CSE 544

Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 6 —
Lifecycle of a Query Plan

CSE 544 - Fall 2015



Announcements

« HWH1 is due Thursday

* Projects proposals are due on Wednesday

« Office hour canceled today
— CSE affiliates research talks!

Session |l Big Data Management
1:30 - and Analvtics
2:35pm CSE 305

CSE 544 - Fall 2015



References

Join processing in database systems with large main
memories. Leonard Shapiro. ACM Transactions on Database
Systems 11(3), 1986. Also in Red Book (3rd and 4th ed)

The Anatomy of a Database System. J. Hellerstein and M.
Stonebraker. Section 4. Red Book. 4" Ed.

Database management systems.
Ramakrishnan and Gehrke.
Third Ed. Chapters 12, 13 and 14.

CSE 544 - Fall 2015 3



Outline

« Steps involved in processing a query
— Logical query plan
— Physical query plan
— Query execution overview

* Operator implementations
— One pass algorithms

— Two-pass algorithms
— Index-based algorithms

CSE 544 - Fall 2015



Example Database Schema

Supplier (sno, sname, scity, sstate)
Part (pno, pname, psize,pcolor)

Supply (sno,pno,price)

View: Suppliers in Seattle

CREATE VIEW NearbySupp AS

SELECT sno, sname

FROM Supplier

WHERE scity='Seattle' AND sstate='WA'

CSE 544 - Fall 2015



Example Query

* Find the names of all suppliers in Seattle who supply part
number 2

SELECT sname FROM NearbySupp

WHERE sno IN ( SELECT sno
FROM Supplies
WHERE pno = 2 )

CSE 544 - Fall 2015 6



Lifecycle of a Query (1)

« Step 0: admission control
— User connects to the db with username, password
— User sends query in text format

« Step 1: Query parsing
— Parses query into an internal format

— Performs various checks using catalog
« Correctness, authorization, integrity constraints

« Step 2: Query rewrite

— View rewriting, flattening, etc.

CSE 544 - Fall 2015



Rewritten Version of Our Query

Original query:

SELECT sname

FROM NearbySupp

WHERE sno IN ( SELECT sno
FROM Supplies
WHERE pno = 2 )

Rewritten query:

SELECT S.sname

FROM Supplier S, Supplies U

WHERE S.scity='Seattle' AND S.sstate='WA'
AND S.sno = U.sno

AND U.pno = 2;

CSE 544 - Fall 2015



Lifecycle of a Query (2)

« Step 3: Query optimization
— Find an efficient query plan for executing the query
— We will spend a whole lecture on this topic

A query planis
— Logical query plan: an extended relational algebra tree

— Physical query plan: with additional annotations at each node
» Access method to use for each relation
* Implementation to use for each relational operator

CSE 544 - Fall 2015 9



Extended Algebra Operators

Union U, intersection N, difference -
Selection ©

Projection &t

Join <

Duplicate elimination 6

Grouping and aggregation vy

Sorting ©

Rename p

CSE 544 - Fall 2015

10



Logical Query Plan

sname

O sscity="Seattle’ nsstate="WA' A pno=2

=

SNO = sno

PN

Suppliers Supplies

CSE 544 - Fall 2015

11



Query Block

* Most optimizers operate on individual query blocks

« A query block is an SQL query with no nesting

— Exactly one
 SELECT clause
« FROM clause

— At most one
« WHERE clause
« GROUP BY clause
 HAVING clause

CSE 544 - Fall 2015

12



Typical Plan for Block (1/2)

T fields
O selection condition
— SELECT-PROJECT-JOIN
join condition Query

N

=

join condition

PN
s

CSE 544 - Fall 2015 13




Typical Plan For Block (2/2)

havmgcondition

bt fields, sum/count/min/max(fields)

TU fields

selection condition

=

join condition

N

CSE 544 - Fall 2015

O

14



How about Subqueries?

SELECT Q.name
FROM Person Q
WHERE Q.age > 25
and not exists
SELECT *
FROM Purchase P
WHERE P.buyer = Q.name
and P.price > 100

CSE 544 - Fall 2015



How about Subqueries?

