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Announcements 

•  HW1 graded 
–  Send staff an email if you have comments 

•  Lecture plan for last 2 weeks of classes posted online 
–  Next Tuesday will be the last class 

•  No OH today 
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Course Outline 

•  Data Models 
•  Query Execution 
•  Data Analytics (OLAP) 
•  Transaction Processing (OLTP) 
•  Recovery and Replication 

•  Advanced Topics 
–  Today: stream processing 
–  Thursday: DBMS in the real world 
–  Next Tuesday: NoSQL 
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Outline 
•  Stream processing applications 

–  Background 
–  Examples 
–  Requirements 

•  Aurora system 
–  Stream model and query model 
–  Processing model 
–  Operators 
–  Query examples 
–  Other features 

•  STREAMS system 
–  DSMS motivation 
–  CQL  
–  Query evaluation 



Why data streams? 

•  Data constantly being generated all the time 
–  Trading transactions, sensors, phones 

•  Real-time processing required 
–  Update trade positions, people’s locations, etc 
–  Cannot wait until data are ingested into warehouse 

•  Too much data to store! 
–  Airbus A350 generates 2.5Tb of data per day with 6000 sensors 
–  New model in 2020 will capture 3x that amount 
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Why data streams? 

•  Four Vs of big data: 
– Volume 
– Velocity 
– Variety 
– Veracity 
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Stream Processing 

Input streams:  
measurements, data 

Output streams: alerts,  
anomalies, trends 

Process streams: 
filter, correlate,  

aggregate 

Data  
source 

Data  
source 

Data  
source 

Data  
source 
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Application Domains 

•  Network monitoring 
–  Intrusion, fraud, anomaly detection, click streams 

•  Financial services 
–  Market feed processing, ticker failure detection 

•  Sensor-based environment monitoring 
–  Weather conditions, air quality, car traffic 
–  Civil engineering, military applications, etc. 

•  Medical applications 
–  Patient monitoring, equipment tracking 

•  Near real-time data analytics 
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Requirements 

•  Input data is pushed continuously 
–  Traditional DBMSs not designed for continuous loading or inserting of 

individual data items 
–  “DBMS-active, human passive” model 

•  Users want to execute continuous queries 
–  Traditional DBMSs have no direct support for such queries. Can use 

triggers, but triggers do not scale 

•  Low-latency processing 
–  Need to see results in near real-time 
–  Data is possibly high-volume and high-rate 
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Other Requirements 

•  Distribution 

•  Load management and load shedding 

•  Approximate processing, approximate answers 

•  Fault-tolerance and revision processing 

•  Exploiting data archives 
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Outline 
•  Stream processing applications 

–  Examples 
–  Requirements 

•  Aurora system 
–  Stream model and query model 
–  Processing model 
–  Operators 
–  Query examples 
–  Other features 

•  STREAMS system 
–  DSMS motivation 
–  CQL  
–  Query evaluation 
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header data 

(timestamp, v1,...,vn) 

●  Stream: append-only sequence of tuples 
●  All tuples on a stream have same schema 
●  Timestamp is used for QoS 

Tuple: 

Stream Data Model 
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Aurora node Input 
streams 

Output 
streams 

Sum Map 

Union Avg 

Join Max 

Sum Min 

Stream 
Operator 

●  Quality of service graphs 
●  Connection points 
●  Later added read/write ops 
●  No query language (!) 

Query Model 
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Aurora Operators 

•  Order-agnostic 
–  Filter 
–  Map 
–  Union 

•  Order-sensitive 
–  Aggregate 
–  Join 
–  BSort, Resample 

•  Why do we need new operators? 
–  Ops cannot block & cannot accumulate state that grows with input 
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Filter S 

temp > 105 

temp > 100 

otherwise 

(A,107) (B,101) (C,98) 

Input tuples Output 
tuples 

Input schema:  
(location, temp) 

Filter Example 
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Filter S 

temp > 105 

temp > 100 

otherwise 

(A,107) 

(B,101) 

(C,98) 

(A,107) (B,101) (C,98) 

Input tuples Output 
tuples 

Input schema:  
(location, temp) 

