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Announcements

* Project milestone report due next Wednesday

— See project page for details

« HW3 due next Thursday

* No lecture and OH next Tuesday

« Today: finish discussion on concurrency control
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Outline

* Transactions motivation, definition, properties

« Concurrency control and locking

» Optimistic concurrency control
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Motivating Example

UPDATE Budget SELECT sum (money)
SET money=money-100 FROM Budget

WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

-
Would like to treat
each group of

SET money=money+40 kmstruc:tlons as a unltj

WHERE pid = 3

UPDATE Budget
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Definition

* A transaction = one or more operations, (seemingly)
single real-world transition

« Examples
— Transfer money between accounts
— Purchase a group of products

— Register for a class (either waitlist or allocated)
— What else?

CSE 544 - Fall 2015



ACID Properties

tomicity: Either all changes performed by transaction
OCCUr or none occurs

onsistency: A transaction as a whole does not violate
iIntegrity constraints

solation: Transactions appear to execute one after the
other in sequence

urability: If a transaction commits, its changes will survive
failures
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Types of Problems: Summary

« Concurrent execution problems
— Write-read conflict: dirty read (includes inconsistent read)

« A transaction reads a value written by another transaction that has
not yet committed

— Read-write conflict: unrepeatable read

A transaction reads the value of the same object twice. Another
transaction modifies that value in between the two reads

— Write-write conflict: lost update

« Two transactions update the value of the same object. The second
one to write the value overwrite the first change

« Falilure problems
— DBMS can crash in the middle of a series of updates
— Can leave the database in an inconsistent state
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Outline

* Transactions motivation, definition, properties

« Concurrency control and locking

» Optimistic concurrency control
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Time

A Serial Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A,s)
S =82
WRITE(A,s)
READ(B,s)
S =82

WRITE(B,s)
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Serializable Schedule

* A schedule is serializable if it is equivalent to a serial
schedule
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A Serializable Schedule

T1 T2
READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(A )
S =82
WRITE(A s)
READ(B, t)
t:=t+100
WRITE(B, t)
READ(B,s)
Notice: g '=8*2

This is NOT a serial schedule WRITE(B,s)
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Notation

T,:r1(A); wy(A); ry(B); wy(B)
T,: ry(A); Wo(A); rx(B); wy(B)
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Serializable Execution

Serializability: interleaved execution has same effect as
some serial execution

Schedule of two transactions (Figure 1)
r,[A] - w,[A] = r,[A] = [B] —cCc,—
—r,[B] =w,[B] =,

Serializable schedule: equiv. to serial schedule
r,[A] = w,[A] > r,[A] —r,[B] >

— w,[B] =@ ¢, =>r,[B] —=cC
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Conflict Serializability

Conflicts: (aka bad things happen if swapped)

Two actions by same transaction T::

Two writes by T, T, to same element

Read/write by T;, T, to same element
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Conflict Serializability

» A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

Example:

ri(A); wy(A); ra(A); wo(A); ri(B); wy(B); ry(B); w,(B)

4

ri(A); wy(A); ry(B); wy(B); ra(A); wo(A); ry(B); wo(B)
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The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
 Build a graph of all transactions T,

 Edge from T, to T, if T, makes an action that conflicts with
one of T, and comes first

« Fact: if the graph has no cycles, then it is conflict
serializable !
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Example 2

ry(A); 11(B); Wo(A); ra(B); r3(A); wq(B); wa(A); wo(B)

B
A

52 @

This schedule is NOT conflict-serializable
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Conflict Serializability

« A serializable schedule need not be conflict serializable,
even under the “worst case update” assumption

W4(Y); Wo(Y); Wo(X); Wy(X); Ws(X);
-
W4(Y); W4(X); W,(Y); Wy(X); Ws(X);
Equivalent, but can’'t swap
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Scheduler

The scheduler is the module that schedules the
transaction’s actions, ensuring serializability

How? We discuss three techniques in class:
— Locks

— Timestamps

— Validation
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Outline

« Transactions motivation, definition, properties
« Concurrency control and locking

» Optimistic concurrency control
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Locking Scheduler

Simple idea:

Each element has a unique lock

Each transaction must first acquire the lock before
reading/writing that element

If lock is taken by another transaction, then wait
The transaction must release the lock(s)
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Notation

.(A) = transaction T, acquires lock for element A

u.(A) = transaction T, releases lock for element A
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Example

T1 12

L,(A); READ(A, t)

t:=t+100

WRITE(A, t); U,(A); L(B)
L,(A); READ(A,s)
S =82
WRITE(A,s); U,(A);
L,(B); DENIED...

