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Cloud Computing 

•  A definition 
–  “Style of computing in which dynamically scalable and often virtualized 

resources are provided as a service over the Internet” 
•  Basic idea 

–  Developer focuses on application logic 
–  Infrastructure and data hosted by someone else in their “cloud” 
–  Hence all operations tasks handled by cloud service provider 

•  Some history 
–  "computation may someday be organized as a public utility” (John  

McCarthy – 1960) 
–  1996 Hotmail “Software as a Service” 
–  1999 Salesforce.com offers enterprise-class “Software as a Service” 
–  2006 Amazon Web Services with EC2 
–  And now it’s commonly used 
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Service, Service, Service 
•  Infrastructure as a Service (IaaS) 

–  Virtual machines, storage, and networking 
–  Example: Amazon EC2 

•  Platform as a Service (PaaS) 
–  Execution runtime, database, web server, development tools, … 
–  Example: Google App Engine 

•  Software as a Service (SaaS) 
–  Entire applications 
–  Example: Google Docs 

•  Database as a Service (DaaS) 
–  What this lecture is about 
–  Example: EC2, Azure 
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Why DaaS? 

•  Running a DBMS is challenging 
–  Need to hire a skilled database administrator (DBA) 
–  Need to provision machines (hardware, software, configuration) 
–  Problems:  

•  If business picks up, may need to scale quickly 
•  Workload varies over time 

•  Solution: Use a DBMS service 
–  All machines are hosted in service provider’s data centers 
–  Data resides in those data centers  
–  Pay-per-use policy 
–  Elastic scalability 
–  No administration!  
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Outline 

•  Cloud computing 

•  Multitenancy for Databases as a Service 

•  Writing database applications 
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Multitenancy Problem 

•  Given a DBMS as a cloud service, how to support 
multiple tenants? 

1.  Each tenant runs in its own virtual machine(s)  
–  For example Amazon AWS 

2.  Tenants share the same DBMS instances 
–  For example SQL Azure 

3.  Tenants data is stored in a single table 
–  For example force.com (underlying platform for salesforce.com) 
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Multitenancy Problem 
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SQLVM: Performance Isolation in Multi-Tenant  
Relational Database-as-a-Service 
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ABSTRACT 
A relational Database-as-a-Service provider, such as Microsoft 
SQL Azure, can share resources of a single database server among 
multiple tenants. This multi-tenancy enables cost reduction for the 
cloud service provider which it can pass on as savings to the 
tenants. However, resource sharing can adversely affect a  tenant’s 
performance due  to  resource  demands  of  other  tenants’  workloads. 
Service providers today do not provide any assurances to a tenant 
in terms of isolating its performance from other co-located tenants. 
We present SQLVM, an abstraction for performance isolation 
which is built on a promise of reservation of key database server 
resources, such as CPU, I/O and memory, for each tenant. The key 
challenge is in supporting this abstraction within a DBMS without 
statically allocating resources to tenants, while ensuring low 
overheads and scaling to large numbers of tenants. Our 
contributions are in (1) formalizing the above abstraction of 
SQLVM; (2) designing mechanisms to support the promised 
resources; and (3) proposing low-overhead techniques to 
objectively meter resource allocation to establish accountability. 
We implemented a prototype of SQLVM in Microsoft SQL Azure 
and our experiments demonstrate that SQLVM results in 
significantly improved performance isolation from other tenants 
when compared to the state-of-the-art. 

1. INTRODUCTION 
Services, such as Microsoft SQL Azure, which offer relational 
Database-as-a-Service (DaaS) functionality in the cloud, are 
designed to be multi-tenant; a single database server process hosts 
databases of different tenants. Figure 1 illustrates such a multi-
tenant RDBMS architecture, called shared process multi-tenancy. 
Multi-tenancy is crucial for cost-effectiveness since dedicating a 
machine for each tenant makes the service prohibitively expensive. 
Such multi-tenancy in DaaS is also relevant for on-premise clouds 
where a single server consolidates databases of multiple 
independent applications within the enterprise.  

