
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 17 – DBMS in the Real World

CSE 544 - Fall 2015 2

References

•  Narasayya et al, SQLVM: Performance Isolation in Multi-Tenant
Relational Database-as-a-Service. In CIDR 2013.

•  Optional: Elmore et al, Characterizing tenant behavior for placement
and crisis mitigation in multitenant DBMSs. In SIGMOD 2013.

Outline

•  Cloud computing

•  Multitenancy for Databases as a Service

•  Writing database applications

CSE 544 - Fall 2015 3

Cloud Computing

•  A definition
–  “Style of computing in which dynamically scalable and often virtualized

resources are provided as a service over the Internet”
•  Basic idea

–  Developer focuses on application logic
–  Infrastructure and data hosted by someone else in their “cloud”
–  Hence all operations tasks handled by cloud service provider

•  Some history
–  "computation may someday be organized as a public utility” (John

McCarthy – 1960)
–  1996 Hotmail “Software as a Service”
–  1999 Salesforce.com offers enterprise-class “Software as a Service”
–  2006 Amazon Web Services with EC2
–  And now it’s commonly used

CSE 544 - Fall 2015 4

CSE 544 - Fall 2015 5

Service, Service, Service
•  Infrastructure as a Service (IaaS)

–  Virtual machines, storage, and networking
–  Example: Amazon EC2

•  Platform as a Service (PaaS)
–  Execution runtime, database, web server, development tools, …
–  Example: Google App Engine

•  Software as a Service (SaaS)
–  Entire applications
–  Example: Google Docs

•  Database as a Service (DaaS)
–  What this lecture is about
–  Example: EC2, Azure

CSE 544 - Fall 2015 6

Why DaaS?

•  Running a DBMS is challenging
–  Need to hire a skilled database administrator (DBA)
–  Need to provision machines (hardware, software, configuration)
–  Problems:

•  If business picks up, may need to scale quickly
•  Workload varies over time

•  Solution: Use a DBMS service
–  All machines are hosted in service provider’s data centers
–  Data resides in those data centers
–  Pay-per-use policy
–  Elastic scalability
–  No administration!

CSE 544 - Fall 2015 7

Outline

•  Cloud computing

•  Multitenancy for Databases as a Service

•  Writing database applications

CSE 544 - Fall 2015 8

Multitenancy Problem

•  Given a DBMS as a cloud service, how to support
multiple tenants?

1.  Each tenant runs in its own virtual machine(s)
–  For example Amazon AWS

2.  Tenants share the same DBMS instances
–  For example SQL Azure

3.  Tenants data is stored in a single table
–  For example force.com (underlying platform for salesforce.com)

CSE 544 - Fall 2015 9

Multitenancy Problem

CSE 544 - Fall 2015 10

SQLVM: Performance Isolation in Multi-Tenant
Relational Database-as-a-Service

Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, Surajit Chaudhuri
Microsoft Research
Redmond, WA, USA

{viveknar, sudiptod, manojsy, badrishc, surajitc}@microsoft.com

ABSTRACT
A relational Database-as-a-Service provider, such as Microsoft
SQL Azure, can share resources of a single database server among
multiple tenants. This multi-tenancy enables cost reduction for the
cloud service provider which it can pass on as savings to the
tenants. However, resource sharing can adversely affect a tenant’s
performance due to resource demands of other tenants’ workloads.
Service providers today do not provide any assurances to a tenant
in terms of isolating its performance from other co-located tenants.
We present SQLVM, an abstraction for performance isolation
which is built on a promise of reservation of key database server
resources, such as CPU, I/O and memory, for each tenant. The key
challenge is in supporting this abstraction within a DBMS without
statically allocating resources to tenants, while ensuring low
overheads and scaling to large numbers of tenants. Our
contributions are in (1) formalizing the above abstraction of
SQLVM; (2) designing mechanisms to support the promised
resources; and (3) proposing low-overhead techniques to
objectively meter resource allocation to establish accountability.
We implemented a prototype of SQLVM in Microsoft SQL Azure
and our experiments demonstrate that SQLVM results in
significantly improved performance isolation from other tenants
when compared to the state-of-the-art.

