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Announcements

« HW3 is due next Thursday

* Next: Focus on your projects! Only 5 weeks left
— Make a detailed plan of what you want to accomplish each week

— Milestone reports are due next week (see website for
instructions)

— Poster presentations on Tuesday Dec 15t
— Final reports due on Friday Dec18th
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Outline

 Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

* Review of buffer manager and its policies

 Write-ahead log

 ARIES method for failure recovery
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ACID Properties

tomicity: Either all changes performed by transaction
OCCUr or none occurs

onsistency: A transaction as a whole does not violate
iIntegrity constraints

solation: Transactions appear to execute one after the
other in sequence

urability: If a transaction commits, its changes will
survive failures
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What Could Go Wrong?

Concurrent operations

— That’s what we discussed last time (atomicity and isolation
properties)

Failures can occur at any time
— Today (isolation and durability properties)
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Problem lllustration

Client 1:
START TRANSACTION
INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product

WHERE price <= 0.99

| Crash !

DELETE Product
WHERE price <=0.99
COMMIT

What do we do now?
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Handling Failures

* Types of failures
— Transaction failure
— System failure
— Media failure -> we will not talk about this now

* Required capability: undo and redo

« Challenge: buffer manager
— Changes performed in memory
— Changes written to disk only from time to time
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Impact of Buffer Manager

Page request from higher-level code

Buffer pool

Disk page Main

memory

Free frame—

1 page corresponds
to 1 disk block
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Primitive Operations

READ(X,t)

— copy value of data item X to transaction local variable t
WRITE(X,t)

— copy transaction local variable t to data item X

INPUT(X)

— read page containing data item X to memory buffer

OUTPUT(X)

— write page containing data item X to disk
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READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction

Buffer pool

Action t

INPUT(A)

Mem A

READ(A,t)

t:=t*2

WRITE(A 1)

INPUT(B)

READ(B, 1)

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)




READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction

Buffer pool

Action t

INPUT(A)

READ(A,t)

t:=t*2

WRITE(A 1)

INPUT(B)

READ(B, 1)

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)




READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— N —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A 1)
INPUT(B)
READ(B, 1)
t:=t*2
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B) 13




READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B)
READ(B, 1)
t:=t*2
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B) 14




READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1)
t:=t*2
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B) 15




READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B, 1)
OUTPUT(A)
OUTPUT(B) l6




READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A)
OUTPUT(B) 17




READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
— —- ™~
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(At) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 18




READ(At); t :=t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Transaction Buffer pool Disk
4 A A - R
Action t Mem A Mem B Disk A Disk B
INPUT(A) 8 8 8
READ(A,t) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
INPUT(B) 16 16 8 8 8
READ(B, 1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 |°




Buffer Manager Policies

STEAL or NO-STEAL

— Can an update made by an uncommitted transaction overwrite the most
recent committed value of a data item on disk?

FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk before the
transaction commits?

Easiest for recovery: NO-STEAL/FORCE

Highest performance: STEAL/NO-FORCE
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Outline

 Review of ACID properties

— Today we will cover techniques for ensuring atomicity and
durability in face of failures

* Review of buffer manager and its policies

 Write-ahead log

 ARIES method for failure recovery
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Solution: Use a Log

 Log: append-only file containing log records
« Enables the use of STEAL and NO-FORCE
* For every update, commit, or abort operation

— Write a log record
— Multiple transactions run concurrently, log records are interleaved
» After a system crash, use log to:

— Redo transactions that did commit
— Undo other transactions that didn’'t commit
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Write-Ahead Log

* All log records pertaining to a page are written to disk
before the page is overwritten on disk

 All log records for transaction are written to disk before
the transaction is considered committed

— Why is this faster than FORCE policy?

« Committed transaction: transactions whose commit log
record has been written to disk
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Log Granularity

Two basic types of log records for update operations

* Physical log records
— Position on a particular page where update occurred
— Both before and after image for undo/redo logs
— Benefits: Idempotent & updates are fast to redo/undo

* Logical log records

— Record only high-level information about the operation

— Benefit: Smaller log

— BUT difficult to implement because crashes can occur in the middle of
an operation
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Granularity in ARIES

* Physiological logging
— Log records refer to a single page
— But record logical operation within the page

» Page-oriented logging for REDO
— Necessary since can crash in middle of complex operation
» Logical logging for UNDO

— Enables tuple-level locking!

