
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 16 - Stream Processing

Announcements

•  HW1 graded
–  Send staff an email if you have comments

•  Lecture plan for last 2 weeks of classes posted online
–  Next Tuesday will be the last class

•  No OH today

CSE 544 - Fall 2015 2

Course Outline

•  Data Models
•  Query Execution
•  Data Analytics (OLAP)
•  Transaction Processing (OLTP)
•  Recovery and Replication

•  Advanced Topics
–  Today: stream processing
–  Thursday: DBMS in the real world
–  Next Tuesday: NoSQL

CSE 544 - Fall 2015 3

CSE 544 - Fall 2015 4

References

•  Aurora: A New Model and Architecture for Data Stream
Management. Daniel Abadi et. al. VLDB Journal. 12(2). 2003

•  Additional references:
–  Chandrasekaran et al, “TelegraphCQ: Continuous Dataflow Processing for an

Uncertain World.” CIDR 2003.
–  The STREAM Group, “STREAM: The Stanford Stream Data Manager.” IEEE Data

Engineering Bulletin, March 2003.
–  Meehan et al, “S-Store: Streaming Meets Transaction Processing.” PVLDB 8(13),

2015.

CSE 544 - Fall 2015 5

Outline
•  Stream processing applications

–  Background
–  Examples
–  Requirements

•  Aurora system
–  Stream model and query model
–  Processing model
–  Operators
–  Query examples
–  Other features

•  STREAMS system
–  DSMS motivation
–  CQL
–  Query evaluation

Why data streams?

•  Data constantly being generated all the time
–  Trading transactions, sensors, phones

•  Real-time processing required
–  Update trade positions, people’s locations, etc
–  Cannot wait until data are ingested into warehouse

•  Too much data to store!
–  Airbus A350 generates 2.5Tb of data per day with 6000 sensors
–  New model in 2020 will capture 3x that amount

CSE 544 - Fall 2015 6

Why data streams?

•  Four Vs of big data:
– Volume
– Velocity
– Variety
– Veracity

CSE 544 - Fall 2015 7

Why data streams?

•  Four Vs of big data:
– Volume
– Velocity
– Variety
– Veracity

CSE 544 - Fall 2015 8

CSE 544 - Fall 2015 9

Stream Processing

Input streams:
measurements, data

Output streams: alerts,
anomalies, trends

Process streams:
filter, correlate,

aggregate

Data
source

Data
source

Data
source

Data
source

CSE 544 - Fall 2015 10

Application Domains

•  Network monitoring
–  Intrusion, fraud, anomaly detection, click streams

•  Financial services
–  Market feed processing, ticker failure detection

•  Sensor-based environment monitoring
–  Weather conditions, air quality, car traffic
–  Civil engineering, military applications, etc.

•  Medical applications
–  Patient monitoring, equipment tracking

•  Near real-time data analytics

CSE 544 - Fall 2015 11

Requirements

•  Input data is pushed continuously
–  Traditional DBMSs not designed for continuous loading or inserting of

individual data items
–  “DBMS-active, human passive” model

•  Users want to execute continuous queries
–  Traditional DBMSs have no direct support for such queries. Can use

triggers, but triggers do not scale

•  Low-latency processing
–  Need to see results in near real-time
–  Data is possibly high-volume and high-rate

CSE 544 - Fall 2015 12

Other Requirements

•  Distribution

•  Load management and load shedding

•  Approximate processing, approximate answers

•  Fault-tolerance and revision processing

•  Exploiting data archives

CSE 544 - Fall 2015 13

Outline
•  Stream processing applications

–  Examples
–  Requirements

•  Aurora system
–  Stream model and query model
–  Processing model
–  Operators
–  Query examples
–  Other features

•  STREAMS system
–  DSMS motivation
–  CQL
–  Query evaluation

CSE 544 - Fall 2015 14

header data

(timestamp, v1,...,vn)

●  Stream: append-only sequence of tuples
●  All tuples on a stream have same schema
●  Timestamp is used for QoS

Tuple:

Stream Data Model

15

Aurora node Input
streams

Output
streams

Sum Map

Union Avg

Join Max

Sum Min

Stream
Operator

●  Quality of service graphs
●  Connection points
●  Later added read/write ops
●  No query language (!)