1. INTRODUCTION
Services, such as Microsoft SQL Azure, which offer relational
Database-as-a-Service (DaaS) functionality in the cloud, are
designed to be multi-tenant; a single database server process hosts
databases of different tenants. Figure 1 illustrates such a multi-
tenant RDBMS architecture, called shared process multi-tenancy.
Multi-tenancy is crucial for cost-effectiveness since dedicating a
machine for each tenant makes the service prohibitively expensive.
Such multi-tenancy in DaaS is also relevant for on-premise clouds
where a single server consolidates databases of multiple
independent applications within the enterprise.

An important consequence of multi-tenancy is that a tenant’s
workload competes with queries from other tenants for key
resources such as CPU, I/O, and memory at the database server.
Tenants of a relational DaaS platform can execute arbitrary SQL
queries that can be complex and whose resource requirements can

be substantial and widely varied. As a result, the performance of a
tenant’s workload can vary significantly depending on the
workload issued concurrently by other tenants. Such performance
unpredictability arising from contention with other tenants for
shared database server resources can be a serious problem.
Therefore, a natural question to ask is: what assurances on
performance can a multi-tenant DaaS provider (or system) expose
to a tenant and yet be cost-effective?

Machine

Tenant 1
application

Tenant n
application

Network

Tenant 1
Database

Tenant n
Database

Storage

...

...

SQL SQL

Database Server process

Figure 1. A multi-tenant database system.

It might be tempting to consider assurances of high-level
performance metrics at the level of SQL queries, e.g., throughput
(queries/sec) or query latency. However, even on a database server
that is exclusively used by one tenant, the resource needs and
execution times of different instances of a single query template,
such as a parameterized stored procedure, can vary dramatically
depending on parameter values. Moreover, a tenant’s workload can
have a mix of various types of queries with very different
throughput and latency requirements. In addition, observe that
service providers need to support ad-hoc queries (i.e., queries not
seen previously) without limiting the workload type or the SQL
query language supported. Furthermore, a tenant’s data size,
distribution, and access patterns can change over time. These
factors contribute to even greater variability in query throughput
and latency. Thus, given the need to support complex and arbitrary
SQL workloads, meaningful assurances at the level of queries/sec
or query latency, while a worthwhile aspiration, are not even well
defined.

A fundamental challenge, however, is to reduce the variability in
performance that arises due to contention with other tenants for
critical shared database server resources. That is, provide an
assurance that a tenant’s workload is unaffected by the workloads
executed by co-located tenants. One approach is to provide tenants
assurances at the level resources such as CPU, I/O, buffer pool

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, provided
that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR '13).
January 6-9, 2013, Asilomar, Califonia, USA

Replication and Multitenancy

•  Replication: same data store cloned multiple times across
different nodes
–  For high availability and recovery

•  Multitenancy: multiple, different data stores packed into
the same node
–  For elasticity and DaaS

CSE 544 - Fall 2015 11

Tenant Placement

•  Many tenants need less than the capacity of one machine

•  How to consolidate many tenants on a few servers?
–  Also called “tenant packing”

•  Question 1: Which tenants can be placed together?
–  Want to avoid interference
–  One challenge is that tenant workloads vary over time

•  Question 2: How many tenants can we place together?
–  Trade-off between over-provisioning and over-booking

CSE 544 - Fall 2015 12

Tenant Migration

•  When conditions change and SLAs are violated

•  Need to move tenants
–  Which tenant to move?
–  How to perform the migration with minimum disruption?

CSE 544 - Fall 2015 13

Some Solutions

•  Delphi: Self-managing controller for a multitenant DBMS

•  Pythia: Learn behavior through observation
–  Tenant behavior
–  Node behavior
–  Uses database-level attributes
–  Assigns a class to each tenant and determines which tenant

classes can be colocated
–  Assigns classes to packings: good, good with underutilized

resources, or bad

CSE 544 - Fall 2015 14

Tenant Model

•  DBMS-agnostic database-level performance measures
–  Write percent (insert, delete, updates)
–  Avg operation complexity: avg nb of pages accessed by tx
–  Percent cache hits
–  Buffer pool size: nb pages allocated to tenant
–  Database size
–  Throughput (transactions per second)

•  Tenant labels
–  D: Disk IOPS, T: Throughout, and O: Operation complexity
–  Each resource type range is split into buckets
–  Tenant labels: DS-TS-OS

CSE 544 - Fall 2015 15

Node Model

•  One feature per node: packing vector
–  One cell per tenant class
–  Value in cell is the number of tenants of that class

