CSE 544

Principles of Database
Management Systems

Alvin Cheung
Fall 2015
Lecture 16 - Stream Processing

Announcements

« HW1 graded

— Send staff an email if you have comments

« Lecture plan for last 2 weeks of classes posted online
— Next Tuesday will be the last class

 No OH today

CSE 544 - Fall 2015

Course Outline

Data Models

Query Execution

Data Analytics (OLAP)
Transaction Processing (OLTP)
Recovery and Replication

Advanced Topics

— Today: stream processing
— Thursday: DBMS in the real world
— Next Tuesday: NoSQL

CSE 544 - Fall 2015

References

« Aurora: A New Model and Architecture for Data Stream
Management. Daniel Abadi et. al. VLDB Journal. 12(2). 2003

« Additional references:
— Chandrasekaran et al, “TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World.” CIDR 2003.
— The STREAM Group, “STREAM: The Stanford Stream Data Manager.” IEEE Data
Engineering Bulletin, March 2003.
— Meehan et al, “S-Store: Streaming Meets Transaction Processing.” PVLDB 8(13),
2015.

CSE 544 - Fall 2015 4

Outline

« Stream processing applications
— Background
— Examples
— Requirements

 Aurora system
— Stream model and query model
— Processing model
— Operators
— Query examples
— Other features

« STREAMS system
— DSMS motivation
— CQL
— Query evaluation

CSE 544 - Fall 2015

Why data streams?

« Data constantly being generated all the time
— Trading transactions, sensors, phones

* Real-time processing required
— Update trade positions, people’s locations, etc
— Cannot wait until data are ingested into warehouse

« Too much data to store!
— Airbus A350 generates 2.5Tb of data per day with 6000 sensors
— New model in 2020 will capture 3x that amount

CSE 544 - Fall 2015 6

Why data streams?

* Four Vs of big data:
— Volume
— Velocity
— Variety
— Veracity

CSE 544 - Fall 2015

Why data streams?

* Four Vs of big data:
— Volume
— Velocity
— Variety
— Veracity

CSE 544 - Fall 2015

Stream Processing

Data _ Data
Input streams:
source source
measurements, data
Data Data
source source

Process streams:
filter, correlate,
aggregate

/N

Output streams: alerts,
anomalies, trends

CSE 544 - Fall 2015 9

Application Domains

Network monitoring
— Intrusion, fraud, anomaly detection, click streams

Financial services
— Market feed processing, ticker failure detection

Sensor-based environment monitoring
— Weather conditions, air quality, car traffic
— Civil engineering, military applications, etc.

Medical applications
— Patient monitoring, equipment tracking

Near real-time data analytics
CSE 544 - Fall 2015

10

Requirements

Input data is pushed continuously

— Traditional DBMSs not designed for continuous loading or inserting of
individual data items

— “DBMS-active, human passive” model

Users want to execute continuous queries

— Traditional DBMSs have no direct support for such queries. Can use
triggers, but triggers do not scale

Low-latency processing
— Need to see results in near real-time
— Data is possibly high-volume and high-rate

CSE 544 - Fall 2015 11

Other Requirements

Distribution

Load management and load shedding
Approximate processing, approximate answers
Fault-tolerance and revision processing

Exploiting data archives

CSE 544 - Fall 2015

12

Outline

Stream processing applications

— Examples
— Requirements

Aurora system

— Stream model and query model

— Processing model
— Operators

— Query examples
— Other features

STREAMS system
— DSMS motivation
— CAQL

— Query evaluation

CSE 544 - Fall 2015

13

Stream Data Model

header data

N
4 N N
Tuple: (timestamp, v r V)

1, [] [] [] n

. Stream: append-only sequence of tuples
. All tuples on a stream have same schema
. Timestamp is used for QoS

CSE 544 - Fall 2015

14

Query Model

Input Aurora node — Output
streams streams
O O O
o T Sum L, Map CH Join |, rpp| Max oy | 288
00O
* L8 Union Av
O OO Tl Ll g
/ Sump @ Min 4 OO >
Stream / . Quality of service graphs

Operator . Connection points
. Later added read/write ops
. No query language (!)

15

Aurora Operators

« QOrder-agnostic
— Filter
— Map
— Union

e Order-sensitive
— Aggregate
— Join
— BSort, Resample

 Why do we need new operators?
— Ops cannot block & cannot accumulate state that grows with input

CSE 544 - Fall 2015 16

Filter Example

Input tuples

Input schema:
(location, temp)

(C,98) |[(B,101)

(A,107)

CSE 544 - Fall 2015

1 Filter

Output
tuples

temp > 105

temp > 100)

otherwise

17

Filter Example

Output
Input tuples 3
tuples
Input schema:
(location, temp) temp > 105
(A,107)
(C.,98) ||(B,101)] [(A,107) _ temp > 100
-| Filter = (B.101)
otherwise (C.98)

CSE 544 - Fall 2015

Map Example

(C,98) ||(B,101)| |(A,107)

1 Map

new.location = old.location
new.temp_celcius = 5/9*(old.temp - 32)