SELECT Q.name
FROM Person Q 7N
WHERE Q.age > 25 - name
and not exists

SELECT * / o

FROM Purchase P Price > 100

WHERE P.buyer = Q.name | 5 _

and P.price > 100 / 29725 puyer=name
T

Person Purchase Person

CSE 544 - Fall 2015 16



Physical Query Plan

* Logical query plan with extra annotations

* Access path selection for each relation
— Use a file scan or use an index

* Implementation choice for each operator

« Scheduling decisions for operators

CSE 544 - Fall 2015

17



Physical Query Plan

(On the fly) T

sname

(On the fly) o

sscity="Seattle’ nsstate="WA' A pno=2

(Nested loop) e Sﬂno\
Suppliers Supplies
(File scan) (File scan)

CSE 544 - Fall 2015

18



Final Step in Query Processing

« Step 4: Query execution
— How to synchronize operators?
— How to pass data between operators?

« Standard approach:

— lterator interface and

— Pipelined execution or
— Intermediate result materialization

CSE 544 - Fall 2015

19



lterator Interface

Each operator implements this interface
Interface has only three methods

open()

— Initializes operator state

— Sets parameters such as selection condition

get next()

— Operator invokes get_next() recursively on its inputs
— Performs processing and produces an output tuple

close(): clean-up state

CSE 544 - Fall 2015 20



Pipelined Execution

* Applies parent operator to tuples directly as they are
produced by child operators

« Benefits
— No operator synchronization issues
— Saves cost of writing intermediate data to disk
— Saves cost of reading intermediate data from disk
— Good resource utilizations on single processor

« This approach is used whenever possible

CSE 544 - Fall 2015

21



Pipelined Execution

(On the fly) T

sname

(On the fly) o

sscity="Seattle’ nsstate="WA' A pno=2

(Nested loop) e Sﬂno\
Suppliers Supplies
(File scan) (File scan)

CSE 544 - Fall 2015

22



Intermediate Tuple Materialization

Writes the results of an operator to an intermediate table
on disk

Necessary for some operator implementations

When operator needs to examine the same tuples
multiple times

CSE 544 - Fall 2015 23



Intermediate Tuple Materialization

(On the fly) it

sname

(Sort-merge join) -

SNOo = sno

(Scan: wrlte toT1) / \ (Scan: write to T2)

ssmty— Seattle’ nsstate="WA pno =2

Suppliers Supplies
(File scan) (File scan)

CSE 544 - Fall 2015 24



Lifecycle of a Query

SQL query

g Logical
Query plan
optimization<
Physical
plan

25




Outline

« Steps involved in processing a query
— Logical query plan
— Physical query plan
— Query execution overview

* Operator implementations
— One pass algorithms

— Two-pass algorithms
— Index-based algorithms

CSE 544 - Fall 2015

26



Why Learn About Op Algos?

Implemented in commercial DBMSs

Different DBMSs implement different subsets of these
algorithms

Good algorithms can greatly improve performance

Need to know about physical operators to understand
query optimization

CSE 544 - Fall 2015

27



Cost Parameters

* |n database systems the data is on disk
 Cost = total number of I/Os

» Parameters:
— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R
— V(R, a) = # of distinct values of attribute a

— M = # pages available in main memory

CSE 544 - Fall 2015

28



Cost

* Cost of an operation = number of disk I/Os to
— read the operands
— compute the result

» Cost of writing the final result to disk is not included
— Need to count it separately when applicable

CSE 544 - Fall 2015

29



One-pass Algorithms

Selection o(R), projection II(R)

* Both are tuple-at-a-time algorithms
« Cost: B(R), the cost of scanning the relation

Input buffer

J Unary

* Output buffer

operator

CSE 544 - Fall 2015

30



Join Algorithms

 Logical operator:
— Product(pname, cname) i Company(cname, city)

« Some well-known physical operators for the join,
assuming the tables are in main memory:
— Hash join
— Nested loop join
— Sort-merge join

CSE 544 - Fall 2015

31



Hash Join

Hash join: RIX S
« Scan R, build buckets in main memory
 Then scan S, probe hash table to join

« Cost: B(R) + B(S)

