a Query Plan 

•  We already know how to 
–  Compute the cost of different operations  
–  Compute cost of retrieving tuples from disk with different access 

paths 

•  We still need to 
–  Compute cost of a complete plan 
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Computing the Cost of a Plan 

•  Collect statistical summaries of stored data 

•  Compute cost in a bottom-up fashion 

•  For each operator compute 
–  Estimate cost of executing the operation 
–  Estimate statistical summary of the output data 
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Statistics on Base Data 

•  Collected information for each relation 
–  Number of tuples (cardinality) 
–  Indexes, number of keys in the index 
–  Number of physical pages, clustering info 
–  Statistical information on attributes 

•  Min value, max value, number distinct values 
•  Histograms 

–  Correlations between columns (hard) 

•  Collection approach: periodic, using sampling 
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Computing Cost of an Operator 

•  The cost of executing an operator depends 
–  On the operator implementation 
–  On the input data 

•  We learned how to compute this in the previous lecture 
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Statistics on the Output Data 

•  Most important piece of information 
–  Size of operator result 
–  I.e., the number of output tuples 

•  Projection: output size same as input size 
•  Selection: multiply input size by reduction factor 

–  Similar to what we did for estimating access path selectivity 
–  Assume independence between conditions in the predicate 
–  (use product of the reduction factors for the terms) 
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Estimating Result Sizes 

•  For joins R  ⋈ S 

–  Take product of cardinalities of relations R and S 
–  Apply reduction factors for each term in join condition 
–  Terms are of the form: column1 = column2 
–  Reduction: 1/ ( MAX( V(R,column1), V(S,column2)) 
–  Assumes each value in smaller set has a matching value in 

the larger set 



Assumptions 

•  Containment of values: if V(R,A) <= V(S,B), then 
the set of A values of R is included in the set of B 
values of S 
–  Note: this indeed holds when A is a foreign key in R, 

and B is a key in S 

•  Preservation of values: for any other attribute C,  
V(R ⨝A=B S, C) = V(R, C)   (or V(S, C)) 
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Selectivity of R ⨝A=B S 

Assume V(R,A) <= V(S,B) 
•  Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S 

•  Hence T(R ⨝A=B S) = T(R) T(S) / V(S,B) 

In general: T(R ⨝A=B S) = T(R) T(S) / max(V(R,A),V(S,B)) 
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Complete Example 

•  Some statistics 
–  T(Supplier) = 1000 records 
–  T(Supply) = 10,000 records 
–  B(Supplier) = 100 pages 
–  B(Supply) = 100 pages 
–  V(Supplier,scity) = 20, V(Suppliers,state) = 10 
–  V(Supply,pno) = 2,500 
–  Both relations are clustered 

•  M = 11 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 

SELECT sname 
FROM Supplier x, Supply y 
WHERE x.sid = y.sid 
    and  y.pno = 2 
    and x.scity = ‘Seattle’ 
    and x.sstate = ‘WA’ 



Computing the Cost of a Plan 

•  Estimate cardinality in a bottom-up fashion 
–  Cardinality is the size of a relation (nb of tuples) 
–  Compute size of all intermediate relations in plan  

•  Estimate cost by using the estimated cardinalities 
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Physical Query Plan 1 

Supplier Supply 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) Selection and project on-the-fly 
-> No additional cost. 
 