An important consequence of multi-tenancy is that a tenant’s  
workload competes with queries from other tenants for key 
resources such as CPU, I/O, and memory at the database server. 
Tenants of a relational DaaS platform can execute arbitrary SQL 
queries that can be complex and whose resource requirements can 

be substantial and widely varied. As a result, the performance of a 
tenant’s   workload can vary significantly depending on the 
workload issued concurrently by other tenants. Such performance 
unpredictability arising from contention with other tenants for 
shared database server resources can be a serious problem. 
Therefore, a natural question to ask is: what assurances on 
performance can a multi-tenant DaaS provider (or system) expose 
to a tenant and yet be cost-effective?  
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Figure 1. A multi-tenant database system. 

It might be tempting to consider assurances of high-level 
performance metrics at the level of SQL queries, e.g., throughput 
(queries/sec) or query latency. However, even on a database server 
that is exclusively used by one tenant, the resource needs and 
execution times of different instances of a single query template, 
such as a parameterized stored procedure, can vary dramatically 
depending on parameter values. Moreover,  a  tenant’s  workload  can  
have a mix of various types of queries with very different 
throughput and latency requirements. In addition, observe that 
service providers need to support ad-hoc queries (i.e., queries not 
seen previously) without limiting the workload type or the SQL 
query language supported. Furthermore, a tenant’s   data size, 
distribution, and access patterns can change over time. These 
factors contribute to even greater variability in query throughput 
and latency. Thus, given the need to support complex and arbitrary 
SQL workloads, meaningful assurances at the level of queries/sec 
or query latency, while a worthwhile aspiration, are not even well 
defined. 

A fundamental challenge, however, is to reduce the variability in 
performance that arises due to contention with other tenants for 
critical shared database server resources. That is, provide an 
assurance  that  a  tenant’s  workload  is  unaffected by the workloads 
executed by co-located tenants. One approach is to provide tenants 
assurances at the level resources such as CPU, I/O, buffer pool 

 

 
 
 
This article is published under a Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/3.0/), which permits distribution 
and reproduction in any medium as well allowing derivative works, provided 
that you attribute the original work to the author(s) and CIDR 2013. 
6th Biennial Conference on Innovative Data Systems Research (CIDR '13). 
January 6-9, 2013, Asilomar, Califonia, USA 



Replication and Multitenancy 

•  Replication: same data store cloned multiple times across 
different nodes 
–  For high availability and recovery 

•  Multitenancy: multiple, different data stores packed into 
the same node 
–  For elasticity and DaaS 
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Tenant Placement 

•  Many tenants need less than the capacity of one machine 

•  How to consolidate many tenants on a few servers? 
–  Also called “tenant packing” 

•  Question 1: Which tenants can be placed together? 
–  Want to avoid interference 
–  One challenge is that tenant workloads vary over time 

•  Question 2: How many tenants can we place together? 
–  Trade-off between over-provisioning and over-booking 
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Tenant Migration 

•  When conditions change and SLAs are violated 

•  Need to move tenants 
–  Which tenant to move? 
–  How to perform the migration with minimum disruption? 
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Some Solutions 

•  Delphi: Self-managing controller for a multitenant DBMS 

•  Pythia: Learn behavior through observation 
–  Tenant behavior 
–  Node behavior 
–  Uses database-level attributes 
–  Assigns a class to each tenant and determines which tenant 

classes can be colocated 
–  Assigns classes to packings: good, good with underutilized 

resources, or bad 
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Tenant Model 

•  DBMS-agnostic database-level performance measures 
–  Write percent (insert, delete, updates) 
–  Avg operation complexity: avg nb of pages accessed by tx 
–  Percent cache hits 
–  Buffer pool size: nb pages allocated to tenant 
–  Database size 
–  Throughput (transactions per second) 

•  Tenant labels 
–  D: Disk IOPS, T: Throughout, and O: Operation complexity 
–  Each resource type range is split into buckets 
–  Tenant labels: DS-TS-OS 
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Node Model 

•  One feature per node: packing vector 
–  One cell per tenant class 
–  Value in cell is the number of tenants of that class 

•  Model learns mapping 
–  From feature vector 
–  To quality of packing: under, good, over 
–  Apply model during runtime to schedule each tenant 
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Crisis Detection and Mitigation 

•  Periodically collect a snapshot of system state 
•  For each snapshot, classify tenants 

–  Tenant class is aggregate class over time-window W 
•  Example: {0.8cj, 0.2ck} 