READ(B, t)

t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S =82
WRITE(B,s); U,(B);

Scheduler has ensured a conflict-serializable schedule %



Is this enough?

T1 12

L,(A); READ(A, t)

t:=t+100

WRITE(A, t); U,(A);
L,(A); READ(A,s)
S =82
WRITE(A,s); U,(A);
L,(B); READ(B,s)
S =82
WRITE(B,s); U,(B);

L,(B); READ(B, t)

t:=t+100

WRITE(B,t); U,(B);

Locks did not enforce conflict-serializability !!!
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Two Phase Locking (2PL)

The 2PL rule:

* |In every transaction, all lock requests must preceed all
unlock requests

* This ensures conflict serializability ! (why?)
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Example: 2PL transactions

T1 12

L1(A); L1(B); READ(A, 1)
t :=t+100
WRITE(A, t); U,(A)
L,(A); READ(A,s)

S :=8%2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U, (B):
..GRANTED; READ(B,s)
S :=8%2
WRITE(B,s): A); B):
Now it is conflict-serializable (B,s); Uy(A); Uy( )2,7



Example with Multiple Transactions

T T2 T3 | T4
Unlocks second so \l/JVnIockst f'rSFt_
_ - i as not waiting
Growmg foirTgps was waiting | ¢ anyone
phase T
Shrinking
phase

Equivalent to each transaction executing entirely the
moment it enters shrinking phase
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What about Aborts?

o 2PL enforces conflict-serializable schedules

 But what if a transaction releases its locks and then
aborts?
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Example with Abort

T1 T2

L,(A); L{(B); READ(A, t)
t :=t+100
WRITE(A, t); U,(A)
L,(A); READ(A,s)

S :=8%2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S =82
WRITE(B,s); U,(A); U,(B);
Abort Commit %



Strict 2PL

» Strict 2PL: All locks held by a transaction are released
when the transaction is completed

— Also called “long-duration locks”

* Ensures that schedules are recoverable

— Transactions commit only after all transactions whose changes
they read also commit

* Avoids cascading rollbacks
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Deadlock

* Transaction T, waits for a lock held by T,;
« But T, waits for a lock held by Tj;;
* While T, waits for . . . .

e ...and T,; waits for a lock held by T, !l

* A deadlock is when two or more transactions are waiting
for each other to complete
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Handling Deadlock

Deadlock avoidance
— Acquire locks in pre-defined order
— Acquire all locks at once before starting

Deadlock detection
— Timeouts (but hard to pick the right threshold)
— Wait-for graph
« What commercial systems use (they check graph periodically)

CSE 544 - Fall 2015
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Lock Modes

S = shared lock (for READ)
X = exclusive lock (for WRITE)

U = update lock

— Initially like S

— Later may be upgraded to X

| = increment lock (for A := A + something)
— Increment operations commute

CSE 544 - Fall 2015
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Lock Granularity

* Fine granularity locking (e.g., tuples)
— High concurrency
— High overhead in managing locks

« Coarse grain locking (e.g., tables)
— Many false conflicts
— Less overhead in managing locks

« Alternative techniques
— Hierarchical locking (and intentional locks) [commercial DBMSs]
— Lock escalation
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Phantom Problem

« A “phantom”is a tuple that is invisible during part of a
transaction execution but not all of it.

 Example:
— TO: reads list of books in catalog
— T1: inserts a new book into the catalog

— T2: reads list of books in catalog
* New book will appear!

