
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Finale – NoSQL

Poster Session Information
•  Time: 12/15 (next Tuesday!), 2-4:30pm
•  Place: CSE first floor atrium

•  Easels: will be provided, please set up in the atrium
•  Poster boards: poster printer room (CSE 415) or 1st floor copy room

(next to CSE main office)
•  Anyone planning to do demos?

•  Format: please prepare an 8 min talk-through of your poster
–  We have 14 groups to go through

•  There will be a best poster award !!!

CSE 544 - Fall 2015 2

Final Reports

•  Final report due on 12/18, 11:45 pm
–  Turn in on dropbox
–  Instructions and format on website

•  No class on Thursday
–  This will be the last 544 lecture L

CSE 544 - Fall 2015 3

CSE 544 - Fall 2015 4

References

•  Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD
Record, December 2010 (Vol. 39, No. 4)

•  Dynamo: Amazon’s Highly Available Key-value Store. By
Giuseppe DeCandia et. al. SOSP 2007.

•  Online documentation: Amazon DynamoDB.

•  Online documentation: MongoDB.

Outline

•  NoSQL overview

•  Two example systems
–  Amazon Dynamo
–  MongoDB

CSE 544 - Fall 2015 5

NoSQL Overview

CSE 544 - Fall 2015 6

NoSQL Motivation

•  Originally motivated by Web 2.0 applications
–  Examples?

•  Goal is to scale simple OLTP-style workloads to
thousands or millions of users

•  Users are doing both updates and reads

CSE 544 - Fall 2015 7

Why NoSQL as the Solution?

•  Hard to scale transactions
–  Need to partition the database across multiple machines
–  If a transaction touches one machine, life is good
–  If a transaction touches multiple machines, ACID becomes

extremely expensive! Need two-phase commit as we saw

•  Replication
–  Replication can help increase throughput and lower latency
–  Create multiple copies of each database partition
–  Spread queries across these replicas
–  Easy for reads
–  But writes are expensive! (remember all the log shipping

business)

CSE 544 - Fall 2015 8

NoSQL Key Feature Decisions

•  Want a data management system that is
–  Elastic and highly scalable
–  Flexible (different records have different schemas)

•  To achieve above goals, willing to give up
–  Complex queries: e.g., give up on joins
–  Multi-object transactions
–  ACID guarantees: e.g., eventual consistency is OK

•  Eventual consistency: If updates stop, all replicas will converge to
the same state and all reads will return the same value

–  Not all NoSQL systems give up all these properties

CSE 544 - Fall 2015 9

All updates
eventually reach
all replicas

“Not Only SQL” or “Not Relational”

Six key features:
1.  Scale horizontally “simple operations”

–  key lookups, reads and writes of one record or a small number
of records, simple selections

2. Replicate/distribute data over many servers
3. Simple call level interface (contrast w/ SQL)
4. Weaker concurrency model than ACID
5. Efficient use of distributed indexes and RAM
6. Flexible schema

CSE 544 - Fall 2015 10

Cattell, SIGMOD Record 2010

ACID vs BASE

•  ACID = Atomicity, Consistency, Isolation, and Durability

•  BASE = Basically Available, Soft state, Eventually
consistent

CSE 544 - Fall 2015 11

NoSQL Data Models

•  Tuple = row in a relational db

•  Extensible record = families of attributes have a schema,
but new attributes may be added

•  Document = nested values, extensible records (think
XML, JSON, attribute-value pairs)

•  Object = like in a programming language, but without

methods

CSE 544 - Fall 2015 12

Different Types of NoSQL

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

•  Document stores
–  e.g., CouchDB, MongoDB

•  New types of RDBMSs.. not really NoSQL, not just SQL
–  (not exactly sure what they are..)

CSE 544 - Fall 2015 13

Cattell, SIGMOD Record 2010

Key-Value Stores: Dynamo

CSE 544 - Fall 2015 14

Key-Value Store: Dynamo

•  Dynamo: Amazon’s Highly Available Key-value Store.
By Giuseppe DeCandia et. al. SOSP 2007.

