
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 12 –
Transactions: Concurrency Control

(Part 2 aka the Interesting Stuff)

CSE 544 - Fall 2015

Announcements

•  Project milestone report due next Wednesday
–  See project page for details

•  HW3 due next Thursday

•  No lecture and OH next Tuesday

•  Today: finish discussion on concurrency control

2

CSE 544 - Fall 2015

References

•  Concurrency control and recovery.
 Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

•  Database management systems.

 Ramakrishnan and Gehrke.
 Third Ed. Chapters 16 and 17.

3

CSE 544 - Fall 2015

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

4

CSE 544 - Fall 2015

Motivating Example

UPDATE Budget

SET money=money-100
WHERE pid = 1

UPDATE Budget

SET money=money+60

WHERE pid = 2

UPDATE Budget

SET money=money+40

WHERE pid = 3

SELECT sum(money)
FROM Budget

Would like to treat
each group of

instructions as a unit

5

CSE 544 - Fall 2015

Definition

•  A transaction = one or more operations, (seemingly)
single real-world transition

•  Examples
–  Transfer money between accounts
–  Purchase a group of products
–  Register for a class (either waitlist or allocated)
–  What else?

6

CSE 544 - Fall 2015

ACID Properties

•  Atomicity: Either all changes performed by transaction
occur or none occurs

•  Consistency: A transaction as a whole does not violate
integrity constraints

•  Isolation: Transactions appear to execute one after the
other in sequence

•  Durability: If a transaction commits, its changes will survive
failures

7

CSE 544 - Fall 2015

Types of Problems: Summary

•  Concurrent execution problems
–  Write-read conflict: dirty read (includes inconsistent read)

•  A transaction reads a value written by another transaction that has
not yet committed

–  Read-write conflict: unrepeatable read
•  A transaction reads the value of the same object twice. Another

transaction modifies that value in between the two reads
–  Write-write conflict: lost update

•  Two transactions update the value of the same object. The second
one to write the value overwrite the first change

•  Failure problems
–  DBMS can crash in the middle of a series of updates
–  Can leave the database in an inconsistent state

8

CSE 544 - Fall 2015

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

9

A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 544 - Fall 2015 10

Time

Serializable Schedule

•  A schedule is serializable if it is equivalent to a serial
schedule

CSE 544 - Fall 2015 11

A Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

Notice:
This is NOT a serial schedule

CSE 544 - Fall 2015 12

Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

CSE 544 - Fall 2015 13

CSE 544 - Fall 2015

Serializable Execution

•  Serializability: interleaved execution has same effect as
some serial execution

•  Schedule of two transactions (Figure 1)
r0[A] → w0[A] → r1[A] → r1[B] → c1→	

→ r0[B] → w0[B] → c0!
!

•  Serializable schedule: equiv. to serial schedule
r0[A] → w0[A] → r1[A] → r0[B] →
→ w0[B] → c0 → r1[B] → c1!

14

Conflict Serializability

Conflicts: (aka bad things happen if swapped)
ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 544 - Fall 2015 15

Conflict Serializability

•  A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CSE 544 - Fall 2015 16

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
•  Build a graph of all transactions Ti

•  Edge from Ti to Tj if Ti makes an action that conflicts with
one of Tj and comes first

•  Fact: if the graph has no cycles, then it is conflict
serializable !

CSE 544 - Fall 2015 17

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A
B

B

CSE 544 - Fall 2015 18

Conflict Serializability

•  A serializable schedule need not be conflict serializable,
even under the “worst case update” assumption

w1(Y); w1(X); w2(Y); w2(X); w3(X);

w1(Y); w2(Y); w2(X); w1(X); w3(X);

Lost write

Equivalent, but can’t swap
CSE 544 - Fall 2015 19

Scheduler

•  The scheduler is the module that schedules the
transaction’s actions, ensuring serializability

•  How? We discuss three techniques in class:
–  Locks
–  Timestamps
–  Validation

CSE 544 - Fall 2015 20

CSE 544 - Fall 2015

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

21

Locking Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the lock before

reading/writing that element
•  If lock is taken by another transaction, then wait
•  The transaction must release the lock(s)

CSE 544 - Fall 2015 22

Notation

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

CSE 544 - Fall 2015 23

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule 24

Is this enough?
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! 25

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests must preceed all
unlock requests

•  This ensures conflict serializability ! (why?)

