Lecture 16 - Stream Processing
Announcements

• HW1 graded
 – Send staff an email if you have comments

• Lecture plan for last 2 weeks of classes posted online
 – Next Tuesday will be the last class

• No OH today
Course Outline

• Data Models
• Query Execution
• Data Analytics (OLAP)
• Transaction Processing (OLTP)
• Recovery and Replication

• Advanced Topics
 – Today: stream processing
 – Thursday: DBMS in the real world
 – Next Tuesday: NoSQL
References

• **Aurora: A New Model and Architecture for Data Stream Management.** Daniel Abadi et. al. VLDB Journal. 12(2). 2003

• Additional references:
Outline

• **Stream processing applications**
 – Background
 – Examples
 – Requirements

• **Aurora system**
 – Stream model and query model
 – Processing model
 – Operators
 – Query examples
 – Other features

• **STREAMS system**
 – DSMS motivation
 – CQL
 – Query evaluation
Why data streams?

- Data constantly being generated all the time
 - Trading transactions, sensors, phones

- Real-time processing required
 - Update trade positions, people’s locations, etc
 - Cannot wait until data are ingested into warehouse

- Too much data to store!
 - Airbus A350 generates 2.5Tb of data per day with 6000 sensors
 - New model in 2020 will capture 3x that amount
Why data streams?

- Four Vs of big data:
 - Volume
 - Velocity
 - Variety
 - Veracity
Why data streams?

• Four Vs of big data:
 – Volume
 – Velocity
 – Variety
 – Veracity
Stream Processing

Input streams: measurements, data

Process streams: filter, correlate, aggregate

Output streams: alerts, anomalies, trends
Application Domains

• **Network monitoring**
 – Intrusion, fraud, anomaly detection, click streams

• **Financial services**
 – Market feed processing, ticker failure detection

• **Sensor-based environment monitoring**
 – Weather conditions, air quality, car traffic
 – Civil engineering, military applications, etc.

• **Medical applications**
 – Patient monitoring, equipment tracking

• **Near real-time data analytics**
Requirements

• **Input data is pushed continuously**
 – Traditional DBMSs not designed for continuous loading or inserting of individual data items
 – “DBMS-active, human passive” model

• **Users want to execute continuous queries**
 – Traditional DBMSs have no direct support for such queries. Can use triggers, but triggers do not scale

• **Low-latency processing**
 – Need to see results in near real-time
 – Data is possibly high-volume and high-rate
Other Requirements

• Distribution

• Load management and load shedding

• Approximate processing, approximate answers

• Fault-tolerance and revision processing

• Exploiting data archives
Outline

• **Stream processing applications**
 – Examples
 – Requirements

• **Aurora system**
 – Stream model and query model
 – Processing model
 – Operators
 – Query examples
 – Other features

• **STREAMS system**
 – DSMS motivation
 – CQL
 – Query evaluation
Stream Data Model

Tuple: \((\text{timestamp}, v_1, \ldots, v_n)\)

- **Stream**: append-only sequence of tuples
- All tuples on a stream have same **schema**
- Timestamp is used for QoS
Aurora node

Input streams

Stream

Operator

Aurora node

Output streams

Sum → Map

Join → Max

Union → Avg

Sum → Min

Query Model

- Quality of service graphs
- Connection points
- Later added read/write ops
- No query language (!)
Aurora Operators

• **Order-agnostic**
 – Filter
 – Map
 – Union

• **Order-sensitive**
 – Aggregate
 – Join
 – BSort, Resample

• **Why do we need new operators?**
 – Ops cannot block & cannot accumulate state that grows with input
Filter Example

Input tuples

Input schema:
(location, temp)

(C,98) (B,101) (A,107)

S

Filter

Output tuples

temp > 105

temp > 100

otherwise
Filter Example

Input tuples

Input schema:
(location, temp)

Output tuples

Filter

temp > 105
(A,107)
temp > 100
(B,101)
otherwise
(C,98)

S

(A,107)
Map Example

new.location = old.location
new.temp_celcius = \frac{5}{9}(old.temp - 32)
Map Example

new.location = old.location
new.temp_celsius = 5/9*(old.temp - 32)
Union Example

S_1 \rightarrow \text{Union} \
S_2 \rightarrow \text{Union} \
S_3 \rightarrow \text{Union} \\
(A,108) \quad (A,107) \\
(B,101) \\
(C,95) \quad (C,98)
Union Example
Aggregate Example