•  Model learns mapping
–  From feature vector
–  To quality of packing: under, good, over
–  Apply model during runtime to schedule each tenant

CSE 544 - Fall 2015 16

Crisis Detection and Mitigation

•  Periodically collect a snapshot of system state
•  For each snapshot, classify tenants

–  Tenant class is aggregate class over time-window W
•  Example: {0.8cj, 0.2ck}

•  If packing is bad, use hill-climbing to find a good packing
–  Consider all potential migrations of one tenant
–  Perform the move that yields the largest improvement

•  Naïve cost function minimizes the number of nodes labeled as “over”
–  Not good because algorithm tends to overload one node completely

•  Better cost function assigns a confidence to each node of being over
–  Consider only nodes with high confidence of being over
–  Minimize the weighted sum of tenants being on an overloaded node

–  Continue until cannot improve any more

CSE 544 - Fall 2015 17

A Case Study: SQLVM

•  An abstraction to express performance characteristics in
multi-tenant DBMS

•  Resource scheduling is based on the given performance
abstraction

•  Metering capabilities to ensure each tenant is operating
within resource bounds

•  Implemented on Microsoft Azure platform

CSE 544 - Fall 2015 18

Performance Abstractions

•  CPU

•  I/O

•  Memory

•  Why were these chosen?

CSE 544 - Fall 2015 19

Abstracting the CPU

•  Ti : slice of time on CPU core for tenant i
–  Actual amount of time dependent on metering interval, clock speeds, etc
–  Can also be defined as % of total available CPU cycles
–  Not pinned to any specific core in the system

•  Why?

•  Metering:
–  Monitor job usage over a fixed period of time (metering interval)
–  Ensure that at least the guaranteed % of time has been allocated to

tenant

•  Enforce mechanism:
–  Job scheduler decides which tenant gets to use the CPU

CSE 544 - Fall 2015 20

Abstracting I/O
•  Disk throughput (i.e., # of I/O operations per second)
•  Disk bandwidth (i.e., # of bytes read / written per second)

•  Reserve certain throughput / bandwidth to each tenant

•  Metering:
–  Measure amount of I/O operations over each metering period
–  What if requests come in bursts?
–  Shared I/O?

•  Enforce mechanism:
–  Disk controller determines which disk request to service

CSE 544 - Fall 2015 21

Abstracting Memory
•  Buffer pool pages
•  Working memory for each query operator

•  Reserve certain amount of memory for each tenant
–  Each tenant thinks it actually holds that amount of memory to

itself
–  Why do this?

•  Metering:
–  Measure number of memory pages each tenant holds

•  Enforce mechanism:
–  Buffer page manager (recall HW2)

22

Scheduling

•  Each query comes with requests for CPU, I/O, and
memory

•  Each tenant combines all requests and sends them to the
underlying OS
–  OS then determines how to allocate physical resources
–  Implemented as a hypervisor (virtual machine) layer

CSE 544 - Fall 2015 23

Scheduling Example

CSE 544 - Fall 2015 24

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑂 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝐼𝑂𝑠 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐼𝑂𝑠 (𝑀)

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐼𝑂𝑠 (𝑀)

SQLVM promises a tenant Relative IO ≤ 0 for a given amount of
memory. Similar to other resources, a tenant is promised a memory
reservation (ResMemi). For example, suppose a tenant is promised
a 1GB buffer pool memory reservation. In effect, the promise is that
the tenant’s workload will see the same hit ratio as though a 1GB
buffer pool was reserved for the tenant. Similarly for working
memory, a promise of 500 MB implies that there would be no more
I/O to/from disk for Hash or Sort operators compared to 500 MB of
working memory dedicated to that tenant.

Metering: Since memory is allocated dynamically and a tenant’s
actual memory allocation might differ from ResMemi, the key
challenge for metering memory is to determine Baseline IOs (M);
Actual IOs can be measured directly. This requires a “what-if”
analysis to simulate the I/O behavior of the workload as though the
tenant had M units of memory dedicated to it. The challenge lies in
doing this baseline simulation accurately and with low overhead.
We have shown (via implementation in Microsoft SQL Azure) that
the baseline simulation is feasible in practice and accurate, both for
buffer pool memory and working memory. For example, for buffer
pool memory, the observation is that the relative I/O is dependent
on the page access order, page replacement policy and page
metadata (such as dirty bit), and not the actual contents of the pages.
The CPU overhead necessary to simulate this baseline buffer pool
can be piggybacked on the actual buffer pool accesses and page
replacement, and is almost negligible in practice. Finally, we note
that if the metering logic determines RelativeIO > 0, any such
additional I/Os incurred for the tenant are not charged to the
tenant’s ResIOPS; these additional I/Os are charged to the system.