* One pass algorithm when B(R) <=M

CSE 544 - Fall 2015

32



Nested Loop Joins

* Tuple-based nested loop R X' S
R is the outer relation, S is the inner relation

for each tuple rin R do
for each tuple sin S do
if rand s join then output (r,s)

. Cost: B(R) + T(R) B(S)

CSE 544 - Fall 2015

33



Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples s in S do
for all pairs of tuples
if rand s join then output (r,s)

. Cost: B(R) + B(R)B(S)

CSE 544 - Fall 2015

34



Nested Loop Joins

« \We can be much more clever

« How would you compute the join in the following cases ?
What is the cost ?

~ B(R)=1000, B(S)=2, M = 4
— B(R)= 1000, B(S)=3, M =4

~ B(R) = 1000, B(S)=6, M = 4

CSE 544 - Fall 2015 35



Nested Loop Joins

Block Nested Loop Join
Group of (M-2) pages of S is called a “block”

for each (M-2) pages ps of S do
for each page pr of R do
for each tuple s in ps
for each tuple rin pr do
if rand s join then output(r,s)

CSE 544 - Fall 2015

36




Nested Loop Joins

Hash table for block of S
(M-2 pages)

Y

A

7

.
>

Join Result
>

Input buffer for R  Output buffer

CSE 544 - Fall 2015

37



Nested Loop Joins

» Cost of block-based nested loop join

— Read S once: cost B(S)

— Outer loop runs B(S)/(M-2) times, and each time need to read R:
costs B(S)B(R)/(M-2)

— Total cost: B(S) + B(S)B(R)/(M-2)

 Notice: it is better to iterate over the smaller relation first

CSE 544 - Fall 2015 38



Sort-Merge Join

Sort-merge join: RX S

Scan R and sort in main memory

Scan S and sort in main memory
Merge R and S

Cost: B(R) + B(S)

One pass algorithm when B(S) + B(R) <=M
Typically, this is NOT a one pass algorithm

CSE 544 - Fall 2015

39



More One-pass Algorithms

Duplicate elimination d(R)

* Need to keep tuples in memory

 When new tuple arrives, need to compare it with
previously seen tuples

 Balanced search tree or hash table
« Cost: B(R)
« Assumption: B(6(R)) <= M

CSE 544 - Fall 2015

40



Even More One-pass Algorithms

Grouping:
Product(name, department, quantity)

Ydepartment, sum(quantity) (Product) - Answer(department, sum)

How can we compute this in main memory ?

CSE 544 - Fall 2015 41



Even More One-pass Algorithms

Grouping: bt department, sum(quantity) (R)

Need to store all departments in memory

Also store the sum(quantity) for each department
Balanced search tree or hash table

Cost: B(R)

Assumption: number of depts fits in memory

CSE 544 - Fall 2015 42



Outline

« Steps involved in processing a query
— Logical query plan
— Physical query plan
— Query execution overview

* Operator implementations
— One pass algorithms
— Two-pass algorithms
— Index-based algorithms

CSE 544 - Fall 2015

43



Two-Pass Algorithms

« What if data does not fit in memory?
 Need to process it in multiple passes

« Two key techniques
— Hashing
— Sorting

CSE 544 - Fall 2015

44



Two Pass Algorithms

Based on Hashing

« |dea: partition a relation R into buckets, on disk
« Each bucket has size approx. B(R)/M

Relation
OUTPUT Partitions
S— 1 S—
1
1
INPUT 2
2 hash 2
> function N v e
h M-1
B(R) M-1
N~ N~
Disk M main memory buffers Disk

- Does each bucket fit in main memory ?
—Yes if B(R)/M <= M, i.e. B(R) <= M?

CSE 544 - Fall 2015 45



Hash Based Algorithms for o

Recall: §(R) = duplicate elimination

Step 1. Partition R into buckets
Step 2. Apply 6 to each bucket

Cost: 3B(R)
Assumption: B(R) <= M?

CSE 544 - Fall 2015

46



Hash Based Algorithms for vy

Recall: y(R) = grouping and aggregation

Step 1. Partition R into buckets
Step 2. Apply y to each bucket

Cost: 3B(R)
Assumption: B(R) <= M?

