CSE 544

Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 17 — DBMS in the Real World

References

« Narasayya et al, SQLVM: Performance Isolation in Multi-Tenant
Relational Database-as-a-Service. In CIDR 2013.

« Optional: EImore et al, Characterizing tenant behavior for placement
and crisis mitigation in multitenant DBMSs. In SIGMOD 2013.

CSE 544 - Fall 2015 2

Outline

* Cloud computing

« Multitenancy for Databases as a Service

« Writing database applications

CSE 544 - Fall 2015

Cloud Computing

A definition

— “Style of computing in which dynamically scalable and often virtualized
resources are provided as a service over the Internet”

« Basicidea
— Developer focuses on application logic
— Infrastructure and data hosted by someone else in their “cloud”
— Hence all operations tasks handled by cloud service provider

« Some history

— "computation may someday be organized as a public utility” (John
McCarthy — 1960)

— 1996 Hotmail “Software as a Service”
— 1999 Salesforce.com offers enterprise-class “Software as a Service”
— 2006 Amazon Web Services with EC2

— And now it's commonly used
CSE 544 - Fall 2015 4

ROGRAMMING

You're DoinG IT CompLETELY WRONG.

Service, Service, Service

» Infrastructure as a Service (laaS)
— Virtual machines, storage, and networking
— Example: Amazon EC2

« Platform as a Service (PaaS)
— Execution runtime, database, web server, development tools, ...
— Example: Google App Engine

« Software as a Service (SaaS)
— Entire applications
— Example: Google Docs

« Database as a Service (DaaS)
— What this lecture is about
— Example: EC2, Azure

CSE 544 - Fall 2015

Why DaaS?

* Running a DBMS is challenging
— Need to hire a skilled database administrator (DBA)
— Need to provision machines (hardware, software, configuration)
— Problems:
* If business picks up, may need to scale quickly
« Workload varies over time
« Solution: Use a DBMS service
— All machines are hosted in service provider’'s data centers
— Data resides in those data centers
— Pay-per-use policy
— Elastic scalability
— No administration!

CSE 544 - Fall 2015 7

Outline

* Cloud computing

« Multitenancy for Databases as a Service

« Writing database applications

CSE 544 - Fall 2015

Multitenancy Problem

« Given a DBMS as a cloud service, how to support
multiple tenants?

1. Each tenant runs in its own virtual machine(s)
— For example Amazon AWS

2. Tenants share the same DBMS instances
— For example SQL Azure

3. Tenants data is stored in a single table
— For example force.com (underlying platform for salesforce.com)

CSE 544 - Fall 2015 9

Multitenancy Problem

Tenant 1 cee Tenant n
application application

Tenant 1 Tenantn
Database | ., Database

Database Server process
|

Storage
Machine

CSE 544 - Fall 2015

Replication and Multitenancy

* Replication: same data store cloned multiple times across
different nodes
— For high availability and recovery

« Multitenancy: multiple, different data stores packed into

the same node
— For elasticity and DaaS

CSE 544 - Fall 2015 11

Tenant Placement

* Many tenants need less than the capacity of one machine

 How to consolidate many tenants on a few servers?
— Also called “tenant packing”

« Question 1: Which tenants can be placed together?
— Want to avoid interference
— One challenge is that tenant workloads vary over time

* Question 2: How many tenants can we place together?
— Trade-off between over-provisioning and over-booking

CSE 544 - Fall 2015 12

Tenant Migration

* When conditions change and SLAs are violated

* Need to move tenants
— Which tenant to move?
— How to perform the migration with minimum disruption?