3. IMPLEMENTATION
We have built a prototype of SQLVM inside Microsoft SQL Azure.
In particular, we added the ability to specify a SQLVM
configuration for a tenant, modified the resource scheduling
mechanisms to enable the server to meet reservations of a tenant
for each of the key resources: CPU, buffer pool memory, working
memory and I/O, and implemented metering logic for each of these
resources. In this paper we only discuss the I/O scheduling
mechanism and its metering logic. Scheduling mechanisms and
metering logic for other resources are beyond the scope of this
paper. Note that many database systems already have support for
classifying incoming queries and associating them to tenants (e.g.,
[9]). SQLVM leverages such mechanisms to dynamically
determine which tenant issued a query.

3.1 I/O Scheduling
There are three major challenges in implementing I/O scheduling
in an RDBMS for meeting ResIOPS promised to each tenant. The
first challenge is the accuracy and efficiency of the actual
scheduling mechanism. The second challenge concerns accurately
accounting all I/O requests associated with a tenant irrespective of
whether an I/O request is directly issued during execution of a
tenant’s workload or issued by a background system activity on
behalf of the tenant. The third challenge pertains to the fact that
database systems often use multiple logical drives (volumes), e.g.,
one volume for storing data files and a separate volume for the log
file, or data striped across multiple volumes. Therefore, the I/O
scheduling mechanism must be able to handle such scenarios.
Scheduling mechanism: A tenant can have multiple queries
concurrently executing and issuing I/O requests. These queries can
run on multiple cores, and can issue I/O requests independently of

other queries belonging to the same tenant. Furthermore, in a multi-
core processor, I/O requests of a tenant are not guaranteed to be
evenly balanced across cores. Thus, the key challenge in meeting
ResIOPS accurately across multiple cores and queries is to
synchronize a tenant’s I/O requests from different cores and from
concurrent queries, but with minimal overhead.
Our scheduling mechanism is inspired by the I/O scheduling
technique proposed by Gulati et al. [5] for a hypervisor supporting
multiple VMs; although there are several new challenges in
adapting the technique for a DBMS. In our implementation, we
maintain a queue of I/O requests per tenant on each core (as part of
the scheduler’s data structures). When a tenant’s workload issues
an I/O request, it is assigned a deadline – a timestamp that indicates
the time at which the I/O should be issued in order for the tenant to
meet its ResIOPS. Intuitively, if an IO request is issued every T ms,
then it results in 1000/T IOPS. For example, if a tenant is promised
100 IOPS, then the system meets the promise by issuing one I/O of
the tenant every 10 msec. Thus, deadlines for I/O requests of a
particular tenant will be spaced 1/ResIOPS sec apart. This deadline
assignment requires synchronization across cores. However, this
synchronization is lightweight; it requires reading and updating a
single tenant-specific counter that is implemented using an atomic
operation natively supported on modern hardware architectures.
Thus, this mechanism scales well in terms of number of cores and
number of concurrent tenants, while providing accurate control
over I/O throughput. Once an I/O request is assigned a deadline, it
is queued in a pending I/O queue to be issued by the scheduler at
the opportune moment.
Whenever a task yields the CPU, the scheduler periodically checks
pending I/O requests whose deadline is before now. Referring to
Figure 2, if now = 110, then only Request Id: 1, 3 and 4 are de-
queued and issued.

Request Id: 3
Arrived: 100

Deadline: 100

Request Id: 4
Arrived: 100

Deadline: 110

Request Id: 5
Arrived: 100

Deadline: 120

Request Id: 6
Arrived: 100

Deadline: 130

Request Id: 1
Arrived: 90

Deadline: 110

Request Id: 2
Arrived: 90

Deadline: 130

Tenant 1
I/O queue

(Promise: 100 IOPS)

Tenant 2
I/O queue

(Promise: 50 IOPS)
Figure 2. I/O request queue.

