CSE 544

Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 13 - Transactions: recovery

Announcements

« HW3 is due next Thursday

* Next: Focus on your projects! Only 5 weeks left
— Make a detailed plan of what you want to accomplish each week

— Milestone reports are due next week (see website for
instructions)

— Poster presentations on Tuesday Dec 15t
— Final reports due on Friday Dec18th

CSE 544 - Fall 2015 2

References

« Concurrency control and recovery.

Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

 Database management systems.

Ramakrishnan and Gehrke.
Third Ed. Chapters 16 and 18.

CSE 544 - Fall 2015 3

Outline

 Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

* Review of buffer manager and its policies

 Write-ahead log

 ARIES method for failure recovery

CSE 544 - Fall 2015

ACID Properties

tomicity: Either all changes performed by transaction
OCCUr or none occurs

onsistency: A transaction as a whole does not violate
iIntegrity constraints

solation: Transactions appear to execute one after the
other in sequence

urability: If a transaction commits, its changes will
survive failures

CSE 544 - Fall 2015)

What Could Go Wrong?

Concurrent operations

— That’s what we discussed last time (atomicity and isolation
properties)

Failures can occur at any time
— Today (isolation and durability properties)

CSE 544 - Fall 2015

Problem lllustration

Client 1:
START TRANSACTION
INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product

WHERE price <= 0.99

| Crash !

DELETE Product
WHERE price <=0.99
COMMIT

What do we do now?

CSE 544 - Fall 2015 7

Handling Failures

* Types of failures
— Transaction failure
— System failure
— Media failure -> we will not talk about this now

* Required capability: undo and redo

« Challenge: buffer manager
— Changes performed in memory
— Changes written to disk only from time to time

CSE 544 - Fall 2015

Impact of Buffer Manager

Page request from higher-level code

Buffer pool

Disk page Main

memory

Free frame—

1 page corresponds
to 1 disk block

CSE 544 - Fall 2015 9

Disk

Primitive Operations

READ(X,t)

— copy value of data item X to transaction local variable t
WRITE(X,t)

— copy transaction local variable t to data item X

INPUT(X)

— read page containing data item X to memory buffer

OUTPUT(X)

— write page containing data item X to disk

CSE 544 - Fall 2015 10

READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction

Buffer pool

Action t

INPUT(A)

Mem A

READ(A,t)

t:=t*2

WRITE(A 1)

INPUT(B)

READ(B, 1)

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction

Buffer pool

Action t

INPUT(A)

READ(A,t)

t:=t*2

WRITE(A 1)

INPUT(B)

READ(B, 1)

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— N —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A 1)
INPUT(B)
READ(B, 1)
t:=t*2
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B) 13

READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B)
READ(B, 1)
t:=t*2
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B) 14

READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1)
t:=t*2
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B) 15

READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B) l6

READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A)
OUTPUT(B) 17

READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 18

READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
4 A A - R
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 |°

Buffer Manager Policies

STEAL or NO-STEAL

— Can an update made by an uncommitted transaction overwrite the most
recent committed value of a data item on disk?

FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk before the
transaction commits?

Easiest for recovery: NO-STEAL/FORCE

Highest performance: STEAL/NO-FORCE

CSE 544 - Fall 2015 20

Outline

 Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

* Review of buffer manager and its policies

 Write-ahead log

 ARIES method for failure recovery

CSE 544 - Fall 2015

21

Solution: Use a Log

 Log: append-only file containing log records
« Enables the use of STEAL and NO-FORCE
* For every update, commit, or abort operation

— Write a log record
— Multiple transactions run concurrently, log records are interleaved
» After a system crash, use log to:

— Redo transactions that did commit
— Undo other transactions that didn’'t commit

CSE 544 - Fall 2015 22

Write-Ahead Log

* All log records pertaining to a page are written to disk
before the page is overwritten on disk

 All log records for transaction are written to disk before
the transaction is considered committed

— Why is this faster than FORCE policy?

« Committed transaction: transactions whose commit log
record has been written to disk

CSE 544 - Fall 2015 23

Log Granularity

Two basic types of log records for update operations

* Physical log records
— Position on a particular page where update occurred
— Both before and after image for undo/redo logs
— Benefits: Idempotent & updates are fast to redo/undo

* Logical log records

— Record only high-level information about the operation

— Benefit: Smaller log

— BUT difficult to implement because crashes can occur in the middle of
an operation

CSE 544 - Fall 2015 24

Granularity in ARIES

* Physiological logging
— Log records refer to a single page
— But record logical operation within the page

» Page-oriented logging for REDO
— Necessary since can crash in middle of complex operation
» Logical logging for UNDO

— Enables tuple-level locking!