Query Model

CSE 544 - Fall 2015 16

Aurora Operators

•  Order-agnostic
–  Filter
–  Map
–  Union

•  Order-sensitive
–  Aggregate
–  Join
–  BSort, Resample

•  Why do we need new operators?
–  Ops cannot block & cannot accumulate state that grows with input

CSE 544 - Fall 2015 17

Filter S

temp > 105

temp > 100

otherwise

(A,107) (B,101) (C,98)

Input tuples Output
tuples

Input schema:
(location, temp)

Filter Example

CSE 544 - Fall 2015 18

Filter S

temp > 105

temp > 100

otherwise

(A,107)

(B,101)

(C,98)

(A,107) (B,101) (C,98)

Input tuples Output
tuples

Input schema:
(location, temp)

Filter Example

CSE 544 - Fall 2015 19

Map S

new.location = old.location
new.temp_celcius = 5/9*(old.temp - 32)

(A,107) (B,101) (C,98)

Map Example

CSE 544 - Fall 2015 20

Map S
(A,107) (B,101) (C,98) (A,42) (B,38) (C,37)

new.location = old.location
new.temp_celcius = 5/9*(old.temp - 32)

Map Example

CSE 544 - Fall 2015 21

Union

S1

S2

S3

(A,107) (A,108)

(B,101)

(C,98) (C,95)

Union Example

CSE 544 - Fall 2015 22

Union

S1

S2

S3

(A,107) (B,101) (C,98) (C,95) (A,108)

(A,107) (A,108)

(B,101)

(C,98) (C,95)

Union Example

CSE 544 - Fall 2015 23

Agg
Operator parameters:
●  group by location
●  average temp,
●  order on time, window size 1 h, advance 1h

(1:00,A,74)
(1:00,B,65)

(1:35,A,76)
(1:34,B,65)

(2:05,A,72)

(2:03,B,63)

Output tuples

Input schema: (time, location, temp)
S Input tuples

Aggregate Example

CSE 544 - Fall 2015 24

Agg
Operator parameters:
●  group by location
●  average temp,
●  order on time, window size 1 h, advance 1h

(1:00,A,75) (1:00,B,65) (1:00,A,74)
(1:00,B,65)

(1:35,A,76)
(1:34,B,65)

(2:05,A,72)

(2:03,B,63)
S

Output tuples

Input schema: (time, location, temp)

Input tuples

Aggregate Example

CSE 544 - Fall 2015 25

Join

S

R

(1:00,C,74)

(1:00,A,0.3)

(1:35,A,76)

(1:34,C,0.4)

(2:05,B,72)

(2:03,A,0.2)

1:00,A,0.3) (1:35,A,76,

1:34,C,0.4) (1:00,C,74,

2:03,A,0.2) (1:35,A,76,

Input tuples Output tuples

Operator parameters:
●  S order on time, R order on time, window size 1h
●  predicate S.location = R.location

Join Example

CSE 544 - Fall 2015 26

Sample Query

•  Application: network intrusion detection

•  Schema of input stream
(src_ip,src_port,dst_ip,dst_port,time)

•  Query
–  Alert me if an IP address establishes more than 100 connections

per minute
–  and within 30 seconds of that event
–  the IP tries to connect to more than 10 distinct ports within a

minute

CSE 544 - Fall 2015 27

Processing Model

[Figure 3 from Abadi 03]

CSE 544 - Fall 2015 28

Additional Features

•  Load management
–  What happens when system is overloaded?

•  Fault-tolerance
–  What happens if a node fails?
–  What happens if the network fails?
–  What happens if input data is wrong?

•  Exploiting data archives
–  Historical queries, ad-hoc queries
–  Integrating push-based processing with pull-based

CSE 544 - Fall 2015 29

Outline
•  Stream processing applications

–  Examples
–  Requirements

•  Aurora system
–  Stream model and query model
–  Processing model
–  Operators
–  Query examples
–  Other features

•  STREAMS system
–  DSMS motivation
–  CQL
–  Query evaluation

30

System Model

User/Application

Stream Query
Processor

Register
Query

Results

Data Streams

31

New Approach for Data Streams

Scratch Space
(Memory and/or Disk)

Data
Stream
Management
System
(DSMS)

User/Application

Stream Query
Processor

Register
Query

Results

Data Streams

32

DBMS versus DSMS

•  Persistent relations

•  One-time queries

•  Random access

•  Access plan determined
by query processor and
physical DB design

•  “Unbounded” disk store

•  Transient streams (and
persistent relations)