— Must do logical undo because ARIES will only undo loser
transactions (this also facilitates ROLLBACKS)
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ARIES Method

Recovery from a system crash is done in 3 passes:

1. Analysis pass
— Figure out what was going on at time of crash
— List of dirty pages and active transactions
2. Redo pass (repeating history principle)
— Redo all operations, even for transactions that will not commit
— Get back to state at the moment of the crash

3. Undo pass
— Remove effects of all uncommitted transactions
— Log changes during undo in case of another crash during undo
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ARIES Method lllustration

May be in
reverse order

Start of oldest First update ‘ . ‘

in—progress potentially Checkpoint End of Log

transaction lost during crash

----i ---------------------------- | ---------------------------------------------------------- I.. Log (time —®)
et Analysis
o Redo
g Undo
Figure 3: The Three Passes of ARIES Restart

[Franklin97]
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ARIES Method Elements

« Each page contains a pageLSN
— Log Sequence Number of log record for latest update to that page
— Will serve to determine if an update needs to be redone

* Physiological logging
— page-oriented REDO
» Possible because will always redo all operations in order

— logical UNDO
* Needed because will only undo some operations
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ARIES Method Data Structures

* Active transactions table
— Lists all running transactions (active transactions)
— With lastLSN, most recent update by transaction

* Dirty page table
— Lists all dirty pages
— With recoveryLSN, first LSN that caused page to become dirty

» Write ahead log contains log records
— LSN, prevLSN: previous LSN for same transaction
— other attributes
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ARIES Data Structures

Dirty pages

pagelD recLSN
P5 102
P6 103
P7 101

Active transactions

transiD lastLSN
T100 104
T200 103

Log
LSN | prevLSN |transiD | pagelD |Log entry
101 |- T100 P7
102 |- T200 P5
103 | 102 T200 P6
104 | 101 T100 P5
Buffer Pool
P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101
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The LSN

« Each log entry receives a unique Log Sequence Number,
LSN

— The LSN is written in the log entry

— Entries belonging to the same transaction are chained in the log
via prevLSN

— LSN'’s help us find the end of a circular log file:

After crash, log file = (22, 23, 24, 25, 26, 18, 19, 20, 21)
Where is the end of the log ?
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ARIES Method Detalls

* Let’s walk through example on board
— Please take notes

« Steps under normal operations
— Add log record
— Update transactions table
— Update dirty page table
— Update pagelL SN
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Checkpoints

Write into the log
— Contents of transactions table
— Contents of dirty page table

Enables REDO phase to restart from earliest
recoveryLSN in dirty page table
— Shortens REDO phase

But, effectiveness is limited by dirty pages
— Sol: Background process periodically sends dirty pages to disk
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1. Analysis Phase

+ Goal
— Determine point in log where to start REDO

— Determine set of dirty pages when crashed
« Conservative estimate of dirty pages

— ldentify active transactions when crashed

* Approach
— Rebuild active transactions table and dirty pages table

— Reprocess the log from the beginning (or checkpoint)
* Only update the two data structures

— Compute: firstLSN = smallest of all recoveryLSN
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1. Analysis Phase

LOg CheCprint (Crash)
— ’
firstkt SN
Replay [ [ | |
Dirty pages history L1
Active ) T
transactions B
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2. Redo Phase

Main principle: replay history

Process Log forward, starting from firstLSN
Read every log record, sequentially

Redo actions are not recorded in the log
Needs the Dirty Page Table
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2. Redo Phase: Detalls

For each Log entry record LSN

If affected page is not in Dirty Page Table then do not
update

If recoveryLSN > LSN, then no update

Read page from disk;
If pageLSN >= LSN, then no update

Otherwise perform update
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3. Undo Phase

Main principle: “logical” undo
« Start from the end of the log, move backwards
» Read only affected log entries

* Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

e CLRs are redone, but never undone
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3. Undo Phase: Detalls

“Loser transactions” = uncommitted transactions in
Active Transactions Table

ToUndo = set of lastLSN of loser transactions
While ToUndo not empty:

— Choose most recent (largest) LSN in ToUndo

— If LSN = regular record: undo; write a CLR where
CLR.undoNextLSN = LSN.prevLSN; if LSN.prevLSN not null,
insert in ToUndo otherwise, write <END TRANSACTION> in log

— If LSN = CLR record: (don’tundo!)
if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END TRANSACTION> in log
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Handling Crashes during Undo

Write Write  Write ,9’,“ CLR FOR CLR FOR #ZZ 'i,, CLR FOR
page 1 page 1 page 1 g LSN 20 LSN 20 %,,;g,"ﬁ LEN 10
. ¢ ¢, e
IJ()g (time —™) ....l ................ I .............. .I. .............................. /,z ............ ”r/ ............ % ........... - ,/r/ ......
~ [ (7}
LSN: 90 20 30 Restars 40 50 . 60
T 4’ —

Figure 4: The Use of CLRs for UNDO

[Figure 4 from Franklin97]
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Summary

 Transactions are a useful abstraction
« They simplify application development

« DBMS must maintain ACID properties in face of

— Concurrency
— Failures
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