« How can this occur?
« Depends on locking details (eg, granularity of locks)
« Can'tlock a tuple that doesn't exist yet
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Dealing with Phantoms:
Predicate Locks

* Lock predicates rather than actual database elements
— “lock all books that have createTime > T~

— Two predicates p and p’ are compatible iff no tuple can satisfy
both at the same time

* |ssue: very expensive to implement
— NP-hard to determine if predicates are compatible with each

other
— What if DB has hidden predicates (e.g., functional dependencies)

that make p and p’ incompatible?
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Dealing with Phantoms:
Granular Locks

* Implement multi-level locking
— Tuple
— Table
— Entire database

» Allow transactions to lock at any granularity
— Lock tuples if reading
— Lock the entire table if inserting new records
— Need a hierarchy of locks: table lock > tuple lock

* Issue: can cause many deadlocks among transactions
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Dealing with Phantoms:
Intent Locks

* Reduce possibility of deadlocks with three lock modes:
— Shared
— Exclusive
— Intent

 Intent: transaction will be locking at finer granularity
* Lock compatibilities:

Request \ Current mode | None Intent | Shared | Exclusive
None e e

Intent v v

Shared v e

Exclusive e
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Degrees of Isolation

* Isolation level “serializable” (i.e. ACID)
— Gold standard
— Requires strict 2PL and predicate locking
— But often too inefficient

— Imagine there are only a few update operations and many long
read operations

 Weaker isolation levels
— Sacrifice correctness for efficiency

— Often used in practice (often default)
— Sometimes are hard to understand
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Degrees of Isolation

* Four levels of isolation

— All levels use long-duration exclusive locks
— READ UNCOMMITTED: no read locks
— READ COMMITTED: short duration read locks
— REPEATABLE READ:

* Long duration read locks on individual items
— SERIALIZABLE:

» All locks long duration and lock predicates

« Trade-off: consistency vs concurrency
« Commercial systems give choice of level + others
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The Tree Protocol

* An alternative to 2PL, for tree structures
« E.g. B+ trees (the indexes of choice in databases)

 Because
— Indexes are hot spots!
— 2PL would lead to great lock contention

— Also, unlike data, the index is not directly visible to transactions
— So only need to guarantee that index returns correct values
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The Tree Protocol

Rules:

* Alock on a node A may only be acquired if the transaction holds a
lock on its parent B

* Nodes can be unlocked in any order (no 2PL necessary)
« Cannot relock a node for which already released a lock

« “Crabbing”

— First lock parent then lock child
— Keep parent locked only if may need to update it
— Release lock on parent if child is not full

* The tree protocol is NOT 2PL, yet ensures conflict-serializability !
* (More in the R&G)
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Outline

« Transactions motivation, definition, properties
« Concurrency control and locking

« Optimistic concurrency control
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Locking vs Optimistic

Locking prevents unserializable behavior from occurring:
it causes transactions to wait for locks

Optimistic methods assume no unserializable behavior
will occur: they abort transactions if it does

Locking typically better in case of high levels of
contention; optimistic better otherwise
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Optimistic Concurrency Control

Timestamp-based technique

« Each object, O, has read and write timestamps: RTS(O) and WTS(O)
« [Each transaction, T, has a timestamp TS(T)

 INVARIANT: Timestamp order defines serialization order

Transaction wants to read object O
— If TS(T) < WTS(O) abort
— Else read and update RTS(O) to larger of TS(T) or RTS(O)

Transaction wants to write object O
— If TS(T) < RTS(O) abort
— If TS(T) < WTS(O) ignore my write and continue (Thomas Write Rule)
— Otherwise, write O and update WTS(O) to TS(T)
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Optimistic Concurrency Control

Timestamp-based technique
 \What about aborts? Need to add a commit bit C to each element
* Read dirty data:

— T wants to read X, and WT(X) < TS(T)

— If C(X)= false, T needs to wait for it to become true in case previous
writer aborts