 
 
 
Total cost of plan is thus cost of join: 
= B(Supplier)+B(Supplier)*B(Supplies) 
= 100 + 100 * 100 
= 10,100 I/Os 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 11 
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Supplier Supply 

sno = sno 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(On the fly) 

(2) σ pno=2 

(Scan 
 write to T1) 

Physical Query Plan 2 
Total cost 
= 100 + 100 * 1/20 * 1/10 (1) 
+ 100 + 100 * 1/2500 (2) 
+ 2 (3) 
+ 0 (4) 
Total cost  ≈  204 I/Os 

(3) 

(4) 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 11 
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Supplier Supply 

sno = sno 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(2) σ pno=2 

(Scan 
 write to T1) 

Plan 2 with Different Numbers 
Total cost 
= 10000 + 50 (1) 
+ 10000 + 4 (2) 
+ 4*50 + 2*4 + 4 + 50  (3) 
+ 0 (4) 
Total cost  ≈  20,316 I/Os 

What if we had: 
10K pages of Suppliers 
10K pages of Supplies 

Assuming naive 
two-pass sort 
algorithm 

(3) 

(4) 



Supply Supplier 

sno = sno 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Hash index on sno) 
Clustering does not matter 

(On the fly) 

(1) σ pno=2 

(Hash index on pno ) 
Assume: clustered 

Physical Query Plan 3 
Total cost 
= 1 (1) 
+ 4 (2) 
+ 0 (3) 
+ 0 (3) 
Total cost  ≈  5 I/Os 

(Use hash index) 

(2) 

(3) 

(4) 

(On the fly) 

4 tuples 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 11 
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Simplifications 

•  In the previous examples, we assumed that all index 
pages were in memory 

•  When this is not the case, we need to add the cost of 
fetching index pages from disk 



Different Cost Models 

•  In previous examples, we considered IO costs 

•  Typically, want IO+CPU 

•  For parallel/distributed queries, add network bandwidth 

•  If need to compare logical plans 
–  Compute the cardinality of each intermediate relation 
–  Sum up all the cardinalities 
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Summary 

•  What we know 
–  Different types of physical query plans 
–  How to compute the cost of a query plan 
–  Although it is hard to compute the cost accurately 

•  We can now compare query plans 

•  Let’s now consider how the query optimizer searches 
through the space of possible plans 

 



Query Optimization 
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Three major components: 

1.  Cardinality and cost estimation 

2.  Search space 

3.  Plan enumeration algorithms 
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Relational Algebra Laws 

•  Selections 
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R)) 
–  Cascading:  σc1∧c2(R) same as σc2(σc1(R)) 

•  Projections 
–  Cascading 

•  Joins 
–  Commutative : R ⋈ S same as S ⋈ R  

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T  
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Left-Deep Plans and 
Bushy Plans 

R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 
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Relational Algebra Laws 

•  Selects, projects, and joins 
–  We can commute and combine all three types of operators 
–  We just have to be careful that the fields we need are available 

when we apply the operator 
–  Relatively straightforward. See book 15.3. 

•  More info in optional paper (by Chaudhuri), Section 4. 



Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =        ? 
      

R(A, B),  S(C,D) 



Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =   
     γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D))) 

These are very powerful laws. 
They were introduced only in the 90’s. 

R(A, B),  S(C,D) 
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Search Space Challenges 

•  Search space is huge! 
–  Many possible equivalent trees (logical) 
–  Many implementations for each operator (physical) 
–  Many access paths for each relation (physical) 

•  Cannot consider ALL plans 
•  Want a search space that includes low-cost plans 



Query Optimization 
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Three major components: 

1.  Cardinality and cost estimation 

2.  Search space 

3.  Plan enumeration algorithms 



Two Types of Optimizers 

•  Heuristic-based optimizers: 
–  Apply greedily rules that always improve plan 

•  Typically: push selections down 
–  Very limited: no longer used today 

•  Cost-based optimizers: 
–  Use a cost model to estimate the cost of each plan 
–  Select the “cheapest” plan 
–  We focus on cost-based optimizers 
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Three Approaches to Search 
Space Enumeration 

•  Complete plans 

•  Bottom-up plans 

•  Top-down plans 
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Complete Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

⨝ 

S σA<40 

R 

⨝ 

T 

⨝ 

S 

σA<40 

R 

⨝ 

T 

Why is this 
search space 
inefficient ? 