Input tuples:
- (1:00, A, 74)
- (1:35, A, 76)
- (2:05, A, 72)
- (2:03, B, 63)
- (1:34, B, 65)
- (1:00, B, 65)
- (1:00, A, 74)

Input schema: (time, location, temp)

Output tuples:

Operator parameters:
- group by location
- average temp,
- order on time, window size 1 h, advance 1 h
Aggregate Example

Input tuples:
- (2:03, B, 63)
- (2:05, A, 72)
- (1:35, A, 76)
- (1:34, B, 65)
- (1:00, B, 65)
- (1:00, A, 74)

Input schema: (time, location, temp)

Output tuples:
- (1:00, B, 65)
- (1:00, A, 75)

Operator parameters:
- group by location
- average temp,
- order on time, window size 1 h, advance 1h
Join Example

Input tuples

S

(2:05,B,72)
(1:35,A,76)
(1:00,C,74)

R

(1:00,A,0.3)
(1:34,C,0.4)
(2:03,A,0.2)

Output tuples

(1:35,A,76, 1:00,A,0.3)
(1:00,C,74, 1:34,C,0.4)
(1:35,A,76, 2:03,A,0.2)

Operator parameters:
- S order on time, R order on time, window size 1h
- predicate S.location = R.location
Sample Query

- **Application**: network intrusion detection

- **Schema of input stream**

 \[(\text{src}_\text{ip}, \text{src}_\text{port}, \text{dst}_\text{ip}, \text{dst}_\text{port}, \text{time})\]

- **Query**

 - Alert me if an IP address establishes more than 100 connections per minute
 - and within 30 seconds of that event
 - the IP tries to connect to more than 10 distinct ports within a minute
Processing Model

[Figure 3 from Abadi 03]
Additional Features

• **Load management**
 – What happens when system is overloaded?

• **Fault-tolerance**
 – What happens if a node fails?
 – What happens if the network fails?
 – What happens if input data is wrong?

• **Exploiting data archives**
 – Historical queries, ad-hoc queries
 – Integrating push-based processing with pull-based
Outline

• **Stream processing applications**
 – Examples
 – Requirements

• **Aurora system**
 – Stream model and query model
 – Processing model
 – Operators
 – Query examples
 – Other features

• **STREAMS system**
 – DSMS motivation
 – CQL
 – Query evaluation
System Model

User/Application

Register Query

Stream Query Processor

Results

Data Streams
New Approach for Data Streams

Data Stream Management System (DSMS)

User/Application

Stream Query Processor

Register Query

Results

Data Streams

Scratch Space (Memory and/or Disk)
DBMS versus DSMS

- Persistent relations
- One-time queries
- Random access
- Access plan determined by query processor and physical DB design
- “Unbounded” disk store

- Transient streams (and persistent relations)
- Continuous queries
- Sequential access
- Unpredictable data arrival and characteristics
- Bounded main memory
Query Language & Semantics

• Specifying queries over streams
 – SQL-like versus dataflow network of operators
 – Sliding windows as a query construct

• Semantic issues
 – Blocking operators, e.g., aggregation, order-by
 – Streams as sets versus lists
 – Timestamping
 – (compare to Aurora)
Issues in Query Evaluation

• Approximation
• Adaptivity
• Multiple queries
• Distributed streams
Query Evaluation – Approximation

• Why approximate?
 – Streams are coming too fast
 – Exact answer requires unbounded storage or significant computational resources
 – Ad hoc queries reference history

• Issues in approximation
 – Sliding windows, sampling, synopses, …
 – How is approximation controlled?
 – How is it understood by user?