CSE 544 - Fall 2015

Map Example

(C,98) ||(B,101)| |(A,107) (C,37)]| (B,38) || (A,42)

1 Map

new.location = old.location
new.temp_celcius = 5/9*(old.temp - 32)

CSE 544 - Fall 2015

Union Example

(A,108)

(A,107)

(B,101)

(C,95)

(C,98)

Union

CSE 544 - Fall 2015

21

Union Example

(A,108)

(A,107)

(B,101)

(C,95)

(C,98)

Union

(A,108)

(C,95)

(C,98)

(B,101)

(A,107)

CSE 544 - Fall 2015

22

®

Input tuples

(2:03,B,63)

(2:05,A,72)

(1:35,A,76)

(1:34,B,65)

(1:00,B,65)

(1:00,A,74)

Aggregate Example

Input schema: (time, location, temp)

Output tuples

AgQ
Operator parameters:
. group by location
. average temp,
. order on time, window size 1 h, advance 1h

CSE 544 - Fall 2015

23

”]

Input tuples

(2:03,B,63)

(2:05,A,72)

(1:35,A,76)

(1:34,B,65)

(1:00,B,65)

(1:00,A,74)

Aggregate Example

Input schema: (time, location, temp)

Output tuples

(1:00,B,65) || (1:00,A,75)

AgQ
Operator parameters:
. group by location
. average temp,
. order on time, window size 1 h, advance 1h

CSE 544 - Fall 2015

24

Join Example

Input tuples Output tuples
(2:05,B,72) (1:35,A,76, | 1:00,A,0.3)
(1:35,A,76) (1:00,C,74, | 1:34,C,0.4)
(1:00,C,74)

_ (1:35,A,76, | 2:03,A,0.2)
Join
(1:00,A,0.3)
. Operator parameters:
(1:34.€,0.4) . S order on time, R order on time, window size 1h
(2:03,A,0.2) . predicate S.location = R.location

CSE 544 - Fall 2015 25

Sample Query

« Application: network intrusion detection

« Schema of input stream
(src 1p,src port,dst 1ip,dst port, time)

* Query

— Alert me if an IP address establishes more than 100 connections
per minute

— and within 30 seconds of that event

— the IP tries to connect to more than 10 distinct ports within a
minute

CSE 544 - Fall 2015 26

Processing Model

mpml outputs
Storage
L SEB:

Q,—(TT=0- | |

..

| Q= |
: : ' Scheduler =
| @ —o=- | -
| Buffer manager :
: ; Box Processors
ristent Sfom'g Catalogs
| Q=D | =
i : i Shedder | Monitor
Q= J |

Lk L ———— |

[Figure 3 from Abadi 03]

CSE 544 - Fall 2015

27

Additional Features

 Load management

— What happens when system is overloaded?
* Fault-tolerance

— What happens if a node fails?

— What happens if the network fails?

— What happens if input data is wrong?
 Exploiting data archives

— Historical queries, ad-hoc queries
— Integrating push-based processing with pull-based

CSE 544 - Fall 2015

28

Outline

Stream processing applications

— Examples
— Requirements

Aurora system

— Stream model and query model

— Processing model
— Operators

— Query examples
— Other features

STREAMS system
— DSMS motivation
— CAQL

— Query evaluation

CSE 544 - Fall 2015

29

System Model

User/Application
A

'\

Register Results

Query Iy

Data Streams

v L

Stream Query
Processor

A

v
—

30

New Approach for Data Streams

.. User/Application |
Register Results
Query
_ ' Data
Stream Query
Processor
Data Streams System

(DSMS)

Scratch Space
i (Memory and/or Disk)

31

DBMS versus DSMS

Persistent relations * Transient streams (and
persistent relations)

One-time queries » Continuous queries
Random access * Sequential access
Access plan determined * Unpredictable data arrival
by query processor and and characteristics

physical DB design « Bounded main memory

“Unbounded” disk store

CSE 544 - Fall 2015 32

Query Language & Semantics

« Specifying queries over streams
— SQL-like versus dataflow network of operators
— Sliding windows as a query construct

« Semantic issues
— Blocking operators, e.g., aggregation, order-by
— Streams as sets versus lists
— Timestamping
— (compare to Aurora)

CSE 544 - Fall 2015

Issues in Query Evaluation

* Approximation
« Adaptivity
* Multiple queries

e Distributed streams

CSE 544 - Fall 2015

34

Query Evaluation — Approximation

« Why approximate?
— Streams are coming too fast

— Exact answer requires unbounded storage or significant
computational resources

— Ad hoc queries reference history

* |ssues in approximation
— Sliding windows, sampling, synopses, ...
— How is approximation controlled?
— How is it understood by user?

