
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 3 – Data models
A Never-Ending Story

1 CSE 544 - Fall 2015

Announcements

•  Homework 1 is out
–  Due in 2 weeks

•  Project
–  Please form teams this week and send us an email by next

Monday
–  Start to think about class projects
–  More info on website (suggested topics will be posted)

CSE 544 - Fall 2015 2

CSE 544 - Fall 2015

References

•  M. Stonebraker and J. Hellerstein. What Goes Around
Comes Around. In "Readings in Database Systems" (aka
the Red Book). 4th ed.

3

Data Model Motivation

•  Applications need to model real-world data
–  Data typically includes entities and relationships between them
–  Example entities are students, courses, products, clients
–  Example relationships are course registrations, product purchases

•  User somehow needs to define data to be stored in DBMS

•  Data model enables a user to define the data using high-
level constructs without worrying about many low-level
details of how data will be stored on disk

CSE 544 - Fall 2015 4

CSE 544 - Fall 2015

Levels of Abstraction

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

schema seen
by apps

5

Classical picture.
Remember it !

Data Model Motivation (cont.)

DBMS needs to let user perform several tasks
•  Define data that should live in the DBMS

–  Need a data model and a data definition language

•  Ask questions about the data
•  Insert, delete, and modify data

–  Need a data manipulation language

•  Challenges
–  Want to minimize changes to applications when physical data

layout changes (for performance) or logical structure of data
changes (perhaps as database evolves over time)

CSE 544 - Fall 2015 6

CSE 544 - Fall 2015

Outline
•  Different types of data

•  Early data models
–  IMS
–  CODASYL

•  Physical and logical independence in the relational model

•  Data models that followed the relational model

•  NoSQL data models
7

CSE 544 - Fall 2015

Different Types of Data

•  Structured data
–  All data conforms to a schema. Ex: business data

•  Semistructured data
–  Some structure in the data but implicit and irregular
–  Ex: resume, ads

•  Unstructured data
–  No structure in data. Ex: text, sound, video, images

•  Our focus: structured data & relational DBMSs

8

CSE 544 - Fall 2015

Outline
•  Different types of data

•  Early data models
–  IMS
–  CODASYL

•  Physical and logical independence in the relational model

•  Data models that followed the relational model

•  NoSQL data models
9

CSE 544 - Fall 2015

Early Proposal 1: IMS

•  What is it?

10

CSE 544 - Fall 2015

Early Proposal 1: IMS

•  Hierarchical data model

•  Record
–  Type: collection of named fields with data types
–  Instance: must match type definition
–  Each instance must have a key
–  Record types must be arranged in a tree

•  IMS database is collection of instances of record types
organized in a tree

11

CSE 544 - Fall 2015

 IMS Example

•  Figure 2 from “What goes around comes around”

12

CSE 544 - Fall 2015

Data Manipulation Language: DL/1

•  How does a programmer retrieve data in IMS?

13

CSE 544 - Fall 2015

Data Manipulation Language: DL/1

•  Each record has a hierarchical sequence key (HSK)
–  Records are totally ordered: depth-first and left-to-right

•  HSK defines semantics of commands:
–  get_next
–  get_next_within_parent

•  DL/1 is a record-at-a-time language
–  Programmer constructs an algorithm for solving the query
–  Programmer must worry about query optimization

14

CSE 544 - Fall 2015

Data storage

•  How is the data physically stored in IMS?

15

CSE 544 - Fall 2015

Data storage

•  Root records
–  Stored sequentially (sorted on key)
–  Indexed in a B-tree using the key of the record
–  Hashed using the key of the record

•  Dependent records
–  Physically sequential
–  Various forms of pointers

•  Selected organizations restrict DL/1 commands
–  No updates allowed due to sequential organization
–  No “get-next” for hashed organization

16

CSE 544 - Fall 2015

Data Independence

•  What is it?