CSE 544 - Fall 2015

13

Some Solutions

* Delphi: Self-managing controller for a multitenant DBMS

« Pythia: Learn behavior through observation

Tenant behavior
Node behavior
Uses database-level attributes

Assigns a class to each tenant and determines which tenant
classes can be colocated

Assigns classes to packings: good, good with underutilized
resources, or bad

CSE 544 - Fall 2015 14

Tenant Model

 DBMS-agnostic database-level performance measures
— Write percent (insert, delete, updates)

— Avg operation complexity: avg nb of pages accessed by tx
— Percent cache hits

— Buffer pool size: nb pages allocated to tenant

— Database size

— Throughput (transactions per second)

« Tenant labels

— D: Disk IOPS, T: Throughout, and O: Operation complexity
— Each resource type range is split into buckets
— Tenant labels: DS-TS-0S

CSE 544 - Fall 2015 15

Node Model

* One feature per node: packing vector
— One cell per tenant class
— Value in cell is the number of tenants of that class

* Model learns mapping
— From feature vector
— To quality of packing: under, good, over
— Apply model during runtime to schedule each tenant

CSE 544 - Fall 2015

16

Crisis Detection and Mitigation

Periodically collect a snapshot of system state

For each snapshot, classify tenants
— Tenant class is aggregate class over time-window W
 Example: {0.8¢c;, 0.2c,}

If packing is bad, use hill-climbing to find a good packing
— Consider all potential migrations of one tenant

— Perform the move that yields the largest improvement

» Naive cost function minimizes the number of nodes labeled as “over”
— Not good because algorithm tends to overload one node completely

» Better cost function assigns a confidence to each node of being over
— Consider only nodes with high confidence of being over
— Minimize the weighted sum of tenants being on an overloaded node

— Continue until cannot improve any more

CSE 544 - Fall 2015

17

A Case Study: SQLVM

An abstraction to express performance characteristics in
multi-tenant DBMS

Resource scheduling is based on the given performance
abstraction

Metering capabilities to ensure each tenant is operating
within resource bounds

Implemented on Microsoft Azure platform

CSE 544 - Fall 2015 18

Performance Abstractions

- CPU

« |/O

 Memory

 Why were these chosen?

CSE 544 - Fall 2015

19

Abstracting the CPU

* T, : slice of time on CPU core for tenant i
— Actual amount of time dependent on metering interval, clock speeds, etc
— Can also be defined as % of total available CPU cycles

— Not pinned to any specific core in the system
 Why?

* Metering:
— Monitor job usage over a fixed period of time (metering interval)

— Ensure that at least the guaranteed % of time has been allocated to
tenant

« Enforce mechanism:
— Job scheduler decides which tenant gets to use the CPU

CSE 544 - Fall 2015 20

Abstracting I/O

» Disk throughput (i.e., # of /O operations per second)
« Disk bandwidth (i.e., # of bytes read / written per second)

* Reserve certain throughput / bandwidth to each tenant

* Metering:
— Measure amount of I/O operations over each metering period

— What if requests come in bursts?
— Shared I/0?

« Enforce mechanism:

— Disk controller determines which disk request to service
CSE 544 - Fall 2015 21

Abstracting Memory

« Buffer pool pages
Working memory for each query operator

Reserve certain amount of memory for each tenant

— Each tenant thinks it actually holds that amount of memory to
itself

— Why do this?

Metering:

— Measure number of memory pages each tenant holds

Enforce mechanism:
— Buffer page manager (recall HW2) 22

Scheduling

Each query comes with requests for CPU, /O, and
memory

Each tenant combines all requests and sends them to the
underlying OS

— OS then determines how to allocate physical resources

— Implemented as a hypervisor (virtual machine) layer

CSE 544 - Fall 2015 23

Scheduling Example

Tenant 1
1/0 queue
(Promise: 100 IOPS)

Tenant 2
1/0 queue
(Promise: 50 IOPS)

-—

Request Id: 5
Arrived: 100
Deadline: 120

-—

Request Id: 6
Arrived: 100
Deadline: 130

Request Id: 3 Request Id: 4
Arrived: 100 [— Arrived: 100
Deadline: 100 Deadline: 110
Request Id: 1 Request Id: 2
Arrived: 90 |<—{ Arrived: 90
Deadline: 110 Deadline: 130

CSE 544 - Fall 2015

24

Scheduling Algorithms

First come first served
— Up until promised limit

Round-robin across tenants
Priority-based

— Based on Service Level Agreements (SLAs) with each tenant
Machine learning based models

Many other possibilities as discussed

CSE 544 - Fall 2015

25

Challenges

 How to ensure accurate accounting?