*  Write dirty data:
— T wants to write X, and WT(X) > TS(T)
— If C(X)= false, T needs to wait for it to become true in case of abort

- Bottom line: When T requests r(X) or w(X), scheduler examines
RT(X), WT(X), C(X), and decides one of:

— To grant the request, or

— To rollback T (and restart with later timestamp)
— To delay T until C(X) = true
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Optimistic Concurrency Control

Multiversion-based technique
* Object timestamps: RTS(O) & WTS(O); transaction timestamps TS(T)

« Transaction can read most recent version that precedes TS(T)
— When reading object, update RTS(O) to larger of TS(T) or RTS(O)

« Transaction wants to write object O
— If TS(T) < RTS(O) abort
— Otherwise, create a new version of O with WTS(O) = TS(T)

« Common variant (used in commercial systems)
— To write object O only check for conflicting writes not reads
— Use locks for writes to avoid aborting in case conflicting transaction aborts
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Optimistic Concurrency Control

Validation-based technique

 Phase 1: Read
— Transaction reads from database and writes to a private workspace
— Each transaction keeps track of its read set RS(T) and write set WS(T)

 Phase 2: Validate
— At commit time, system performs validation using read/write sets

— Validation checks if transaction could have conflicted with others
« Each transaction gets a timestamp
» Check if timestamp order is equivalent to a serial order

— If there is a potential conflict: abort

 Phase 3: Write
— If no conflict, transaction changes are copied into database
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Snapshot Isolation

A type of multiversion concurrency control algorithm
Provides yet another level of isolation

Very efficient, and very popular
— Oracle, PostgreSQL, SQL Server 2005

Prevents many classical anomalies BUT...

Not serializable (!), yet ORACLE and PostgreSQL use it
even for SERIALIZABLE transactions!

— But “serializable snapshot isolation” now in PostgreSQL
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Snapshot Isolation Rules

Each transactions receives a timestamp TS(T)
Transaction T sees snapshot at time TS(T) of the database
When T commits, updated pages are written to disk

Write/write conflicts resolved by “first committer wins” rule
— Loser gets aborted

Read/write conflicts are ignored
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Snapshot Isolation (Details)

* Multiversion concurrency control:
— Versions of X: Xy, Xz, Xz - - -

* When T reads X, return Xrg)-

 When T writes X: if other transaction updated X, abort

— Not faithful to “first committer” rule, because the other transaction
U might have committed after T. But once we abort T, U
becomes the first committer ©
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What Works and What Not

No dirty reads (Why 7?)
No inconsistent reads (Why ?)
— A: Each transaction reads a consistent snapshot

No lost updates (“first committer wins”)

Moreover: no reads are ever delayed

However: read-write conflicts not caught !
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Write Skew

T1: T2:
READ(X); READ(Y);
if X>=50 if Y >= 50
thenY = -50; WRITE(Y) then X = -50; WRITE(X)
COMMIT COMMIT

In our notation:

R1(X), Ry(Y), W4 (Y), W5(X), C4,Cy

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

CSE 544 - Fall 2015

54




Questions/Discussions

How does snapshot isolation (S1) compare to repeatable
reads and serializable?
— A: Sl avoids most but not all phantoms (e.g., write skew)

Note: Oracle & PostgreSQL implement it even for isolation
level SERIALIZABLE

— But most recently: “serializable snapshot isolation”

How can we enforce serializability at the app level ?

— Recall that all read / write conflicts are ignored.

— A: Use dummy writes for all reads to create write-write conflicts... but
that is confusing for developers!!!
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Commercial Systems

Always check documentation as DBMSs keep evolving and
thus changing! Just to get an idea:

« DB2: Strict 2PL
« SQL Server:

— Strict 2PL for standard 4 levels of isolation
— Multiversion concurrency control for snapshot isolation

« PostgreSQL: Multiversion concurrency control
« QOracle: Multiversion concurrency control
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Important Lesson

ACID transactions/serializability make it easy to develop
applications

BUT they add overhead and slow things down

Lower levels of isolation reduce overhead
BUT they are hard to reason about for developers!
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