17

CSE 544 - Fall 2015

Data Independence

•  Physical data independence: Applications are insulated
from changes in physical storage details

•  Logical data independence: Applications are insulated
from changes to logical structure of the data

•  Why are these properties important?
–  Reduce program maintenance as
–  Logical database design changes over time
–  Physical database design tuned for performance

18

CSE 544 - Fall 2015

IMS Limitations

•  Tree-structured data model
–  Redundant data, existence depends on parent, artificial structure

•  Record-at-a-time user interface
–  User must specify algorithm to access data

•  Very limited physical independence
–  Phys. organization limits possible operations
–  Application programs break if organization changes

•  Provides some logical independence
–  DL/1 program runs on logical database
–  Difficult to achieve good logical data independence with a tree model

19

CSE 544 - Fall 2015

Early Proposal 2: CODASYL

•  What is it?

20

CSE 544 - Fall 2015

Early Proposal 2: CODASYL

•  Networked data model

•  Primitives are also record types with keys
•  Record types are organized into network

–  A record can have multiple parents
–  Arcs between records are named
–  At least one entry point to the network

•  Network model is more flexible than hierarchy
–  Ex: no existence dependence

•  Record-at-a-time data manipulation language

21

CSE 544 - Fall 2015

CODASYL Example

•  Figure 5 from “What goes around comes around”

22

CSE 544 - Fall 2015

CODASYL Limitations

•  No physical data independence
–  Application programs break if organization changes

•  No logical data independence
–  Application programs break if organization changes

•  Very complex
•  Programs must “navigate the hyperspace”
•  Load and recover as one gigantic object

23

CSE 544 - Fall 2015

Outline
•  Different types of data

•  Early data models
–  IMS
–  CODASYL

•  Physical and logical independence in the relational model

•  Data models that followed the relational model

•  NoSQL data models
24

CSE 544 - Fall 2015

Relational Model Overview
•  Proposed by Ted Codd in 1970

•  Motivation: better logical and physical data independence

•  Overview
–  Store data in a simple data structure (table)

•  Facilitates logical data independence
•  Flexible enough to represent almost anything

–  Access data through set-at-a-time language
•  Facilitates physical data independence

–  No need for physical storage proposal

25

CSE 544 - Fall 2015

Physical Independence

•  Definition: Applications are insulated from changes in
physical storage details

•  Early models (IMS and CODASYL): No

•  Relational model: Yes
–  Yes through set-at-a-time language: algebra or calculus
–  No specification of what storage looks like
–  Administrator can optimize physical layout

26

CSE 544 - Fall 2015

Logical Independence

•  Definition: Applications are insulated from changes to
logical structure of the data

•  Early models
–  IMS: some logical independence
–  CODASYL: no logical independence

•  Relational model
–  Yes through views

27

CSE 544 - Fall 2015

Views

•  View is a relation

•  But rows not explicitly stored in the database

•  Instead

•  Computed as needed from a view definition

28

CSE 544 - Fall 2015

Example with SQL

Relations
 Supplier(sno,sname,scity,sstate)
 Part(pno,pname,psize,pcolor)

 Supply(sno,pno,qty,price)

CREATE VIEW Big_Parts

AS
SELECT * FROM Part WHERE psize > 10;

29

CSE 544 - Fall 2015

Example 2 with SQL

CREATE VIEW Supply_Part2 (name,no)
AS
SELECT R.sname, R.sno
FROM Supplier R, Supply S
WHERE R.sno = S.sno AND S.pno=2;

30

CSE 544 - Fall 2015

Queries Over Views

SELECT * from Big_Parts

WHERE pcolor='blue';

SELECT name

FROM Supply_Part2

WHERE no=1;

31

CSE 544 - Fall 2015

Updating Through Views

•  Updatable views (SQL-92)
–  Defined on single base relation
–  No aggregation in definition
–  Inserts have NULL values for missing fields
–  Better if view definition includes primary key

•  Updatable views (SQL-99)
–  May be defined on multiple tables

•  Messy issue in general

32

CSE 544 - Fall 2015

Levels of Abstraction

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

views
access control

33

CSE 544 - Fall 2015

Query Translations

Relational Algebra Expression (query plan)

Declarative SQL Query

Physical Query Plan

User or application

Optimizer

34

Great Debate

•  Pro relational
–  What were the arguments?