Note that in our current implementation, I/O requests for a tenant
are issued in the order of arrival. However, since I/O requests can
potentially be reordered by the disk controller, preserving the order
of I/O requests is not a strict requirement. Therefore, it is possible
to reorder I/O requests of a tenant in our queues to achieve higher-
level optimizations for tenant workloads. For example, consider a
tenant that has issued a short query (requiring only a few I/Os)
concurrently with another long-running query (requiring a large
number of I/Os) that has already queued a number of I/O requests.
In this case, reordering the I/O requests issued by the queries of the
tenant can significantly reduce latency of the short query while still
achieving the ResIOPSi for the tenant. Observe also that in addition
to meeting ResIOPSi, the above mechanism “shapes” a burst of I/O
traffic of a tenant by issuing these requests spaced apart over a
period of time. Since a context switch on a scheduler is quite
frequent (typically several hundred times a second), fine-grained
control over I/O issuance is possible.
Finally, we observe that the DBMS only has control over when a
given I/O request is issued to the underlying storage subsystem; it
does not control when the I/O request completes. By controlling the
number of concurrent I/O requests issued to the storage subsystem,
it is possible to achieve a steady and predictable I/O latency (this

Scheduling Algorithms

•  First come first served
–  Up until promised limit

•  Round-robin across tenants
•  Priority-based

–  Based on Service Level Agreements (SLAs) with each tenant

•  Machine learning based models

•  Many other possibilities as discussed

CSE 544 - Fall 2015 25

Challenges

•  How to ensure accurate accounting?

•  What happens when a tenant violates its allocated
budget?
–  Queries are still running on tenant’s machine
–  Need to be careful when doing migration / eviction of tenants

•  How does migration take place?
–  What needs to be moved?

CSE 544 - Fall 2015 26

Outline

•  Cloud computing

•  Multitenancy for Databases as a Service

•  Writing database applications

CSE 544 - Fall 2015 27

Issuing Queries to DBMS

•  Write SQL text on a command prompt provided by DBMS
–  These are called Command Line Interfaces (CLIs)
–  All major DBMS implementations provide this (HW3)

•  Write queries graphically
–  Data stream systems (e.g., Aurora)
–  Essentially the same except that queries are constructed via

GUIs
–  Advantages?

CSE 544 - Fall 2015 28

CLI

•  This has been the only way to interact with DBMSs for
the first 20 years or so

•  Database applications = accounting, business processing

•  Users were clerks / accountants in large corporations

CSE 544 - Fall 2015 29

SELECT… FROM ..
WHERE …

SELECT… FROM ..
WHERE …

SELECT… FROM ..
WHERE …

IBM System/38

Rise of Programming Languages

•  3rd generation “high level” general purpose programming
languages caught on starting in the 80s

•  Users start to write applications in those languages
instead
–  Procedural languages: Fortran, COBOL, C
–  Object-oriented languages: CLU, C++, Java

•  Problem: those languages do not work well with SQL
–  Famous example: “impedance mismatch”

CSE 544 - Fall 2015 31

“Impedance” Mismatch

•  Issues between general-purpose programming
languages and query languages:
–  Data types
–  Object encapsulation, inheritance, polymorphism (for object

oriented languages)
–  Transactions
–  Schema changes
–  Imperative and declarative programming styles
–  Security

CSE 544 - Fall 2015 32

Dealing with Impedance Mismatch

•  Don’t use a DBMS (!)

•  Object-Oriented DBMS (OO-DBMS)
–  Object instances directly stored in DBMS
–  Write GP code to access objects directly (no more SQL)
–  (yet another data model)
–  Popular in the 90s

–  Very difficult to optimize
•  Pointers everywhere! (IMS?)

CSE 544 - Fall 2015 33

Database Drivers

•  RDBMS start to provide drivers for applications to
access persistent data

•  Idea: applications embed SQL strings within GP code

•  Examples with standardized interfaces:
–  ODBC (Open Database Connectivity)

•  Mainly for C/C++ programs
–  JDBC (Java Database Connectivity)

•  Each DBMS provides its own driver implementation

CSE 544 - Fall 2015 34

Using Database Drivers
Connection conn = null;

Statement stmt = null;

Class.forName("com.mysql.jdbc.Driver");

Connection conn = DriverManager.getConnection(DBMS_NAME, username, password);

Statement stmt = conn.createStatement();

String sql = "SELECT id, first, last, age FROM Employees";

ResultSet rs = stmt.executeQuery(sql);

while(rs.next()) {

 int age = rs.getInt("age");

 String name = rs.getString(”name");

}

rs.close();

stmt.close();

conn.close();

35

Issues with Drivers
•  Users need to learn two languages

•  Every driver is slightly different in its calling syntax

•  Type safety?