•  If packing is bad, use hill-climbing to find a good packing 
–  Consider all potential migrations of one tenant 
–  Perform the move that yields the largest improvement 

•  Naïve cost function minimizes the number of nodes labeled as “over” 
–  Not good because algorithm tends to overload one node completely 

•  Better cost function assigns a confidence to each node of being over 
–  Consider only nodes with high confidence of being over 
–  Minimize the weighted sum of tenants being on an overloaded node 

–  Continue until cannot improve any more 
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A Case Study: SQLVM 

•  An abstraction to express performance characteristics in 
multi-tenant DBMS 

•  Resource scheduling is based on the given performance 
abstraction 

•  Metering capabilities to ensure each tenant is operating 
within resource bounds 

•  Implemented on Microsoft Azure platform 
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Performance Abstractions 

•  CPU 

•  I/O  

•  Memory 

•  Why were these chosen? 
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Abstracting the CPU  

•  Ti : slice of time on CPU core for tenant i 
–  Actual amount of time dependent on metering interval, clock speeds, etc 
–  Can also be defined as % of total available CPU cycles 
–   Not pinned to any specific core in the system 

•  Why? 

•  Metering:  
–  Monitor job usage over a fixed period of time (metering interval) 
–  Ensure that at least the guaranteed % of time has been allocated to 

tenant 

•  Enforce mechanism: 
–  Job scheduler decides which tenant gets to use the CPU 
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Abstracting I/O 
•  Disk throughput (i.e., # of I/O operations per second)  
•  Disk bandwidth (i.e., # of bytes read / written per second) 

•  Reserve certain throughput / bandwidth to each tenant 

•  Metering: 
–  Measure amount of I/O operations over each metering period 
–  What if requests come in bursts? 
–  Shared I/O? 

•  Enforce mechanism: 
–  Disk controller determines which disk request to service 
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Abstracting Memory 
•  Buffer pool pages 
•  Working memory for each query operator 

•  Reserve certain amount of memory for each tenant 
–  Each tenant thinks it actually holds that amount of memory to 

itself 
–  Why do this? 

•  Metering: 
–  Measure number of memory pages each tenant holds 

•  Enforce mechanism: 
–  Buffer page manager (recall HW2) 
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Scheduling 

•  Each query comes with requests for CPU, I/O, and 
memory 

•  Each tenant combines all requests and sends them to the 
underlying OS 
–  OS then determines how to allocate physical resources 
–  Implemented as a hypervisor (virtual machine) layer 

CSE 544 - Fall 2015 23 



Scheduling Example 

CSE 544 - Fall 2015 24 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒  𝐼𝑂 =
𝐴𝑐𝑡𝑢𝑎𝑙  𝐼𝑂𝑠 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝐼𝑂𝑠  (𝑀)

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝐼𝑂𝑠  (𝑀)  

SQLVM promises a  tenant  Relative  IO  ≤ 0 for a given amount of 
memory. Similar to other resources, a tenant is promised a memory 
reservation (ResMemi). For example, suppose a tenant is promised 
a 1GB buffer pool memory reservation. In effect, the promise is that 
the tenant’s workload will see the same hit ratio as though a 1GB 
buffer pool was reserved for the tenant. Similarly for working 
memory, a promise of 500 MB implies that there would be no more 
I/O to/from disk for Hash or Sort operators compared to 500 MB of 
working memory dedicated to that tenant.  

Metering: Since  memory  is  allocated  dynamically  and  a   tenant’s  
actual memory allocation might differ from ResMemi, the key 
challenge for metering memory is to determine Baseline IOs (M); 
Actual IOs can be measured directly. This   requires   a   “what-if”  
analysis to simulate the I/O behavior of the workload as though the 
tenant had M units of memory dedicated to it. The challenge lies in 
doing this baseline simulation accurately and with low overhead. 
We have shown (via implementation in Microsoft SQL Azure) that 
the baseline simulation is feasible in practice and accurate, both for 
buffer pool memory and working memory. For example, for buffer 
pool memory, the observation is that the relative I/O is dependent 
on the page access order, page replacement policy and page 
metadata (such as dirty bit), and not the actual contents of the pages. 
The CPU overhead necessary to simulate this baseline buffer pool 
can be piggybacked on the actual buffer pool accesses and page 
replacement, and is almost negligible in practice. Finally, we note 
that if the metering logic determines RelativeIO > 0, any such 
additional I/Os incurred for the tenant are not charged to the 
tenant’s  ResIOPS; these additional I/Os are charged to the system. 