CSE 544 - Fall 2015 26

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable 27

Example with Multiple Transactions

Equivalent to each transaction executing entirely the
moment it enters shrinking phase

CSE 544 - Fall 2015 28

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

What about Aborts?

•  2PL enforces conflict-serializable schedules

•  But what if a transaction releases its locks and then
aborts?

CSE 544 - Fall 2015 29

Example with Abort
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Abort Commit 30

Strict 2PL

•  Strict 2PL: All locks held by a transaction are released
when the transaction is completed
–  Also called “long-duration locks”

•  Ensures that schedules are recoverable

–  Transactions commit only after all transactions whose changes
they read also commit

•  Avoids cascading rollbacks

CSE 544 - Fall 2015 31

Deadlock

•  Transaction T1 waits for a lock held by T2;
•  But T2 waits for a lock held by T3;
•  While T3 waits for
•  . . .
•  . . .and T73 waits for a lock held by T1 !!

•  A deadlock is when two or more transactions are waiting
for each other to complete

CSE 544 - Fall 2015 32

33

Handling Deadlock

•  Deadlock avoidance
–  Acquire locks in pre-defined order
–  Acquire all locks at once before starting

•  Deadlock detection
–  Timeouts (but hard to pick the right threshold)
–  Wait-for graph

•  What commercial systems use (they check graph periodically)

CSE 544 - Fall 2015

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)

•  U = update lock
–  Initially like S
–  Later may be upgraded to X

•  I = increment lock (for A := A + something)
–  Increment operations commute

CSE 544 - Fall 2015 34

CSE 544 - Fall 2015

Lock Granularity

•  Fine granularity locking (e.g., tuples)
–  High concurrency
–  High overhead in managing locks

•  Coarse grain locking (e.g., tables)
–  Many false conflicts
–  Less overhead in managing locks

•  Alternative techniques
–  Hierarchical locking (and intentional locks) [commercial DBMSs]
–  Lock escalation

35

CSE 544 - Fall 2015

Phantom Problem
•  A “phantom” is a tuple that is invisible during part of a

transaction execution but not all of it.

•  Example:
–  T0: reads list of books in catalog
–  T1: inserts a new book into the catalog
–  T2: reads list of books in catalog

•  New book will appear!

•  How can this occur?
•  Depends on locking details (eg, granularity of locks)
•  Can’t lock a tuple that doesn’t exist yet

36

Dealing with Phantoms:
Predicate Locks

•  Lock predicates rather than actual database elements
–  “lock all books that have createTime > T”
–  Two predicates p and p’ are compatible iff no tuple can satisfy

both at the same time

•  Issue: very expensive to implement
–  NP-hard to determine if predicates are compatible with each

other
–  What if DB has hidden predicates (e.g., functional dependencies)

that make p and p’ incompatible?

CSE 544 - Fall 2015 37

Dealing with Phantoms:
Granular Locks

•  Implement multi-level locking
–  Tuple
–  Table
–  Entire database

•  Allow transactions to lock at any granularity
–  Lock tuples if reading
–  Lock the entire table if inserting new records
–  Need a hierarchy of locks: table lock > tuple lock

•  Issue: can cause many deadlocks among transactions

CSE 544 - Fall 2015 38

Dealing with Phantoms:
Intent Locks

•  Reduce possibility of deadlocks with three lock modes:
–  Shared
–  Exclusive
–  Intent

•  Intent: transaction will be locking at finer granularity
•  Lock compatibilities:

CSE 544 - Fall 2015 39

Request \ Current mode None Intent Shared Exclusive
None ✓ ✓
Intent ✓ ✓
Shared ✓ ✓
Exclusive ✓

CSE 544 - Fall 2015

Degrees of Isolation

•  Isolation level “serializable” (i.e. ACID)
–  Gold standard
–  Requires strict 2PL and predicate locking
–  But often too inefficient
–  Imagine there are only a few update operations and many long

read operations

•  Weaker isolation levels
–  Sacrifice correctness for efficiency
–  Often used in practice (often default)
–  Sometimes are hard to understand