•  Main observation:
–  “There are many services on Amazon’s platform that only need

primary-key access to a data store.”
–  Best seller lists, shopping carts, customer preferences, session

management, sales rank, product catalog

CSE 544 - Fall 2015 15

Basic Features

•  Data model: (key,value) pairs
–  Values are binary objects (blobs)
–  No further schema

•  Operations
–  Insert, delete, and lookup operations on keys
–  No operations across multiple data items

•  Consistency
–  Replication with eventual consistency
–  Goal is to NEVER reject any writes (bad for business)

•  That’s why conflict resolution is pushed to reads
–  Multiple versions with conflict resolution during reads

CSE 544 - Fall 2015 16

Operations

•  get(key)
–  Locates object replicas associated with key
–  Returns a single object
–  Or a list of objects with conflicting versions
–  Also returns a context

•  Context holds metadata including version
•  Context is opaque to caller

•  put(key, context, object)
–  Determines where replicas of object should be placed
–  Location depends on key value
–  Data stored persistently including context

CSE 544 - Fall 2015 17

Storage: Distributed Hash Table

Implements a distributed storage engine:
•  Each key-value pair (k,v) is stored at some server h(k)
•  API: write(k,v); read(k)

Use standard hash function: service key k by server h(k)
•  Problem 1: a client knows only one server, doesn’t know how

to access h(k)

•  Problem 2. if new server joins, then N à N+1, and the entire
hash table needs to be reorganized

•  Problem 3: we want replication, i.e., store the object at more
than one server

CSE 544 - Fall 2015 18

Distributed Hash Table
h=0 h=2n-1

A

B

C D

Responsibility of B

Responsibility of C

Responsibility of A

CSE 544 - Fall 2015 19

Distributed Hash Table Details

•  This type of hashing called “consistent hashing”

•  Basic approach leads to load imbalance
–  Why?
–  Solution: Use V virtual nodes for each physical node
–  Virtual nodes provide better load balance
–  Number of virtual nodes can vary based on capacity

CSE 544 - Fall 2015 20

Problem 1: Routing

A client doesn’t know server h(k), but some other server

•  Naive routing algorithm:

–  Each node knows its neighbors
–  Send message to nearest neighbor
–  Hop-by-hop from there
–  Obviously this is O(n), so no good

•  Better algorithm: “finger table”
–  Memorize locations of other nodes in the ring
–  a, a + 2, a + 4, a + 8, a + 16, ... a + 2n – 1
–  Send message to closest node to destination
–  Hop-by-hop again: this is log(n)

CSE 544 - Fall 2015 21

Problem 1: Routing
h=0 h=2n-1

A

B

D

C

Read(k)

F
E

Client
 only “knows”

server A

Redirect
request

 to A + 2m

G

 to D + 2p

 to F + 1

Found
Read(k) !

h(k) handled
by server G

O(log n)
22

Problem 2: Joining
h=0 h=2n-1

A

B

C D

Responsibility of D

When X joins:
select random ID

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of D

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of X

Redistribute
the load at D

Responsibility of D

Problem 3: Replication

•  Need to have some degree of replication to cope with
node failures

•  Let N=degree of replication

•  Assign key k to h(k), h(k)+1, …, h(k)+N-1

CSE 544 - Fall 2015 26

Problem 3: Replication
h=0 h=2n-1

A

B

C D

Responsibility of B,C,D

Responsibility of C,D,A

Responsibility of A,B,C

27 CSE 544 - Fall 2015

Additional Dynamo Details

•  Each key assigned to a coordinator
•  Coordinator responsible for replication

–  Replication skips virtual nodes that are not distinct physical nodes

•  Set of replicas for a key is its preference list
•  One-hope routing:

–  Each node knows preference list of each key

•  “Sloppy quorum” replication
–  Each update creates a new version of an object
–  Vector clocks track causality between versions

CSE 544 - Fall 2015 28

Vector Clocks

•  An extension of Multiversion Concurrency Control
(MVCC) to multiple servers

•  Standard MVCC:
each data item X has a timestamp t:
 X4, X9, X10, X14, …, Xt

•  Vector Clocks:
X has set of [server, timestamp] pairs
 X([s1,t1], [s2,t2],…)

CSE 544 - Fall 2015 29

Vector Clocks Dynamo:2007

30

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also handled by

server SX:
 D2 ([SX,2]) (D1 garbage collected)

•  Another client reads D2, writes back D3;
handled by server SY:

 D3 ([SX,2], [SY,1])
•  Another client reads D2, writes back D4;

handled by server SZ:
 D4 ([SX,2], [SZ,1])

•  Another client reads D3, D4: CONFLICT !