3. IMPLEMENTATION 
We have built a prototype of SQLVM inside Microsoft SQL Azure. 
In particular, we added the ability to specify a SQLVM 
configuration for a tenant, modified the resource scheduling 
mechanisms to enable the server to meet reservations of a tenant 
for each of the key resources: CPU, buffer pool memory, working 
memory and I/O, and implemented metering logic for each of these 
resources. In this paper we only discuss the I/O scheduling 
mechanism and its metering logic. Scheduling mechanisms and 
metering logic for other resources are beyond the scope of this 
paper. Note that many database systems already have support for 
classifying incoming queries and associating them to tenants (e.g., 
[9]). SQLVM leverages such mechanisms to dynamically 
determine which tenant issued a query.  

3.1 I/O Scheduling  
There are three major challenges in implementing I/O scheduling 
in an RDBMS for meeting ResIOPS promised to each tenant. The 
first challenge is the accuracy and efficiency of the actual 
scheduling mechanism. The second challenge concerns accurately 
accounting all I/O requests associated with a tenant irrespective of 
whether an I/O request is directly issued during execution of a 
tenant’s  workload or issued by a background system activity on 
behalf of the tenant. The third challenge pertains to the fact that 
database systems often use multiple logical drives (volumes), e.g., 
one volume for storing data files and a separate volume for the log 
file, or data striped across multiple volumes. Therefore, the I/O 
scheduling mechanism must be able to handle such scenarios. 
Scheduling mechanism: A tenant can have multiple queries 
concurrently executing and issuing I/O requests. These queries can 
run on multiple cores, and can issue I/O requests independently of 

other queries belonging to the same tenant.  Furthermore, in a multi-
core processor, I/O requests of a tenant are not guaranteed to be 
evenly balanced across cores. Thus, the key challenge in meeting 
ResIOPS accurately across multiple cores and queries is to 
synchronize a  tenant’s  I/O requests from different cores and from 
concurrent queries, but with minimal overhead.  
Our scheduling mechanism is inspired by the I/O scheduling 
technique proposed by Gulati et al. [5] for a hypervisor supporting 
multiple VMs; although there are several new challenges in 
adapting the technique for a DBMS. In our implementation, we 
maintain a queue of I/O requests per tenant on each core (as part of 
the scheduler’s data structures). When  a  tenant’s  workload  issues  
an I/O request, it is assigned a deadline – a timestamp that indicates 
the time at which the I/O should be issued in order for the tenant to 
meet its ResIOPS. Intuitively, if an IO request is issued every T ms, 
then it results in 1000/T IOPS. For example, if a tenant is promised 
100 IOPS, then the system meets the promise by issuing one I/O of 
the tenant every 10 msec. Thus, deadlines for I/O requests of a 
particular tenant will be spaced 1/ResIOPS sec apart. This deadline 
assignment requires synchronization across cores. However, this 
synchronization is lightweight; it requires reading and updating a 
single tenant-specific counter that is implemented using an atomic 
operation natively supported on modern hardware architectures. 
Thus, this mechanism scales well in terms of number of cores and 
number of concurrent tenants, while providing accurate control 
over I/O throughput. Once an I/O request is assigned a deadline, it 
is queued in a pending I/O queue to be issued by the scheduler at 
the opportune moment. 
Whenever a task yields the CPU, the scheduler periodically checks 
pending I/O requests whose deadline is before now. Referring to 
Figure 2, if now = 110, then only Request Id: 1, 3 and 4 are de-
queued and issued.  
 

Request Id: 3
Arrived: 100

Deadline: 100

Request Id: 4
Arrived: 100

Deadline: 110

Request Id: 5
Arrived: 100

Deadline: 120

Request Id: 6
Arrived: 100

Deadline: 130

Request Id: 1
Arrived: 90

Deadline: 110

Request Id: 2
Arrived: 90

Deadline: 130

Tenant 1 
I/O queue

(Promise: 100 IOPS)

Tenant 2 
I/O queue

(Promise: 50 IOPS)  
Figure 2. I/O request queue.  