•  Continuous queries

•  Sequential access

•  Unpredictable data arrival
and characteristics

•  Bounded main memory

CSE 544 - Fall 2015

33

Query Language & Semantics

•  Specifying queries over streams
–  SQL-like versus dataflow network of operators
–  Sliding windows as a query construct

•  Semantic issues
–  Blocking operators, e.g., aggregation, order-by
–  Streams as sets versus lists
–  Timestamping
–  (compare to Aurora)

CSE 544 - Fall 2015

Issues in Query Evaluation

•  Approximation

•  Adaptivity

•  Multiple queries

•  Distributed streams

CSE 544 - Fall 2015 34

35

Query Evaluation – Approximation
•  Why approximate?

–  Streams are coming too fast
–  Exact answer requires unbounded storage or significant

computational resources
–  Ad hoc queries reference history

•  Issues in approximation
–  Sliding windows, sampling, synopses, …
–  How is approximation controlled?
–  How is it understood by user?

•  Tradeoff between accuracy / efficiency / storage
•  A lot of work on streaming algorithms

36

Query Evaluation – Adaptivity

•  Why adaptivity?
–  Queries are long-running
–  Fluctuating stream arrival & data characteristics
–  Evolving query loads

•  Issues in adaptivity
–  Adaptive resource allocation (memory, computation)
–  Adaptive query execution plans

CSE 544 - Fall 2015

37

Query Evaluation – Multiple Queries

•  Possibly large number of continuous queries

•  Long-running

•  Shared resources

•  Multi-query optimization

CSE 544 - Fall 2015

38

Query Evaluation – Distributed Streams

1  Many physical streams but one logical stream
–  e.g., maintain top 100 visited pages at Yahoo

2  Correlate streams at distributed servers
–  e.g., network monitoring

3  Many streams controlled by a few servers
–  e.g., sensor networks

•  Issues
–  Move processing to streams, not streams to processor
–  Approximation-bandwidth tradeoff

CSE 544 - Fall 2015

39

STREAM Architecture

Input
Data Streams

Users issue
continuous
ad-hoc queries

Administrator can
monitor query execution
and adjust run-time
parameters

Applications
register
continuous queries

Output
Stream

π	

σ	

 σ	

X

X

Waiting Op

Ready Op

Running Op

Synopses Query Plans

40

STREAM Internals

•  Query plans: operators, synopses, queues

•  Memory management
–  Dynamic allocation to buffers, queues, synopses
–  Accuracy vs. memory tradeoff
–  Operators adapt gracefully to memory reallocation

•  Scheduler
–  Handles variable-rate input streams
–  Handles varying operator and query requirements

CSE 544 - Fall 2015

CQL: Data Models

•  Continuous Query Language

•  Data models: both data streams and relations
–  Streams: unbounded bag (multiset) of (s, t) pairs

•  s: tuple
•  t: timestamp of the arrival time of s

–  Relations: time-varying bags of tuples
•  R(t): bag of tuples at time t
•  Also called an instantaneous relation

CSE 544 - Fall 2015 41

CQL: Operators

•  Should be able to convert from relations to streams,
streams to relations, relations to relations

CSE 544 - Fall 2015 42

STREAM: The Stanford Data Stream Management System 3

Fig. 1. Data types and operator classes in abstract semantics.

• A relation-to-relation operator takes one or more relations as input and
produces a relation as output.

• A stream-to-relation operator takes a stream as input and produces a
relation as output.

• A relation-to-stream operator takes a relation as input and produces a
stream as output.

Stream-to-stream operators are absent—they are composed from operators of
the above three classes. These three classes are “black box” components of our
abstract semantics: the semantics does not depend on the exact operators in
these classes, but only on generic properties of each class. Figure 1 summarizes
our data types and operator classes.

A continuous query Q is a tree of operators belonging to the above classes.
The inputs of Q are the streams and relations that are input to the leaf
operators, and the output of Q is the output of the root operator. The output
is either a stream or a relation, depending on the class of the root operator.
At time τ , an operator of Q logically depends on its inputs up to τ : tuples of
Si with timestamps ≤ τ for each input stream Si, and instantaneous relations
Rj(τ ′), τ ′ ≤ τ , for each input relation Rj . The operator produces new outputs
corresponding to τ : tuples of S with timestamp τ if the output is a stream S,
or instantaneous relation R(τ) if the output is a relation R. The behavior of
query Q is derived from the behavior of its operators in the usual inductive
fashion.