•  Software engineering nightmare

•  Inefficient data serialization between DBMS and
application
–  But at least you don’t need to write the serialization code

CSE 544 - Fall 2015 36

Rise of the Internet

•  Web applications become popular in the 2000s

•  Database applications = web applications
–  online forums, online stores, etc

•  Easy integration with the web server is important

CSE 544 - Fall 2015 37

Web Applications

•  Typical three-tier web applications
–  Frontend (browser, phone, etc)
–  Middle tier (web server hosting the application)
–  Backend (databases)

•  Embedding SQL strings within application becomes
tedious and clumsy
–  You only need to learn SQL, php, Javascript, HTML, … to write

web apps

CSE 544 - Fall 2015 38

Web Frameworks

•  MVC design pattern
–  Model

•  Database schemas (e.g., SQL)
–  View

•  Presentation layer (e.g., HTML)
–  Controller

•  Application logic (e.g., php)

•  Compare this to ER diagrams

CSE 544 - Fall 2015 39

Web Frameworks

•  Idea:
–  Declare models up front

•  i.e., what need to be persistently stored
–  Implement application logic using general purpose language
–  Web framework generates all necessary SQL and create

database tables, indexes, etc

•  Issue: still need to learn another language for the
presentation layer
–  Some frameworks provide that capability as well

CSE 544 - Fall 2015 40

Web Frameworks

CSE 544 - Fall 2015 41

Model Code Example

from django.db import models

class Question(models.Model):

 question_text = models.CharField(max_length=200)

 pub_date = models.DateTimeField('date published')

class Choice(models.Model):

 question = models.ForeignKey(Question,

 on_delete=models.CASCADE)

 choice_text = models.CharField(max_length=200)

 votes = models.IntegerField(default=0)

CSE 544 - Fall 2015 42

Retrieving Objects

from polls.models import Question, Choice

Question.objects.all()

q = Question(question_text="What's new?”,

 pub_date=timezone.now())

q.save()

q.id

>> 1 # automatically assigned by the DBMS

CSE 544 - Fall 2015 43

Issues with Web Frameworks

•  How are objects stored?
–  Physical design problem

•  How to debug?

•  What if object layout needs to be changed?

•  Generated queries are inefficient
–  The “N+1” problem

CSE 544 - Fall 2015 44

CSE 544 - Fall 2015

Recall: BCNF Decomposition

R1 = projection of R on A1, ..., An, B1, ..., Bm
R2 = projection of R on A1, ..., An, C1, ..., Cp

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

R1(A1, ..., An, B1, ..., Bm) R2(A1, ..., An, C1, ..., Cp)

Theorem If A1, ..., An à B1, ..., Bm
Then the decomposition is lossless

Note: don’t necessarily need A1, ..., An à C1, ..., Cp
45

CSE 544 - Fall 2015

Example

pno name zip
1 p1 98125

2 p2 98112

3 p1 98143

Patient
pno dno since
1 2 2000

1 3 2003

2 1 2002

3 1 1985

PatientOf

46

How to reconstruct a Patient object?

ORM: Use nested selects!

Integrating Queries into Languages

•  Make query constructs first-class citizens in the
programming language itself

•  Examples: Microsoft LINQ

var numbers = DB.Tables["Numbers"].AsEnumerable();

var numsPlusOne = numbers.Select(n => n.Field<int>(0) + 1);

foreach (var i in numsPlusOne) {

 Log.WriteLine(i);

}

•  Code is compiled by the C# compiler, which understands
query operations

CSE 544 - Fall 2015 47

Conclusion

•  DaaS is becoming increasingly popular
–  AWS, Azure, Google, and many other cloud service providers

•  Multitenancy is an active area of research
–  Modeling
–  Migration

•  Various ways to write DB applications
–  CLI
–  Drivers
–  Frameworks
–  New languages

48