Note that in our current implementation, I/O requests for a tenant 
are issued in the order of arrival. However, since I/O requests can 
potentially be reordered by the disk controller, preserving the order 
of I/O requests is not a strict requirement. Therefore, it is possible 
to reorder I/O requests of a tenant in our queues to achieve higher-
level optimizations for tenant workloads. For example, consider a 
tenant that has issued a short query (requiring only a few I/Os) 
concurrently with another long-running query (requiring a large 
number of I/Os) that has already queued a number of I/O requests. 
In this case, reordering the I/O requests issued by the queries of the 
tenant can significantly reduce latency of the short query while still 
achieving the ResIOPSi for the tenant. Observe also that in addition 
to meeting ResIOPSi, the above mechanism “shapes” a burst of I/O 
traffic of a tenant by issuing these requests spaced apart over a 
period of time. Since a context switch on a scheduler is quite 
frequent (typically several hundred times a second), fine-grained 
control over I/O issuance is possible.  
Finally, we observe that the DBMS only has control over when a 
given I/O request is issued to the underlying storage subsystem; it 
does not control when the I/O request completes. By controlling the 
number of concurrent I/O requests issued to the storage subsystem, 
it is possible to achieve a steady and predictable I/O latency (this 



Scheduling Algorithms 

•  First come first served 
–  Up until promised limit 

•  Round-robin across tenants 
•  Priority-based 

–  Based on Service Level Agreements (SLAs) with each tenant 

•  Machine learning based models 

•  Many other possibilities as discussed 
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Challenges 

•  How to ensure accurate accounting? 

•  What happens when a tenant violates its allocated 
budget? 
–  Queries are still running on tenant’s machine 
–  Need to be careful when doing migration / eviction of tenants 

•  How does migration take place? 
–  What needs to be moved? 
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Outline 

•  Cloud computing 

•  Multitenancy for Databases as a Service 

•  Writing database applications 
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Issuing Queries to DBMS 

•  Write SQL text on a command prompt provided by DBMS 
–  These are called Command Line Interfaces (CLIs) 
–  All major DBMS implementations provide this (HW3) 

•  Write queries graphically 
–  Data stream systems (e.g., Aurora) 
–  Essentially the same except that queries are constructed via 

GUIs 
–  Advantages? 
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CLI 

•  This has been the only way to interact with DBMSs for 
the first 20 years or so 

•  Database applications = accounting, business processing 

•  Users were clerks / accountants in large corporations 
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SELECT… FROM .. 
WHERE … 

SELECT… FROM .. 
WHERE … 

SELECT… FROM .. 
WHERE … 

IBM System/38 



Rise of Programming Languages 

•  3rd generation “high level” general purpose programming 
languages caught on starting in the 80s  

•  Users start to write applications in those languages 
instead 
–  Procedural languages: Fortran, COBOL, C  
–  Object-oriented languages: CLU, C++, Java 

•  Problem: those languages do not work well with SQL 
–  Famous example: “impedance mismatch” 
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“Impedance” Mismatch 

•  Issues between general-purpose programming 
languages and query languages: 
–  Data types 
–  Object encapsulation, inheritance, polymorphism (for object 

oriented languages) 
–  Transactions 
–  Schema changes 
–  Imperative and declarative programming styles 
–  Security 
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Dealing with Impedance Mismatch 

•  Don’t use a DBMS (!) 

•  Object-Oriented DBMS (OO-DBMS) 
–  Object instances directly stored in DBMS 
–  Write GP code to access objects directly (no more SQL) 
–  (yet another data model) 
–  Popular in the 90s 

–  Very difficult to optimize 
•  Pointers everywhere! (IMS?) 
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Database Drivers 

•  RDBMS start to provide drivers for applications to 
access persistent data 

•  Idea: applications embed SQL strings within GP code 

•  Examples with standardized interfaces: 
–  ODBC (Open Database Connectivity) 

•  Mainly for C/C++ programs 
–  JDBC (Java Database Connectivity) 

•  Each DBMS provides its own driver implementation 
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Using Database Drivers 
Connection conn = null; 

Statement stmt = null;  

Class.forName("com.mysql.jdbc.Driver"); 

Connection conn = DriverManager.getConnection(DBMS_NAME, username, password); 

Statement stmt = conn.createStatement(); 

String sql = "SELECT id, first, last, age FROM Employees"; 

ResultSet rs = stmt.executeQuery(sql); 

while(rs.next()) { 

  int age = rs.getInt("age"); 

  String name = rs.getString(”name"); 

  ... ... 