2.2 Concrete Language

Our concrete declarative query language, CQL (for Continuous Query Lan-
guage), is defined by instantiating the operators of our abstract semantics.
Syntactically, CQL is a relatively minor extension to SQL.

Relation-to-Relation Operators in CQL

CQL uses SQL constructs to express its relation-to-relation operators, and
much of the data manipulation in a typical CQL query is performed using
these constructs, exploiting the rich expressive power of SQL.

Stream-to-Relation Operators

•  Tuple-based sliding window
–  [Rows N] : returns the N tuples from stream with largest

timestamps from a relation
–  Example: R(t) [Rows N]
–  [Rows Unbounded] means all return tuples from relation

•  Time-based sliding window
–  [Range w] : returns all tuples from a relation with timestamps

between t and w
–  Example: R(t) [Range w]

•  Partitioned sliding window
–  {A1, A2, …, Ak} : divide stream into k different substreams where

each Ai
 is true

CSE 544 - Fall 2015 43

Relation-to-Stream Operators

•  Istream (insert stream) : returns a stream from relation R,
with a tuple generated whenever a tuple is inserted into R

•  Dstream (delete stream) : returns a stream from relation
R, with a tuple generated whenever at a tuple is deleted
from R

•  Rstream (relation stream) : returns a stream that contains
a snapshot of relation R at particular time instant t

CSE 544 - Fall 2015 44

CQL Example

•  Select Istream(*)
From S [Rows Unbounded]
Where S.A > 10

•  Evaluation:
–  Convert S to a relation by applying [Rows Unbounded]
–  Evaluate predicate S.A > 10
–  Convert results into a stream by applying Istream(*)

•  What query is this equivalent to?

CSE 544 - Fall 2015 45

Plan Implementation

•  A CQL query plan contains three components:
–  Operators
–  Queues
–  Synopses

•  Operators: filters, R-to-S, S-to-R, etc
•  Queues: buffers that store intermediate outputs between

operators
–  Why is that needed?

•  Synopses: current state of each operator
–  Last timestamp of processed tuples in a join

CSE 544 - Fall 2015 46

Example of Physical Plan

•  Select *
From S1 [Rows 1000],
 S2 [Range 2 Minutes]
Where S1.A = S2.A
 And S1.A > 10

CSE 544 - Fall 2015 47

8 Arasu et al.

Fig. 2. A simple query plan illustrating operators, queues, and synopses.

and therefore the select operator cannot be pushed below the seq-window
operator on S1.

The plan has four synopses, synopsis1–synopsis4. Each seq-window op-
erator maintains a synopsis so that it can generate “−” elements when tuples
expire from the sliding window. The binary-join operator maintains a syn-
opsis materializing each of its relational inputs for use in performing joins with
tuples on the opposite input, as described earlier. Since the select operator
does not need to maintain any state, it does not have a synopsis.

Note that the contents of synopsis1 and synopsis3 are similar (as are the
contents of synopsis2 and synopsis4), since both maintain a materialization
of the same window, but at slightly different positions of stream S1. Sect. 4.1
discusses how we eliminate such redundancy.

3.5 Query Plan Execution

When a query plan is executed, a scheduler selects operators in the plan to
execute in turn. The semantics of each operator depends only on the times-
tamps of the elements it processes, not on system or “wall-clock” time. Thus,
the order of execution has no effect on the data in the query result, although it
can affect other properties such as latency and resource utilization. Scheduling
is discussed further in Sect. 4.3.

Continuing with our example from the previous section, the seq-window
operator on S1, on being scheduled, reads stream elements from q1. Suppose
it reads element 〈s, τ, +〉. It inserts tuple s into synopsis1, and if the window

Encore: A Decade Later

CSE 544 - Fall 2015 48

S-Store

•  Streaming system with transactional support
•  Built on top of H-Store (!)

•  Why build transactions on top of streams?

CSE 544 - Fall 2015 49

S-Store Architecture

50 CSE 544 - Fall 2015

S-Store Transactions

CSE 544 - Fall 2015 51

Conclusion
•  Streaming data model

–  Streams + relations

•  Stream queries
–  Extensions on top of SQL

•  Applications
–  Stocks, real-time apps, update machine learning models

•  Issues:
–  ACID
–  Replication

CSE 544 - Fall 2015 52