« Tradeoff between accuracy / efficiency / storage
* A lot of work on streaming algorithms

35

Query Evaluation — Adaptivity

« Why adaptivity?
— Queries are long-running
— Fluctuating stream arrival & data characteristics
— Evolving query loads

* Issues in adaptivity
— Adaptive resource allocation (memory, computation)
— Adaptive query execution plans

CSE 544 - Fall 2015

36

Query Evaluation — Multiple Queries

« Possibly large number of continuous queries
* Long-running
« Shared resources

* Multi-query optimization

CSE 544 - Fall 2015

37

Query Evaluation — Distributed Streams

1 Many physical streams but one logical stream
— e.g., maintain top 100 visited pages at Yahoo

2 Correlate streams at distributed servers
— e.g., network monitoring

3 Many streams controlled by a few servers
— e.g., sensor networks

* Issues
— Move processing to streams, not streams to processor
— Approximation-bandwidth tradeoff

CSE 544 - Fall 2015 38

STREAM Architecture

= 11— [
Output Vi \

O Synopses Query Plans Stream Applications
Running Op register

%@ :O O = ‘ continuous queries
g '
® Waiting Op ‘ ‘ Users issue
ﬁ continuous
)'(ad-hoc queries
G- o=l =

\I\
1
1 I 1 1)
Input o — - = Adm_ltnlstrator can .
monitor query execution
Data Streams = = S — and adjust run-time
I I I I parameters

39

STREAM Internals

« Query plans: operators, synopses, queues

 Memory management
— Dynamic allocation to buffers, queues, synopses
— Accuracy vs. memory tradeoff
— Operators adapt gracefully to memory reallocation

« Scheduler
— Handles variable-rate input streams
— Handles varying operator and query requirements

CSE 544 - Fall 2015

40

CQL: Data Models

« Continuous Query Language

« Data models: both data streams and relations
— Streams: unbounded bag (multiset) of (s, t) pairs
« s:tuple
« t: timestamp of the arrival time of s
— Relations: time-varying bags of tuples
* R(t): bag of tuples at time t
» Also called an instantaneous relation

CSE 544 - Fall 2015

41

CQL: Operators

 Should be able to convert from relations to streams,
streams to relations, relations to relations

relation-to-stream))
relation-to-relation

@.

stream-to-relation

CSE 544 - Fall 2015

42

Stream-to-Relation Operators

* Tuple-based sliding window

— [Rows N] : returns the N tuples from stream with largest
timestamps from a relation

— Example: R(t) [Rows N]
— [Rows Unbounded] means all return tuples from relation
* Time-based sliding window

— [Range w] : returns all tuples from a relation with timestamps
between t and w

— Example: R(t) [Range w]
« Partitioned sliding window

— {A, A,, ..., A} : divide stream into k different substreams where
each A, is true

CSE 544 - Fall 2015 43

Relation-to-Stream Operators

 Istream (insert stream) : returns a stream from relation R,
with a tuple generated whenever a tuple is inserted into R

« Dstream (delete stream) : returns a stream from relation
R, with a tuple generated whenever at a tuple is deleted

from R

* Rstream (relation stream) : returns a stream that contains
a snapshot of relation R at particular time instant t

CSE 544 - Fall 2015 44

CQL Example

Select Istream(*)
From S [Rows Unbounded]
Where S.A> 10

Evaluation:

— Convert S to a relation by applying [Rows Unbounded]
— Evaluate predicate S.A > 10

— Convert results into a stream by applying Istream(*)

What query is this equivalent to?

CSE 544 - Fall 2015

45

Plan Implementation

« A CQL query plan contains three components:
— Operators
— Queues
— Synopses

« Operators: filters, R-to-S, S-to-R, etc

« Queues: buffers that store intermediate outputs between
operators
— Why is that needed?

« Synopses: current state of each operator
— Last timestamp of processed tuples in a join

CSE 544 - Fall 2015 46

Example of Physical Plan

¢ Select”
From S1 [Rows 1000], a
S2 [Range 2 Minutes]
Where S1.A = S2.A
And S1.A>10

CSE 544 - Fall 2015

47

Encore: A Decade Later

CSE 544 - Fall 2015

48

S-Store

« Streaming system with transactional support
 Built on top of H-Store (!)

« Why build transactions on top of streams?

CSE 544 - Fall 2015

49

S-Store Architecture

Client
A v N
} 1
| 1
[} T
SE'Store Eng“?e transaction management
| 1 .
! : Partition query planmng
/ : Y% . _J | statisticsmanagement
Stored Procedure (Java) |~™> """ ~">| Stored Procedure (Java) Engine input management
H C) A A v (PE) workflow management
\ — : ; E ; E PE triggers
| 1 | 1 Il —
1 (| I [I —
v ! M v ¥ E v E v Execution storage management
Query s Query B Query Query N Query N Query Engine _ query processing
(saL) (saL) (sav) (sav) (sav) (sav) (EE) window management
EE triggers
Z"x)
In-memory table state
C J— Partition window state
l Data stream state
o e —
i

CSE 544 - Fall 2015 50

S-Store Transactions

... batch2 batchl
> > —>
SP, SP,
Declaration ,', S N
Execution) .
K N P 'y
TE1,1 TEl’2 TEZ'1 TEZ'2
N [TTT] /
window

CSE 544 - Fall 2015 51

Conclusion

« Streaming data model
— Streams + relations

« Stream queries
— Extensions on top of SQL

* Applications
— Stocks, real-time apps, update machine learning models

e |ssues:
— ACID
— Replication
CSE 544 - Fall 2015

52