« What happens when a tenant violates its allocated
budget?
— Queries are still running on tenant’s machine
— Need to be careful when doing migration / eviction of tenants

 How does migration take place?
— What needs to be moved?

CSE 544 - Fall 2015

26

Outline

* Cloud computing
« Multitenancy for Databases as a Service

« Writing database applications

CSE 544 - Fall 2015

27

Issuing Queries to DBMS

« Write SQL text on a command prompt provided by DBMS
— These are called Command Line Interfaces (CLIs)
— All major DBMS implementations provide this (HW3)

* Write queries graphically
— Data stream systems (e.g., Aurora)
— Essentially the same except that queries are constructed via
GUIs
— Advantages?

CSE 544 - Fall 2015 28

CLI

* This has been the only way to interact with DBMSs for
the first 20 years or so

« Database applications = accounting, business processing

« Users were clerks / accountants in large corporations

CSE 544 - Fall 2015 29

IBM System/38

SELECT.. FROM .. % : SELECT.. FROM ..
WHERE . ﬂ& B = WHERE
- -
«’ "E L P L1V
% ..'.,. SELECT.. FROM .. J

Rise of Programming Languages

3rd generation “high level” general purpose programming
languages caught on starting in the 80s

Users start to write applications in those languages
instead

— Procedural languages: Fortran, COBOL, C
— Object-oriented languages: CLU, C++, Java

Problem: those languages do not work well with SQL
— Famous example: “impedance mismatch”

CSE 544 - Fall 2015 31

“Impedance” Mismatch

* |ssues between general-purpose programming
languages and query languages:
— Data types

— Object encapsulation, inheritance, polymorphism (for object
oriented languages)

— Transactions

— Schema changes

— Imperative and declarative programming styles
— Security

CSE 544 - Fall 2015

Dealing with Impedance Mismatch

* Don’t use a DBMS (!)

* QObject-Oriented DBMS (OO-DBMS)
— Object instances directly stored in DBMS
— Write GP code to access objects directly (no more SQL)
— (yet another data model)
— Popular in the 90s

— Very difficult to optimize
« Pointers everywhere! (IMS?)

CSE 544 - Fall 2015 33

Database Drivers

RDBMS start to provide drivers for applications to
access persistent data

|ldea: applications embed SQL strings within GP code

Examples with standardized interfaces:

— ODBC (Open Database Connectivity)
* Mainly for C/C++ programs

— JDBC (Java Database Connectivity)

Each DBMS provides its own driver implementation

CSE 544 - Fall 2015

34

Using Database Drivers

Connection conn = null;

Statement stmt = null;

Class.forName("com.mysql. jdbc.Driver");

Connection conn = DriverManager.getConnection(DBMS_NAME, username, password);
Statement stmt = conn.createStatement();

String sql = "SELECT id, first, last, age FROM Employees”;

ResultSet rs = stmt.executeQuery(sql);

while(rs.next()) {
int age = rs.getInt("age");
String name = rs.getString(”name”);

}

rs.close();
stmt.close();
conn.close();

35

Issues with Drivers

Users need to learn two languages

Every driver is slightly different in its calling syntax
Type safety?

Software engineering nightmare

Inefficient data serialization between DBMS and
application
— But at least you don’t need to write the serialization code

CSE 544 - Fall 2015

36

Rise of the Internet

 Web applications become popular in the 2000s

« Database applications = web applications
— online forums, online stores, etc

« Easy integration with the web server is important

CSE 544 - Fall 2015

37

Web Applications

« Typical three-tier web applications
— Frontend (browser, phone, etc)
— Middle tier (web server hosting the application)
— Backend (databases)

 Embedding SQL strings within application becomes
tedious and clumsy

— You only need to learn SQL, php, Javascript, HTML, ... to write
web apps

CSE 544 - Fall 2015 38

Web Frameworks

 MVC design pattern

— Model

« Database schemas (e.g., SQL)
— View

« Presentation layer (e.g., HTML)
— Controller

« Application logic (e.g., php)