CSE 544 - Fall 2015 31

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 32

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2])

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 33

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 34

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5])

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 35

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 36

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 37

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 38

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 39

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 40

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2])

Vector Clocks: Conflict or not?

CSE 544 - Fall 2015 41

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2]) No

Executing Writes and Reads

•  Write operations
–  Initial request sent to coordinator
–  Coordinator generates vector clock & stores locally
–  Coordinator forwards new version to all N replicas
–  If at least W-1 < N-1 nodes respond then success!

•  Read operations
–  Initial request sent to coordinator
–  Coordinator requests data from all N replicas
–  Once gets R responses, returns data

•  Sloppy quorum: Involve first N healthy nodes

CSE 544 - Fall 2015 42

Amazon DynamoDB

Additional functionality:
•  Offers choice of eventual consistent vs strongly consistent read
•  Offers secondary indexes to enable queries over non-key attributes

–  So can support selection queries

When would you want to use DynamoDB?

Try it at: http://aws.amazon.com/dynamodb/

CSE 544 - Fall 2015 43

Document Stores: MongoDB

CSE 544 - Fall 2015 44

Popular NoSQL System

From Wikipedia:

•  Used by: Craigslist, eBay, Foursquare, SourceForge,

Viacom, and the New York Times

•  As of February 2015, MongoDB is the fourth most
popular type of database management system, and the
most popular for document stores.

CSE 544 - Fall 2015 45

Data Model

http://docs.mongodb.org

•  Data model
–  Collections of documents (analogue of a table)
–  BSON documents (attribute-value pairs with nesting and arrays)
–  Documents can reference each other

•  Apps must issue follow-up queries to resolve the references
–  Documents can be embedded in each other (i.e., nested)

•  But then have to worry about documents getting very large

CSE 544 - Fall 2015 46

Consistency and Replication

•  Consistency
–  Write operations are atomic at the document level
–  Operations that modify more than a single document in a collection

still operate on one document at a time

•  Replication
–  Master scheme with master performing all reads & writes by default

•  Achieves strong consistency by always going through the master
–  Eventual consistency by default when reading from replicas

•  Updates propagate to replicas asynchronously
•  But can be configured to use synchronous replication

CSE 544 - Fall 2015 47

Programming Model

•  Javascript API and Javascript shell
•  Querying: Selection

–  A query targets a collection of documents
–  Selection queries on attribute values (including arrays)
db.inventory.find({ type: "snacks" })

–  Can also have conditions on embedded documents
–  Can also do projections, sort, limit and skip

•  Querying: Aggregation
–  Aggregation pipelines
db.orders.distinct(“cust_id”)

–  MapReduce API (JavaScript map/reduce functions)

CSE 544 - Fall 2015 48

Query Optimization

•  Sharding
–  Horizontal partitioning
–  User selects the “shard key”

•  Indexing
–  MongoDB automatically indexes the ID field
–  Users can add indexes on other attributes

•  Other interesting features
–  Can insert data and specify a “time to live” to expire docs

•  Why is that useful?

CSE 544 - Fall 2015 49

Takeaway

•  Claim: NoSQL is really no SQL

•  We have seen noSQL systems with:
–  Relational data models
–  Consistency support
–  Replication support
–  Querying interface
–  Optimization engine

•  We have encountered all these during this quarter

CSE 544 - Fall 2015 50

That’s it!

•  What you achieved in 10 weeks:
–  Various data models
–  Processing and optimizing SQL queries
–  Data analytics
–  Transactions
–  Replication and recovery
–  DaaS and real-world DBMS

•  Thanks for everything
–  Have fun finishing your projects
–  Have a great winter break!

CSE 544 - Fall 2015 51

