
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 13 - Transactions: recovery

Announcements

•  HW3 is due next Thursday

•  Next: Focus on your projects! Only 5 weeks left
–  Make a detailed plan of what you want to accomplish each week
–  Milestone reports are due next week (see website for

instructions)
–  Poster presentations on Tuesday Dec 15th
–  Final reports due on Friday Dec18th

CSE 544 - Fall 2015 2

CSE 544 - Fall 2015

References

•  Concurrency control and recovery.
 Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

•  Database management systems.

 Ramakrishnan and Gehrke.
 Third Ed. Chapters 16 and 18.

3

CSE 544 - Fall 2015

Outline

•  Review of ACID properties
–  Today we will cover techniques for ensuring atomicity and

durability in face of failures

•  Review of buffer manager and its policies

•  Write-ahead log

•  ARIES method for failure recovery

4

CSE 544 - Fall 2015

ACID Properties

•  Atomicity: Either all changes performed by transaction
occur or none occurs

•  Consistency: A transaction as a whole does not violate
integrity constraints

•  Isolation: Transactions appear to execute one after the
other in sequence

•  Durability: If a transaction commits, its changes will
survive failures

5

CSE 544 - Fall 2015

What Could Go Wrong?

•  Concurrent operations
–  That’s what we discussed last time (atomicity and isolation

properties)

•  Failures can occur at any time
–  Today (isolation and durability properties)

6

CSE 544 - Fall 2015

Problem Illustration

Client 1:
 START TRANSACTION
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99
 COMMIT

What do we do now?

Crash !

7

CSE 544 - Fall 2015

Handling Failures

•  Types of failures
–  Transaction failure
–  System failure
–  Media failure -> we will not talk about this now

•  Required capability: undo and redo

•  Challenge: buffer manager
–  Changes performed in memory
–  Changes written to disk only from time to time

8

CSE 544 - Fall 2015

Impact of Buffer Manager

Disk

Main
memory

Page request from higher-level code

Buffer pool
Disk page

Free frame

1 page corresponds
to 1 disk block

9

CSE 544 - Fall 2015

Primitive Operations

•  READ(X,t)
–  copy value of data item X to transaction local variable t

•  WRITE(X,t)
–  copy transaction local variable t to data item X

•  INPUT(X)
–  read page containing data item X to memory buffer

•  OUTPUT(X)
–  write page containing data item X to disk

10

CSE 544 - Fall 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8

READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

11

CSE 544 - Fall 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

12

CSE 544 - Fall 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

13

CSE 544 - Fall 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

14

CSE 544 - Fall 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

15

CSE 544 - Fall 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

16

CSE 544 - Fall 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

17

CSE 544 - Fall 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

18

CSE 544 - Fall 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

19

CSE 544 - Fall 2015

Buffer Manager Policies

•  STEAL or NO-STEAL
–  Can an update made by an uncommitted transaction overwrite the most

recent committed value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to disk before the

transaction commits?

•  Easiest for recovery: NO-STEAL/FORCE

•  Highest performance: STEAL/NO-FORCE

20

CSE 544 - Fall 2015

Outline

•  Review of ACID properties
–  Today we will cover techniques for ensuring atomicity and

durability in face of failures

•  Review of buffer manager and its policies

•  Write-ahead log

•  ARIES method for failure recovery

21

CSE 544 - Fall 2015

Solution: Use a Log

•  Log: append-only file containing log records
•  Enables the use of STEAL and NO-FORCE
•  For every update, commit, or abort operation

–  Write a log record
–  Multiple transactions run concurrently, log records are interleaved

•  After a system crash, use log to:
–  Redo transactions that did commit
–  Undo other transactions that didn’t commit

22

CSE 544 - Fall 2015

Write-Ahead Log

•  All log records pertaining to a page are written to disk
before the page is overwritten on disk

•  All log records for transaction are written to disk before
the transaction is considered committed
–  Why is this faster than FORCE policy?

•  Committed transaction: transactions whose commit log
record has been written to disk

23

Log Granularity

Two basic types of log records for update operations
•  Physical log records

–  Position on a particular page where update occurred
–  Both before and after image for undo/redo logs
–  Benefits: Idempotent & updates are fast to redo/undo

•  Logical log records
–  Record only high-level information about the operation
–  Benefit: Smaller log
–  BUT difficult to implement because crashes can occur in the middle of

an operation

CSE 544 - Fall 2015 24

Granularity in ARIES

•  Physiological logging
–  Log records refer to a single page
–  But record logical operation within the page

•  Page-oriented logging for REDO
–  Necessary since can crash in middle of complex operation

•  Logical logging for UNDO
–  Enables tuple-level locking!
–  Must do logical undo because ARIES will only undo loser

transactions (this also facilitates ROLLBACKs)

CSE 544 - Fall 2015 25

ARIES Method

Recovery from a system crash is done in 3 passes:
1.  Analysis pass

–  Figure out what was going on at time of crash
–  List of dirty pages and active transactions