•  Against relational
–  What were the arguments?

•  How was it settled?

CSE 544 - Fall 2015 35

Great Debate

•  Pro relational
–  CODASYL is too complex
–  CODASYL does not provide sufficient data independence
–  Record-at-a-time languages are too hard to optimize
–  Trees/networks not flexible enough to represent common cases

•  Against relational
–  COBOL programmers cannot understand relational languages
–  Impossible to represent the relational model efficiently

•  Ultimately settled by the market place

CSE 544 - Fall 2015 36

CSE 544 - Fall 2015

Outline
•  Different types of data

•  Early data models
–  IMS
–  CODASYL

•  Physical and logical independence in the relational model

•  Data models that followed the relational model

•  NoSQL data models
37

Other Data Models

•  Entity-Relationship: 1970’s
–  Successful in logical database design (last lecture)

•  Extended Relational: 1980’s
•  Semantic: late 1970’s and 1980’s
•  Object-oriented: late 1980’s and early 1990’s

–  Address impedance mismatch: relational dbs çè OO languages
–  Interesting but ultimately failed (several reasons, see references)

•  Object-relational: late 1980’s and early 1990’s
–  User-defined types, ops, functions, and access methods

•  Semi-structured: late 1990’s to the present

CSE 544 - Fall 2015 38

Semistructured vs Relational

•  Relational data model
–  Rigid flat structure (tables)
–  Schema must be fixed in advanced
–  Binary representation: good for performance, bad for exchange
–  Query language based on Relational Calculus

•  Semistructured data model / XML
–  Flexible, nested structure (trees)
–  Does not require predefined schema ("self describing”)
–  Text representation: good for exchange, bad for performance
–  Query language borrows from automata theory

39 CSE 544 - Fall 2015

40

XML Syntax

<bibliography>
 <book> <title> Foundations… </title>
 <author> Abiteboul </author>
 <author> Hull </author>
 <author> Vianu </author>
 <publisher> Addison Wesley </publisher>
 <year> 1995 </year>
 </book>
 …

</bibliography>
CSE 544 - Fall 2015 XML describes the content

Document Type Definitions (DTD)

•  An XML document may have a DTD
•  XML document:

Well-formed = if tags are correctly closed
Valid = if it has a DTD and conforms to it

•  Validation is useful in data exchange
–  Use http://validator.w3.org/check to validate

Superseded by XML Schema (Book Sec. 11.4)
•  Very complex: DTDs still used widely

41 CSE 544 - Fall 2015

42

Example DTD

<!DOCTYPE company [
 <!ELEMENT company ((person|product)*)>
 <!ELEMENT person (ssn, name, office, phone?)>
 <!ELEMENT ssn (#PCDATA)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT office (#PCDATA)>
 <!ELEMENT phone (#PCDATA)>
 <!ELEMENT product (pid, name, description?)>
 <!ELEMENT pid (#PCDATA)>
 <!ELEMENT description (#PCDATA)>
]>

CSE 544 - Fall 2015

43

XML Semantics: a Tree !

<data>
 <person id=“o555” >
 <name> Mary </name>
 <address>
 <street>Maple</street>
 <no> 345 </no>
 <city> Seattle </city>
 </address>
 </person>
 <person>
 <name> John </name>
 <address>Thailand
 </address>
 <phone>23456</phone>
 </person>
</data>

data

Mary

person

person

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

id

o555

Element
node

Text
node

Attribute
node

Order matters !!!
CSE 544 - Fall 2015

44

Query XML with XQuery

FLWR (“Flower”) Expressions

FOR $b IN doc("bib.xml")/bib
LET $a := distinct-values($b/book/author/text())
FOR $x IN $a
RETURN
 <answer>
 <author> $x </author>
 { FOR $y IN $b/book[author/text()=$x]/title
 RETURN $y }
 </answer>