CSE 544 - Fall 2015

47



Simple Hash Join

RXS
o Step 1:
— P =min( M-3, B(S) )
— Choose hash function h and set of hash values s.t. P blocks of S
tuples will hash into that set

— Hash S and either insert tuple into hash table or write to disk

o Step 2

— Hash R and either probe the hash table for S or write to disk

o Step 3

— Repeat steps 1 and 2 until all tuples are processed

CSE 544 - Fall 2015 48



Simple Hash Join

« Build a hash-table for M-3 pages of S
« Write remaining pages of S back to disk

Original

relation S Passed over tuples of S
Hash table for P blocks of S >

(M-3 pages)

Y

>4

6 Unused

Input buffer for S Output buffer

.
>

CSE 544 - Fall 2015 49



Simple Hash Join

 Hash R using the same hash function
* Probe hash table for S or write tuples of R back to disk

Original Join results

relation R and passed over R tuples
Hash table for P blocks of S

(M-3 pages)

Y

Z

Input buffer for R Output buffer

.
>

* Repeat these two steps until all tuples are processed

 Requires many passes
CSE 544 - Fall 2015 50



Partitioned (Grace) Hash Join

RXS

o Step 1:
— Hash S into M-1 buckets
— Send all buckets to disk

o Step 2
— Hash R into M-1 buckets
— Send all buckets to disk

o Step 3

— Join every pair of buckets

CSE 544 - Fall 2015

51



Partitioned Hash Join

 Partition both relations using hash fn h
* R tuples in partition i will only match S tuples in partition i.

Original
Relation OUTPUT Partitions
i 1 S
1
INPUT 2 ,
> fu?l%?i%n o0 g
h M_1 o 0 9
M-1
N~ N~
Disk B main memory buffers Disk

CSE 544 - Fall 2015 52



Partitioned Hash Join

* Read in partition of R, hash it using h2 (= h)

— Build phase

« Scan matching partition of S, search for matches

— Probe phase

Join Result
e

Y

Partitions
of R& S —
— Hash table for partition
hash Si (< M-1 pages)
fn o 0 0
h2 _
S0
o 0 0 >
Input buffer Output
for Ri buffer
—
Disk B main memory buffers

CSE 544 - Fall 2015




Partitioned Hash Join

« Cost: 3B(R) + 3B(S)
« Assumption: min(B(R), B(S)) <= M?

CSE 544 - Fall 2015

54



Hybrid Hash Join Algorithm

« Assume we have extra memory available

 Partition S into k buckets

t buckets S, , ..., S; stay in memory
k-t buckets S,,4, ..., S to disk

 Partition R into k buckets

— First t buckets join immediately with S
— Rest k-t buckets go to disk

* Finally, join k-t pairs of buckets:
(Rt+1’St+1)’ (Rt+2’st+2)’ R (Rk’Sk)
CSE 544 - Fall 2015

95



Hybrid Hash Join Algorithm

e How to choose kandt ?

— Choose k large but s.t. k<=M
— Choose t/k large but s.t. t’/k * B(S) <=M
— Moreover: t’/k * B(S) + k-t <=M

 Assuming t/k * B(S) >> k-t: t/k =M/B(S)

CSE 544 - Fall 2015

56



Hybrid Hash Join Algorithm

How many |/Os ?
Cost of partitioned hash join: 3B(R) + 3B(S)

Hybrid join saves 2 I/Os for a t/k fraction of buckets
Hybrid join saves 2t/k(B(R) + B(S)) |/Os

Cost: (3-2t/k)(B(R) + B(S)) = (3-2M/B(S))(B(R) + B(S))

CSE 544 - Fall 2015 o7



External Sorting

* Problem: Sort a file of size B with memory M

 Where we need this:
— ORDER BY in SQL queries
— Several physical operators
— Bulk loading of B+-tree indexes.

« Will discuss only 2-pass sorting, for when B < M?

CSE 544 - Fall 2015

58



External Merge-Sort: Step 1

 Phase one: load M pages in memory, sort

| M~—___| Size M pages | |

Disk Main memory

CSE 544 - Fall 2015 59



External Merge-Sort: Step 2

 Merge M — 1 runs into a new run
« Result: runs of length M (M = 1)= M?