2.  Redo pass (repeating history principle)
–  Redo all operations, even for transactions that will not commit
–  Get back to state at the moment of the crash

3.  Undo pass
–  Remove effects of all uncommitted transactions
–  Log changes during undo in case of another crash during undo

CSE 544 - Fall 2015 26

ARIES Method Illustration

[Franklin97]

May be in
reverse order

CSE 544 - Fall 2015 27

CSE 544 - Fall 2015

ARIES Method Elements

•  Each page contains a pageLSN
–  Log Sequence Number of log record for latest update to that page
–  Will serve to determine if an update needs to be redone

•  Physiological logging
–  page-oriented REDO

•  Possible because will always redo all operations in order
–  logical UNDO

•  Needed because will only undo some operations

28

CSE 544 - Fall 2015

ARIES Method Data Structures

•  Active transactions table
–  Lists all running transactions (active transactions)
–  With lastLSN, most recent update by transaction

•  Dirty page table
–  Lists all dirty pages
–  With recoveryLSN, first LSN that caused page to become dirty

•  Write ahead log contains log records
–  LSN, prevLSN: previous LSN for same transaction
–  other attributes

29

ARIES Data Structures

pageID recLSN
P5 102
P6 103
P7 101

LSN prevLSN transID pageID Log entry
101 - T100 P7
102 - T200 P5
103 102 T200 P6
104 101 T100 P5

Dirty pages Log

transID lastLSN
T100 104
T200 103

Active transactions

P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

Buffer Pool

CSE 544 - Fall 2015 30

The LSN

•  Each log entry receives a unique Log Sequence Number,
LSN
–  The LSN is written in the log entry
–  Entries belonging to the same transaction are chained in the log

via prevLSN
–  LSN’s help us find the end of a circular log file:

After crash, log file = (22, 23, 24, 25, 26, 18, 19, 20, 21)
Where is the end of the log ?

CSE 544 - Fall 2015 31

CSE 544 - Fall 2015

ARIES Method Details

•  Let’s walk through example on board
–  Please take notes

•  Steps under normal operations
–  Add log record
–  Update transactions table
–  Update dirty page table
–  Update pageLSN

32

CSE 544 - Fall 2015

Checkpoints

•  Write into the log
–  Contents of transactions table
–  Contents of dirty page table

•  Enables REDO phase to restart from earliest
recoveryLSN in dirty page table
–  Shortens REDO phase

•  But, effectiveness is limited by dirty pages
–  Sol: Background process periodically sends dirty pages to disk

33

1. Analysis Phase

•  Goal
–  Determine point in log where to start REDO
–  Determine set of dirty pages when crashed

•  Conservative estimate of dirty pages
–  Identify active transactions when crashed

•  Approach
–  Rebuild active transactions table and dirty pages table
–  Reprocess the log from the beginning (or checkpoint)

•  Only update the two data structures
–  Compute: firstLSN = smallest of all recoveryLSN

CSE 544 - Fall 2015 34

1. Analysis Phase

CSE 544 - Fall 2015

(crash) Checkpoint

Dirty pages

Active
transactions

Log

Replay
history

firstLSN

35

2. Redo Phase

Main principle: replay history
•  Process Log forward, starting from firstLSN
•  Read every log record, sequentially
•  Redo actions are not recorded in the log
•  Needs the Dirty Page Table

CSE 544 - Fall 2015 36

2. Redo Phase: Details

For each Log entry record LSN
•  If affected page is not in Dirty Page Table then do not

update
•  If recoveryLSN > LSN, then no update
•  Read page from disk;

If pageLSN >= LSN, then no update
•  Otherwise perform update

CSE 544 - Fall 2015 37

3. Undo Phase

Main principle: “logical” undo
•  Start from the end of the log, move backwards
•  Read only affected log entries
•  Undo actions are written in the Log as special

entries: CLR (Compensating Log Records)
•  CLRs are redone, but never undone

CSE 544 - Fall 2015 38

3. Undo Phase: Details

•  “Loser transactions” = uncommitted transactions in
Active Transactions Table

•  ToUndo = set of lastLSN of loser transactions
•  While ToUndo not empty:

–  Choose most recent (largest) LSN in ToUndo
–  If LSN = regular record: undo; write a CLR where

CLR.undoNextLSN = LSN.prevLSN; if LSN.prevLSN not null,
insert in ToUndo otherwise, write <END TRANSACTION> in log

–  If LSN = CLR record: (don’t undo !)
if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END TRANSACTION> in log

CSE 544 - Fall 2015 39

CSE 544 - Fall 2015

Handling Crashes during Undo

[Figure 4 from Franklin97]

40

CSE 544 - Fall 2015

Summary

•  Transactions are a useful abstraction

•  They simplify application development

•  DBMS must maintain ACID properties in face of
–  Concurrency
–  Failures

41