• Tradeoff between accuracy / efficiency / storage
• A lot of work on streaming algorithms
Query Evaluation – Adaptivity

• Why adaptivity?
 – Queries are long-running
 – Fluctuating stream arrival & data characteristics
 – Evolving query loads

• Issues in adaptivity
 – Adaptive resource allocation (memory, computation)
 – Adaptive query execution plans
Query Evaluation – Multiple Queries

- Possibly large number of continuous queries
- Long-running
- Shared resources
- Multi-query optimization
Query Evaluation – Distributed Streams

1 Many physical streams but one logical stream
 – e.g., maintain top 100 visited pages at Yahoo

2 Correlate streams at distributed servers
 – e.g., network monitoring

3 Many streams controlled by a few servers
 – e.g., sensor networks

• Issues
 – Move processing to streams, not streams to processor
 – Approximation-bandwidth tradeoff
STREAM Architecture

- Users issue continuous ad-hoc queries
- Administrator can monitor query execution and adjust run-time parameters

Applications register continuous queries

Waiting Op
Ready Op
Running Op

Synopses

Query Plans

Output Stream

Input Data Streams
STREAM Internals

• Query plans: operators, synopses, queues

• Memory management
 – Dynamic allocation to buffers, queues, synopses
 – Accuracy vs. memory tradeoff
 – Operators adapt gracefully to memory reallocation

• Scheduler
 – Handles variable-rate input streams
 – Handles varying operator and query requirements
CQL: Data Models

- Continuous Query Language

- Data models: **both** data streams and relations
 - Streams: unbounded bag (multiset) of (s, t) pairs
 - s: tuple
 - t: timestamp of the arrival time of s
 - Relations: time-varying bags of tuples
 - R(t): bag of tuples at time t
 - Also called an **instantaneous relation**
CQL: Operators

- Should be able to convert from relations to streams, streams to relations, relations to relations
Stream-to-Relation Operators

- **Tuple-based sliding window**
 - [Rows N] : returns the N tuples from stream with largest timestamps from a relation
 - Example: R(t) [Rows N]
 - [Rows Unbounded] means all return tuples from relation

- **Time-based sliding window**
 - [Range w] : returns all tuples from a relation with timestamps between t and w
 - Example: R(t) [Range w]

- **Partitioned sliding window**
 - \{A_1, A_2, …, A_k\} : divide stream into k different substreams where each A_i is true
Relation-to-Stream Operators

- \textbf{Istream} (insert stream) : returns a stream from relation R, with a tuple generated whenever a tuple is inserted into R

- \textbf{Dstream} (delete stream) : returns a stream from relation R, with a tuple generated whenever a tuple is deleted from R

- \textbf{Rstream} (relation stream) : returns a stream that contains a snapshot of relation R at particular time instant t
CQL Example

• Select Istream(*)
 From S [Rows Unbounded]
 Where S.A > 10

• Evaluation:
 – Convert S to a relation by applying [Rows Unbounded]
 – Evaluate predicate S.A > 10
 – Convert results into a stream by applying Istream(*)

• What query is this equivalent to?
Plan Implementation

• A CQL query plan contains three components:
 – Operators
 – Queues
 – Synopses

• Operators: filters, R-to-S, S-to-R, etc
• Queues: buffers that store intermediate outputs between operators
 – Why is that needed?
• Synopses: current state of each operator
 – Last timestamp of processed tuples in a join
Example of Physical Plan

- Select *
 From S1 [Rows 1000],
 S2 [Range 2 Minutes]
Where S1.A = S2.A
And S1.A > 10
Encore: A Decade Later
S-Store

- Streaming system with transactional support
- Built on top of H-Store (!)

- Why build transactions on top of streams?
S-Store Architecture

Client

S-Store Engine

Partition Engine (PE)

Execution Engine (EE)

Stored Procedure (Java) → Stored Procedure (Java)

Query (SQL) → Query (SQL) → Query (SQL)

Query (SQL) → Query (SQL) → Query (SQL)

Query (SQL) → Query (SQL)

tables

windows

In-memory Partition Data

transaction management
query planning
statistics management
input management
workflow management
PE triggers

storage management
query processing
window management
EE triggers

table state
window state
stream state

CSE 544 - Fall 2015
S-Store Transactions

... batch2 batch1

SP₁

TE₁,₁

TE₁,₂

TE₂,₁

TE₂,₂

window

SP₂

Declaration

Execution
Conclusion

• Streaming data model
 – Streams + relations

• Stream queries
 – Extensions on top of SQL

• Applications
 – Stocks, real-time apps, update machine learning models

• Issues:
 – ACID
 – Replication