R(A,B) 
S(B,C) 
T(C,D) 



Bottom-up Partial Plans 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

R S T 

⨝ 

S σA<40 

R 

⨝ 

R S 

⨝ 

S σA<40 

R 

⨝ 

T 

….. 

Why is this 
better ? 
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Top-down Partial Plans 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

T 
⨝ 

S 

⨝ 

T 

….. 

SELECT R.A, T.D 
FROM R, S, T 
WHERE R.B=S.B 
        and S.C=T.C 

SELECT * 
FROM R, S 
WHERE R.B=S.B 
        and R.A < 40 SELECT * 

FROM R 
WHERE R.A < 40 
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Two Types of Plan 
Enumeration Algorithms 

•  Dynamic programming  (in class) 
–  Based on System R (aka Selinger) style optimizer[1979] 
–  Limited to joins: join reordering algorithm 
–  Bottom-up 

•  Rule-based algorithm (will not discuss) 
–  Database of rules (=algebraic laws) 
–  Usually: dynamic programming 
–  Usually: top-down 
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System R Search Space 

•  Only left-deep plans 
–  Enable dynamic programming for enumeration 
–  Facilitate tuple pipelining from outer relation 

•  Consider plans with all “interesting orders” 
•  Perform cross-products after all other joins (heuristic) 
•  Only consider nested loop & sort-merge joins 
•  Consider both file scan and indexes 
•  Try to evaluate predicates early 
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Plan Enumeration Algorithm 

•  Idea: use dynamic programming 
•  For each subset of {R1, …, Rn}, compute the best plan 

for that subset 
•  In increasing order of set cardinality: 

–  Step 1: for {R1}, {R2}, …, {Rn} 
–  Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn} 
–  … 
–  Step n: for {R1, …, Rn} 

•  It is a bottom-up strategy 
•  A subset of {R1, …, Rn} is also called a subquery 
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Dynamic Programming Algo. 

•  For each subquery Q ⊆{R1, …, Rn} compute the 
following: 
–  Size(Q) 
–  A best plan for Q: Plan(Q) 
–  The cost of that plan: Cost(Q) 
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Dynamic Programming Algo. 

•  Step 1: Enumerate all single-relation plans 

–  Consider selections on attributes of relation 
–  Consider all possible access paths 
–  Consider attributes that are not needed 

–  Compute cost for each plan 

–  Keep cheapest plan per “interesting” output order 
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Dynamic Programming Algo. 

•  Step 2: Generate all two-relation plans 

–  For each each single-relation plan from step 1 
–  Consider that plan as outer relation 
–  Consider every other relation as inner relation 

–  Compute cost for each plan 

–  Keep cheapest plan per “interesting” output order 
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Dynamic Programming Algo. 

•  Step 3: Generate all three-relation plans 

–  For each each two-relation plan from step 2 
–  Consider that plan as outer relation 
–  Consider every other relation as inner relation 
–  Compute cost for each plan 
–  Keep cheapest plan per “interesting” output order 

•  Steps 4 through n: repeat until plan contains all the 
relations in the query 
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Commercial Query Optimizers 

DB2, Informix, Microsoft SQL Server, Oracle 8 

•  Inspired by System R 
–  Left-deep plans and dynamic programming 
–  Cost-based optimization (CPU and IO) 

•  Go beyond System R style of optimization 
–  Also consider right-deep and bushy plans (e.g., Oracle and DB2) 
–  Variety of additional strategies for generating plans (e.g., DB2 

and SQL Server) 
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Other Query Optimizers 

•  Randomized plan generation 
–  Genetic algorithm 
–  PostgreSQL uses it for queries with many joins 

•  Rule-based 
–  Extensible collection of rules 
–  Rule = Algebraic law with a direction 
–  Algorithm for firing these rules 

•  Generate many alternative plans, in some order 
•  Prune by cost 

–  Startburst (later DB2) and Volcano (later SQL Server) 