Filter Example 
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Map S 

new.location = old.location 
new.temp_celcius = 5/9*(old.temp - 32) 

(A,107) (B,101) (C,98) 

Map Example 
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Map S 
(A,107) (B,101) (C,98) (A,42) (B,38) (C,37) 

new.location = old.location 
new.temp_celcius = 5/9*(old.temp - 32) 

Map Example 
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Union 

S1 

S2 

S3 

(A,107) (A,108) 

(B,101) 

(C,98) (C,95) 

Union Example 
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Union 

S1 

S2 

S3 

(A,107) (B,101) (C,98) (C,95) (A,108) 

(A,107) (A,108) 

(B,101) 

(C,98) (C,95) 

Union Example 
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Agg 
Operator parameters: 
●  group by location 
●  average temp,  
●  order on time, window size 1 h, advance 1h 

(1:00,A,74) 
(1:00,B,65) 

(1:35,A,76) 
(1:34,B,65) 

(2:05,A,72) 

(2:03,B,63) 

Output tuples 

Input schema: (time, location, temp) 
S Input tuples 

Aggregate Example 
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Agg 
Operator parameters: 
●  group by location 
●  average temp,  
●  order on time, window size 1 h, advance 1h 

(1:00,A,75) (1:00,B,65) (1:00,A,74) 
(1:00,B,65) 

(1:35,A,76) 
(1:34,B,65) 

(2:05,A,72) 

(2:03,B,63) 
S 

Output tuples 

Input schema: (time, location, temp) 

Input tuples 

Aggregate Example 
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Join 

S 

R 

(1:00,C,74) 

(1:00,A,0.3) 

(1:35,A,76) 

(1:34,C,0.4) 

(2:05,B,72) 

(2:03,A,0.2) 

1:00,A,0.3) (1:35,A,76, 

1:34,C,0.4) (1:00,C,74, 

2:03,A,0.2) (1:35,A,76, 

Input tuples Output tuples 

Operator parameters: 
●  S order on time, R order on time, window size 1h 
●  predicate S.location = R.location 

Join Example 
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Sample Query 

•  Application: network intrusion detection 

•  Schema of input stream 
(src_ip,src_port,dst_ip,dst_port,time) 

•  Query 
–  Alert me if an IP address establishes more than 100 connections 

per minute  
–  and within 30 seconds of that event 
–  the IP tries to connect to more than 10 distinct ports within a 

minute 
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Processing Model 

[Figure 3 from Abadi 03] 
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Additional Features 

•  Load management 
–  What happens when system is overloaded? 

•  Fault-tolerance 
–  What happens if a node fails? 
–  What happens if the network fails? 
–  What happens if input data is wrong? 

•  Exploiting data archives 
–  Historical queries, ad-hoc queries 
–  Integrating push-based processing with pull-based 
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Outline 
•  Stream processing applications 

–  Examples 
–  Requirements 

•  Aurora system 
–  Stream model and query model 
–  Processing model 
–  Operators 
–  Query examples 
–  Other features 

•  STREAMS system 
–  DSMS motivation 
–  CQL  
–  Query evaluation 
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System Model 

User/Application 

Stream Query 
Processor 

Register 
Query 

Results 

Data Streams 
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New Approach for Data Streams 

Scratch Space 
(Memory and/or Disk) 

Data 
Stream 
Management 
System 
(DSMS) 

User/Application 

Stream Query 
Processor 

Register 
Query 

Results 

Data Streams 
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DBMS versus DSMS 

•  Persistent relations 

•  One-time queries 

•  Random access 

•  Access plan determined 
by query processor and 
physical DB design 

•  “Unbounded” disk store 

•  Transient streams (and 
persistent relations) 

•  Continuous queries 

•  Sequential access 

•  Unpredictable data arrival 
and characteristics 

•  Bounded main memory 

CSE 544 - Fall 2015 
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Query Language & Semantics 

•  Specifying queries over streams 
–  SQL-like versus dataflow network of operators 
–  Sliding windows as a query construct 

•  Semantic issues 
–  Blocking operators, e.g., aggregation, order-by 
–  Streams as sets versus lists 
–  Timestamping 
–  (compare to Aurora) 
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Issues in Query Evaluation 

•  Approximation 

•  Adaptivity 

•  Multiple queries 

•  Distributed streams 

CSE 544 - Fall 2015 34 



35 

Query Evaluation – Approximation 
•  Why approximate? 