}  

rs.close(); 

stmt.close(); 

conn.close(); 
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Issues with Drivers 
•  Users need to learn two languages 

•  Every driver is slightly different in its calling syntax 

•  Type safety? 

•  Software engineering nightmare 

•  Inefficient data serialization between DBMS and 
application 
–  But at least you don’t need to write the serialization code 
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Rise of the Internet 

•  Web applications become popular in the 2000s 

•  Database applications = web applications 
–  online forums, online stores, etc 

•  Easy integration with the web server is important 
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Web Applications 

•  Typical three-tier web applications 
–  Frontend (browser, phone, etc) 
–  Middle tier (web server hosting the application) 
–  Backend (databases) 

•  Embedding SQL strings within application becomes 
tedious and clumsy 
–  You only need to learn SQL, php, Javascript, HTML, … to write 

web apps 
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Web Frameworks 

•  MVC design pattern 
–  Model 

•  Database schemas (e.g., SQL) 
–  View  

•  Presentation layer (e.g., HTML) 
–  Controller 

•  Application logic (e.g., php) 

•  Compare this to ER diagrams 
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Web Frameworks 

•  Idea:  
–  Declare models up front  

•  i.e., what need to be persistently stored 
–  Implement application logic using general purpose language 
–  Web framework generates all necessary SQL and create 

database tables, indexes, etc 

•  Issue: still need to learn another language for the 
presentation layer  
–  Some frameworks provide that capability as well 
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Web Frameworks 
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Model Code Example 

from django.db import models 

class Question(models.Model): 

  question_text = models.CharField(max_length=200) 

  pub_date = models.DateTimeField('date published') 

 

class Choice(models.Model): 

  question = models.ForeignKey(Question,     

                               on_delete=models.CASCADE) 

  choice_text = models.CharField(max_length=200) 

  votes = models.IntegerField(default=0) 

CSE 544 - Fall 2015 42 



Retrieving Objects 

from polls.models import Question, Choice 

 

Question.objects.all() 

q = Question(question_text="What's new?”,   

       pub_date=timezone.now()) 

q.save() 

 

q.id 

>> 1  # automatically assigned by the DBMS 
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Issues with Web Frameworks 

•  How are objects stored? 
–  Physical design problem 

 
•  How to debug? 

•  What if object layout needs to be changed? 

•  Generated queries are inefficient 
–  The “N+1” problem 
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Recall: BCNF Decomposition 

R1 = projection of R on A1, ..., An, B1, ..., Bm  
R2 = projection of R on A1, ..., An, C1, ..., Cp  

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)  

R1(A1, ..., An, B1, ..., Bm) R2(A1, ..., An, C1, ..., Cp) 

Theorem If  A1, ..., An à B1, ..., Bm  
Then the decomposition is lossless 

Note: don’t necessarily need A1, ..., An à C1, ..., Cp 
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Example 

pno name zip 
1 p1 98125 

2 p2 98112 

3 p1 98143 

Patient 
pno dno since 
1 2 2000 

1 3 2003 

2 1 2002 

3 1 1985 

PatientOf 
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How to reconstruct a Patient object? 

ORM: Use nested selects! 



Integrating Queries into Languages 

•  Make query constructs first-class citizens in the 
programming language itself 

•  Examples: Microsoft LINQ 

var numbers = DB.Tables["Numbers"].AsEnumerable(); 

var numsPlusOne = numbers.Select(n => n.Field<int>(0) + 1); 

foreach (var i in numsPlusOne) { 

    Log.WriteLine(i); 

} 

•  Code is compiled by the C# compiler, which understands 
query operations 
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Conclusion 

•  DaaS is becoming increasingly popular 
–  AWS, Azure, Google, and many other cloud service providers 

•  Multitenancy is an active area of research 
–  Modeling 
–  Migration 

•  Various ways to write DB applications 
–  CLI 
–  Drivers 
–  Frameworks 
–  New languages 
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