— Must do logical undo because ARIES will only undo loser
transactions (this also facilitates ROLLBACKS)

CSE 544 - Fall 2015

25

ARIES Method

Recovery from a system crash is done in 3 passes:

1. Analysis pass
— Figure out what was going on at time of crash
— List of dirty pages and active transactions
2. Redo pass (repeating history principle)
— Redo all operations, even for transactions that will not commit
— Get back to state at the moment of the crash

3. Undo pass
— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo

CSE 544 - Fall 2015 26

ARIES Method lllustration

May be in
reverse order

Start of oldest First update ‘ . ‘

in—progress potentially Checkpoint End of Log

transaction lost during crash

----i ---------------------------- | -- I.. Log (time —®)
et Analysis
o Redo
g Undo
Figure 3: The Three Passes of ARIES Restart

[Franklin97]

CSE 544 - Fall 2015 27

ARIES Method Elements

« Each page contains a pageLSN
— Log Sequence Number of log record for latest update to that page
— Will serve to determine if an update needs to be redone

* Physiological logging
— page-oriented REDO
» Possible because will always redo all operations in order

— logical UNDO
* Needed because will only undo some operations

CSE 544 - Fall 2015 28

ARIES Method Data Structures

* Active transactions table
— Lists all running transactions (active transactions)
— With lastLSN, most recent update by transaction

* Dirty page table
— Lists all dirty pages
— With recoveryLSN, first LSN that caused page to become dirty

» Write ahead log contains log records
— LSN, prevLSN: previous LSN for same transaction
— other attributes

CSE 544 - Fall 2015 29

ARIES Data Structures

Dirty pages

pagelD recLSN
P5 102
P6 103
P7 101

Active transactions

transiD lastLSN
T100 104
T200 103

Log
LSN | prevLSN |transiD | pagelD |Log entry
101 |- T100 P7
102 |- T200 P5
103 | 102 T200 P6
104 | 101 T100 P5
Buffer Pool
P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101

CSE 544 - Fall 20

15

The LSN

« Each log entry receives a unique Log Sequence Number,
LSN

— The LSN is written in the log entry

— Entries belonging to the same transaction are chained in the log
via prevLSN

— LSN'’s help us find the end of a circular log file:

After crash, log file = (22, 23, 24, 25, 26, 18, 19, 20, 21)
Where is the end of the log ?

CSE 544 - Fall 2015 31

ARIES Method Detalls

* Let’s walk through example on board
— Please take notes

« Steps under normal operations
— Add log record
— Update transactions table
— Update dirty page table
— Update pagelL SN

CSE 544 - Fall 2015

Checkpoints

Write into the log
— Contents of transactions table
— Contents of dirty page table

Enables REDO phase to restart from earliest
recoveryLSN in dirty page table
— Shortens REDO phase

But, effectiveness is limited by dirty pages
— Sol: Background process periodically sends dirty pages to disk

CSE 544 - Fall 2015 33

1. Analysis Phase

+ Goal
— Determine point in log where to start REDO

— Determine set of dirty pages when crashed
« Conservative estimate of dirty pages

— ldentify active transactions when crashed

* Approach
— Rebuild active transactions table and dirty pages table

— Reprocess the log from the beginning (or checkpoint)
* Only update the two data structures

— Compute: firstLSN = smallest of all recoveryLSN

CSE 544 - Fall 2015

34

1. Analysis Phase

LOg CheCprint (Crash)
— ’
firstkt SN
Replay [[| |
Dirty pages history L1
Active) T
transactions B

CSE 544 - Fall 2015

2. Redo Phase

Main principle: replay history

Process Log forward, starting from firstLSN
Read every log record, sequentially

Redo actions are not recorded in the log
Needs the Dirty Page Table

CSE 544 - Fall 2015

36

2. Redo Phase: Detalls

For each Log entry record LSN

If affected page is not in Dirty Page Table then do not
update

If recoveryLSN > LSN, then no update

Read page from disk;
If pageLSN >= LSN, then no update

Otherwise perform update

CSE 544 - Fall 2015

37

3. Undo Phase

Main principle: “logical” undo
« Start from the end of the log, move backwards
» Read only affected log entries

* Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

e CLRs are redone, but never undone

CSE 544 - Fall 2015

38

3. Undo Phase: Detalls

“Loser transactions” = uncommitted transactions in
Active Transactions Table

ToUndo = set of lastLSN of loser transactions
While ToUndo not empty:

— Choose most recent (largest) LSN in ToUndo

— If LSN = regular record: undo; write a CLR where
CLR.undoNextLSN = LSN.prevLSN; if LSN.prevLSN not null,
insert in ToUndo otherwise, write <END TRANSACTION> in log

— If LSN = CLR record: (don’tundo!)
if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END TRANSACTION> in log

CSE 544 - Fall 2015 39

Handling Crashes during Undo

Write Write Write ,9’,“ CLR FOR CLR FOR #ZZ 'i,, CLR FOR
page 1 page 1 page 1 g LSN 20 LSN 20 %,,;g,"ﬁ LEN 10
. ¢ ¢, e
IJ()g (time —™)l II. /,z ”r/ % - ,/r/
~ [(7}
LSN: 90 20 30 Restars 40 50 . 60
T 4’ —

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]

CSE 544 - Fall 2015 40

Summary

 Transactions are a useful abstraction
« They simplify application development

« DBMS must maintain ACID properties in face of

— Concurrency
— Failures

CSE 544 - Fall 2015

41