–  Streams are coming too fast 
–  Exact answer requires unbounded storage or significant 

computational resources 
–  Ad hoc queries reference history 

•  Issues in approximation 
–  Sliding windows, sampling, synopses, … 
–  How is approximation controlled? 
–  How is it understood by user? 

•  Tradeoff between accuracy / efficiency / storage 
•  A lot of work on streaming algorithms 
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Query Evaluation – Adaptivity 

•  Why adaptivity? 
–  Queries are long-running 
–  Fluctuating stream arrival & data characteristics 
–  Evolving query loads 

•  Issues in adaptivity 
–  Adaptive resource allocation (memory, computation) 
–  Adaptive query execution plans 
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Query Evaluation – Multiple Queries 

•  Possibly large number of continuous queries  

•  Long-running 

•  Shared resources 

•  Multi-query optimization 
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Query Evaluation – Distributed Streams 

1  Many physical streams but one logical stream 
–  e.g., maintain top 100 visited pages at Yahoo 

2  Correlate streams at distributed servers 
–  e.g., network monitoring 

3  Many streams controlled by a few servers 
–  e.g., sensor networks  

•  Issues 
–  Move processing to streams, not streams to processor 
–  Approximation-bandwidth tradeoff 
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STREAM Architecture 

Input  
Data Streams 

Users issue 
continuous 
ad-hoc queries  

Administrator can  
monitor query execution 
and adjust run-time 
parameters 

Applications 
register  
continuous queries 

Output 
Stream 

π	



σ	

 σ	



X 

X 

Waiting Op 

Ready Op 

Running Op 

Synopses Query Plans 
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STREAM Internals 

•  Query plans: operators, synopses, queues 

•  Memory management 
–  Dynamic allocation to buffers, queues, synopses 
–  Accuracy vs. memory tradeoff 
–  Operators adapt gracefully to memory reallocation 

•  Scheduler 
–  Handles variable-rate input streams 
–  Handles varying operator and query requirements 
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CQL: Data Models 

•  Continuous Query Language 

•  Data models: both data streams and relations 
–  Streams: unbounded bag (multiset) of (s, t) pairs 

•  s: tuple 
•  t: timestamp of the arrival time of s 

–  Relations: time-varying bags of tuples 
•  R(t): bag of tuples at time t 
•  Also called an instantaneous relation 
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CQL: Operators 

•  Should be able to convert from relations to streams, 
streams to relations, relations to relations 
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STREAM: The Stanford Data Stream Management System 3

Fig. 1. Data types and operator classes in abstract semantics.

• A relation-to-relation operator takes one or more relations as input and
produces a relation as output.

• A stream-to-relation operator takes a stream as input and produces a
relation as output.

• A relation-to-stream operator takes a relation as input and produces a
stream as output.

Stream-to-stream operators are absent—they are composed from operators of
the above three classes. These three classes are “black box” components of our
abstract semantics: the semantics does not depend on the exact operators in
these classes, but only on generic properties of each class. Figure 1 summarizes
our data types and operator classes.

A continuous query Q is a tree of operators belonging to the above classes.
The inputs of Q are the streams and relations that are input to the leaf
operators, and the output of Q is the output of the root operator. The output
is either a stream or a relation, depending on the class of the root operator.
At time τ , an operator of Q logically depends on its inputs up to τ : tuples of
Si with timestamps ≤ τ for each input stream Si, and instantaneous relations
Rj(τ ′), τ ′ ≤ τ , for each input relation Rj . The operator produces new outputs
corresponding to τ : tuples of S with timestamp τ if the output is a stream S,
or instantaneous relation R(τ) if the output is a relation R. The behavior of
query Q is derived from the behavior of its operators in the usual inductive
fashion.