 Compare this to ER diagrams

CSE 544 - Fall 2015

39

Web Frameworks

* l|dea:
— Declare models up front
* i.e., what need to be persistently stored

— Implement application logic using general purpose language

— Web framework generates all necessary SQL and create
database tables, indexes, etc

 Issue: still need to learn another language for the

presentation layer
— Some frameworks provide that capability as well

CSE 544 - Fall 2015

40

ASP.NET
AngularJS
Ruby on Rails
ASP.NET MVC
Django
Laravel
Meteor
Spring
Express
Codelgniter
Symfony
Ember.js
Flask
JSF

CakePHP

Flex

CSE 544 - Fall 2015

PHP Fat-Free Framework
Lift
CherryPy
Restlet
Lithium
OpenUl5
Tapestry
Flight
CompoundJS
ZK
Flatiron
Noir
Catalyst
Nitrogen
Snap

Camping

Web Frameworks

Koa
web2py
(Fab)
Gin
Vaadin
Yesod
Compojure
Revel
Martini
Mithril
beego
Ring
SproutCore
Mojolicious
SilverStripe Sapphire

Scalatra

Zend

Google Web Toolkit

Play
Yii
Sailsjs
Sinatra
Grails
Tornado
Phalcon
Dojo
Struts
web.py
Bottle
Pyramid
Kohana

Wicket

Stripes
Grok
Zope
Orbit

TurboGears
Merb
Ramaze
Ratpack
Aura
seaside

Zotonic

PureMVC

Tipfy
Horde
Cappuccino

Swiz

41

Model Code Example

from django.db import models

class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published’)

class Choice(models.Model):
question = models.ForeignKey(Question,
on_delete=models.CASCADE)
choice_text = models.CharField(max_length=200)
votes = models.IntegerField(default=0)

CSE 544 - Fall 2015

42

Retrieving Objects

from polls.models import Question, Choice

Question.objects.all()
g = Question(question_text="What's new?”,
pub_date=timezone.now())

g.save()

g.1d
>> 1 # automatically assigned by the DBMS

CSE 544 - Fall 2015

43

Issues with Web Frameworks

 How are objects stored?
— Physical design problem

 How to debug?
« What if object layout needs to be changed?

« (Generated queries are inefficient
— The “N+1” problem

CSE 544 - Fall 2015

44

Recall: BCNF Decomposition

By, Ci» -..r Cy)

/ \

R(A,, Ry(Aq, ..., A, Cy, ..., C))
R, = projection of Ron A, ..., A, B4, ..., B,
R, = projection of Ron A, ..., A, C,, ..., Cp

Theorem If A, ..., A, 2> B,, ..., B,
Then the decomposition is lossless

Note: don’t necessarily need A, ..., A, 2 C,, ..., C,

CSE 544 - Fall 2015 45

Example

Patient

pno name Zip

1 p1 98125
2 p2 98112
3 p1 98143

PatientOf

pno dno since
1 2 2000
1 3 2003
2 1 2002
3 1 1985

How to reconstruct a Patient object?

ORM: Use nested selects!

CSE 544 - Fall 2015

46

Integrating Queries into Languages

« Make query constructs first-class citizens in the
programming language itself

« Examples: Microsoft LINQ

var numbers = DB.Tables["”"Numbers”].AsEnumerable();
var numsPlusOne = numbers.Select(n => n.Field<int>(Q) + 1);
foreach (var 1 in numsPlusOne) {
Log . WritelLine(i);
X
« Code is compiled by the C# compiler, which understands
guery operations

CSE 544 - Fall 2015 47

Conclusion

« DaaS is becoming increasingly popular
— AWS, Azure, Google, and many other cloud service providers

« Multitenancy is an active area of research
— Modeling
— Migration

« Various ways to write DB applications
— CLI
— Drivers
— Frameworks

— New languages 18