@// Input 1 S
|
| ! g InpUt 2 ~— Output > |
| N i i / |
~_ [T |InputM —
Disk Main memory Disk

If B <= M? then we are done

CSE 544 - Fall 2015




External Merge-Sort

Cost:
— Read+write+read = 3B(R)
— Assumption: B(R) <= M?

Other considerations
— In general, a lot of optimizations are possible

CSE 544 - Fall 2015

61



Two-Pass Algorithms

Based on Sorting

Duplicate elimination d(R)

Trivial idea: sort first, then eliminate duplicates

Step 1: sort chunks of size M, write
— cost 2B(R)

Step 2: merge M-1 runs, but include each tuple only once
— cost B(R)

Total cost: 3B(R), Assumption: B(R) <= M?

CSE 544 - Fall 2015 62



Two-Pass Algorithms

Based on Sorting

Grouping: Ya, sum(b) (R)

« Same as before: sort, then compute the sum(b) for each
group of a’s

» Total cost: 3B(R)
« Assumption: B(R) <= M?

CSE 544 - Fall 2015 63



Two-Pass Algorithms

Based on Sorting

JOINR X S

Start by sorting both R and S on the join attribute:
— Cost: 4B(R)+4B(S) (because need to write to disk)

Read both relations in sorted order, match tuples
— Cost: B(R)+B(S)

Total cost: 5B(R)+5B(S)

Assumption: B(R) <= M?, B(S) <= M?

CSE 544 - Fall 2015 64



Outline

« Steps involved in processing a query
— Logical query plan
— Physical query plan
— Query execution overview

* Operator implementations
— One pass algorithms

— Two-pass algorithms
— Index-based algorithms

CSE 544 - Fall 2015

65



Review: Access Methods

 Heap file

— Scan tuples one at the time

e Hash-based index
— Efficient selection on equality predicates
— Can also scan data entries in index

* Tree-based index
— Efficient selection on equality or range predicates
— Can also scan data entries in index

CSE 544 - Fall 2015

66



Index Based Selection

Selection on equality: o, (R)

V(R, a) = # of distinct values of attribute a
Clustered index on a: cost B(R)/V(R,a)
Unclustered index on a: cost T(R)/V(R,a)

Note: we ignored the 1/O cost for the index pages

CSE 544 - Fall 2015

67



Index Based Selection

Example: B(R) = 2000
T(R)=100,000| |costofs_.(R)="7?
V(R, a) =20

Table scan (assuming R is clustered)

— B(R) = 2,000 I/Os

Index based selection

— If index is clustered: B(R)/V(R,a) = 100 I/Os

— If index is unclustered: T(R)/V(R,a) = 5,000 1/Os
 Lesson

— Don’t build unclustered indexes when V(R,a) is small !

CSE 544 - Fall 2015 68



Index Nested Loop Join

RXS

« Assume S has an index on the join attribute

 lterate over R, for each tuple fetch corresponding tuple(s)
from S

« Cost:
— Assuming R is clustered
— Ifindex on S is clustered: B(R) + T(R)B(S)/V(S,a)
— Ifindex on S is unclustered: B(R) + T(R)T(S)/V(S,a)

CSE 544 - Fall 2015 69



Summary of External

Join Algorithms

* Block Nested Loop Join: B(R) + B(R)*B(S)/M

» Hybrid Hash Join: (3-2M/B(S))(B(R) + B(S))
Assuming t/k * B(S) >> k-t

« Sort-Merge Join: 3B(R)+3B(S)
Assuming B(R)+B(S) <= M?

« Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)

Assuming R is clustered and S has clustered index on a

CSE 544 - Fall 2015 70



Summary of Query Execution

* For each logical query plan
— There exist many physical query plans
— Each plan has a different cost
— Cost depends on the data

« Additionally, for each query

— There exist several logical plans

* Next lecture: query optimization
— How to compute the cost of a complete plan?
— How to pick a good query plan for a query?

CSE 544 - Fall 2015

71