2.2 Concrete Language

Our concrete declarative query language, CQL (for Continuous Query Lan-
guage), is defined by instantiating the operators of our abstract semantics.
Syntactically, CQL is a relatively minor extension to SQL.

Relation-to-Relation Operators in CQL

CQL uses SQL constructs to express its relation-to-relation operators, and
much of the data manipulation in a typical CQL query is performed using
these constructs, exploiting the rich expressive power of SQL.



Stream-to-Relation Operators 

•  Tuple-based sliding window 
–  [Rows N] : returns the N tuples from stream with largest 

timestamps from a relation 
–  Example: R(t) [Rows N] 
–  [Rows Unbounded] means all return tuples from relation 

•  Time-based sliding window 
–  [Range w] : returns all tuples from a relation with timestamps 

between t and w 
–  Example: R(t) [Range w] 

•  Partitioned sliding window 
–  {A1, A2, …, Ak} : divide stream into k different substreams where 

each Ai
 is true 
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Relation-to-Stream Operators 

•  Istream (insert stream) : returns a stream from relation R, 
with a tuple generated whenever a tuple is inserted into R 

•  Dstream (delete stream) : returns a stream from relation 
R, with a tuple generated whenever at a tuple is deleted 
from R 

•  Rstream (relation stream) : returns a stream that contains 
a snapshot of relation R at particular time instant t 
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CQL Example 

•  Select Istream(*)  
From S [Rows Unbounded]  
Where S.A > 10 

•  Evaluation:  
–  Convert S to a relation by applying [Rows Unbounded] 
–  Evaluate predicate S.A > 10 
–  Convert results into a stream by applying Istream(*) 

•  What query is this equivalent to? 
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Plan Implementation 

•  A CQL query plan contains three components: 
–  Operators 
–  Queues 
–  Synopses 

•  Operators: filters, R-to-S, S-to-R, etc 
•  Queues: buffers that store intermediate outputs between 

operators 
–  Why is that needed? 

•  Synopses: current state of each operator 
–  Last timestamp of processed tuples in a join 
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Example of Physical Plan 

•  Select *  
From S1 [Rows 1000],  
         S2 [Range 2 Minutes]  
Where S1.A = S2.A  
    And S1.A > 10  
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8 Arasu et al.

Fig. 2. A simple query plan illustrating operators, queues, and synopses.

and therefore the select operator cannot be pushed below the seq-window
operator on S1.

The plan has four synopses, synopsis1–synopsis4. Each seq-window op-
erator maintains a synopsis so that it can generate “−” elements when tuples
expire from the sliding window. The binary-join operator maintains a syn-
opsis materializing each of its relational inputs for use in performing joins with
tuples on the opposite input, as described earlier. Since the select operator
does not need to maintain any state, it does not have a synopsis.

Note that the contents of synopsis1 and synopsis3 are similar (as are the
contents of synopsis2 and synopsis4), since both maintain a materialization
of the same window, but at slightly different positions of stream S1. Sect. 4.1
discusses how we eliminate such redundancy.

3.5 Query Plan Execution

When a query plan is executed, a scheduler selects operators in the plan to
execute in turn. The semantics of each operator depends only on the times-
tamps of the elements it processes, not on system or “wall-clock” time. Thus,
the order of execution has no effect on the data in the query result, although it
can affect other properties such as latency and resource utilization. Scheduling
is discussed further in Sect. 4.3.

Continuing with our example from the previous section, the seq-window
operator on S1, on being scheduled, reads stream elements from q1. Suppose
it reads element 〈s, τ, +〉. It inserts tuple s into synopsis1, and if the window



Encore: A Decade Later 
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S-Store 

•  Streaming system with transactional support 
•  Built on top of H-Store (!) 

•  Why build transactions on top of streams? 
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S-Store Architecture 
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S-Store Transactions 
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Conclusion 
•  Streaming data model 

–  Streams + relations 

•  Stream queries 
–  Extensions on top of SQL 

•  Applications 
–  Stocks, real-time apps, update machine learning models 

•  Issues: 
–  ACID 
–  Replication 
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