CSE 544 - Fall 2015

45

SQL and XQuery Side-by-side

Product(pid, name, maker, price) Find all product names, prices,
sort by price

SELECT x.name,
 x.price
FROM Product x
ORDER BY x.price

SQL

FOR $x in doc(“db.xml”)/db/Product/row
ORDER BY $x/price/text()
RETURN <answer>
 { $x/name, $x/price }
 </answer>

XQuery

CSE 544 - Fall 2015

Beyond XML: JSON

•  JSON stands for “JavaScript Object Notation”
–  Lightweight text-data interchange format
–  Language independent
–  “Self-describing" and easy to understand

•  JSON is quickly replacing XML for
–  Data interchange
–  Representing and storing semi-structure data

46 CSE 544 - Fall 2015

JSON

47

Example from: http://www.jsonexample.com/

myObject = {
 "first": "John",

 "last": "Doe",

 "salary": 70000,

 "registered": true,

 "interests": ["Reading", “Biking”, "Hacking"]
}

Query language: JSONiq http://www.jsoniq.org/

CSE 544 - Fall 2015

Google Protocol Buffers

•  Extensible way of serializing structured data
–  Language-neutral
–  Platform-neutral

•  Used in communications protocols, data storage, etc.
•  How it works

–  Developer specifies the schema in .proto file
–  Proto file gets compiled to classes that read/write the data

•  Compiler is language specific

48

https://developers.google.com/protocol-buffers/docs/overview

CSE 544 - Fall 2015

Google Protocol Buffers Example

49

From: https://developers.google.com/protocol-buffers/

message Person {
 required string name = 1;

 required int32 id = 2;

 optional string email = 3;

 enum PhoneType { MOBILE = 0; HOME = 1; WORK = 2; }

 message PhoneNumber {
 required string number = 1;

 optional PhoneType type = 2 [default = HOME];

 }

 repeated PhoneNumber phone = 4;

}

CSE 544 - Fall 2015

Summary of Old Data Models

•  Relational data model wins for data representation
because of data independence

•  E/R diagrams used in schema design

•  Semistructured data (XML, JSON, Protocol Buffer) used
in data exchange

50 CSE 544 - Fall 2015

CSE 544 - Fall 2015

Outline
•  Different types of data

•  Early data models
–  IMS
–  CODASYL

•  Physical and logical independence in the relational model

•  Data models that followed the relational model

•  NoSQL data models
51

Different Types of NoSQL

Taxonomy based on data models:

•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

CSE 544 - Fall 2015 52

Cattell, SIGMOD Record 2010

NoSQL Data Models

•  Key-value = each data item is a (key, value) pair
•  Extensible record = families of attributes have a schema,

but new attributes may be added
–  Hybrid between a tuple and a document
–  Families of attributes are defined in a schema
–  New attributes can be added (within a family) on per-record basis
–  Attributes may be list-valued

•  Document = nested values, extensible records (think XML,
JSON, attribute-value pairs)
–  Values can be nested documents or lists as well as scalar values
–  Attribute names are dynamically defined for each doc at runtime
–  Attributes are not defined in a global schema

CSE 544 - Fall 2015 53

NoSQL Data Models

•  We will discuss NoSQL systems later in the quarter and will
come back to their data models and operations

CSE 544 - Fall 2015 54

CSE 544 - Fall 2015

Conclusion

•  Data independence is desirable
–  Both physical and logical
–  Early data models provided very limited data independence
–  Relational model facilitates data independence

•  Set-at-a-time languages facilitate phys. indep. [more next lecture]
•  Simple data models facilitate logical indep. [more next lecture]

•  Flat models are also simpler, more flexible
•  User should specify what they want not how to get it

–  Query optimizer does better job than human

•  New data model proposals must
–  Solve a “major pain” or provide significant performance gains

55