40

CSE 544 - Fall 2015

Degrees of Isolation

•  Four levels of isolation
–  All levels use long-duration exclusive locks
–  READ UNCOMMITTED: no read locks
–  READ COMMITTED: short duration read locks
–  REPEATABLE READ:

•  Long duration read locks on individual items
–  SERIALIZABLE:

•  All locks long duration and lock predicates

•  Trade-off: consistency vs concurrency
•  Commercial systems give choice of level + others

41

CSE 544 - Fall 2015

The Tree Protocol

•  An alternative to 2PL, for tree structures
•  E.g. B+ trees (the indexes of choice in databases)

•  Because
–  Indexes are hot spots!
–  2PL would lead to great lock contention

–  Also, unlike data, the index is not directly visible to transactions
–  So only need to guarantee that index returns correct values

42

CSE 544 - Fall 2015

The Tree Protocol

Rules:
•  A lock on a node A may only be acquired if the transaction holds a

lock on its parent B
•  Nodes can be unlocked in any order (no 2PL necessary)
•  Cannot relock a node for which already released a lock
•  “Crabbing”

–  First lock parent then lock child
–  Keep parent locked only if may need to update it
–  Release lock on parent if child is not full

•  The tree protocol is NOT 2PL, yet ensures conflict-serializability !
•  (More in the R&G)

43

CSE 544 - Fall 2015

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

44

Locking vs Optimistic

•  Locking prevents unserializable behavior from occurring:
it causes transactions to wait for locks

•  Optimistic methods assume no unserializable behavior
will occur: they abort transactions if it does

•  Locking typically better in case of high levels of
contention; optimistic better otherwise

CSE 544 - Fall 2015 45

CSE 544 - Fall 2015

Optimistic Concurrency Control

Timestamp-based technique
•  Each object, O, has read and write timestamps: RTS(O) and WTS(O)
•  Each transaction, T, has a timestamp TS(T)
•  INVARIANT: Timestamp order defines serialization order

Transaction wants to read object O
–  If TS(T) < WTS(O) abort
–  Else read and update RTS(O) to larger of TS(T) or RTS(O)

Transaction wants to write object O
–  If TS(T) < RTS(O) abort
–  If TS(T) < WTS(O) ignore my write and continue (Thomas Write Rule)
–  Otherwise, write O and update WTS(O) to TS(T)

46

Optimistic Concurrency Control
Timestamp-based technique
•  What about aborts? Need to add a commit bit C to each element
•  Read dirty data:

–  T wants to read X, and WT(X) < TS(T)
–  If C(X)= false, T needs to wait for it to become true in case previous

writer aborts
•  Write dirty data:

–  T wants to write X, and WT(X) > TS(T)
–  If C(X)= false, T needs to wait for it to become true in case of abort

•  Bottom line: When T requests r(X) or w(X), scheduler examines
RT(X), WT(X), C(X), and decides one of:
–  To grant the request, or
–  To rollback T (and restart with later timestamp)
–  To delay T until C(X) = true

47

CSE 544 - Fall 2015

Optimistic Concurrency Control

Multiversion-based technique

•  Object timestamps: RTS(O) & WTS(O); transaction timestamps TS(T)

•  Transaction can read most recent version that precedes TS(T)
–  When reading object, update RTS(O) to larger of TS(T) or RTS(O)

•  Transaction wants to write object O
–  If TS(T) < RTS(O) abort
–  Otherwise, create a new version of O with WTS(O) = TS(T)

•  Common variant (used in commercial systems)
–  To write object O only check for conflicting writes not reads
–  Use locks for writes to avoid aborting in case conflicting transaction aborts

48

Optimistic Concurrency Control
Validation-based technique

•  Phase 1: Read

–  Transaction reads from database and writes to a private workspace
–  Each transaction keeps track of its read set RS(T) and write set WS(T)

•  Phase 2: Validate
–  At commit time, system performs validation using read/write sets
–  Validation checks if transaction could have conflicted with others

•  Each transaction gets a timestamp
•  Check if timestamp order is equivalent to a serial order

–  If there is a potential conflict: abort

•  Phase 3: Write
–  If no conflict, transaction changes are copied into database

49

Snapshot Isolation

•  A type of multiversion concurrency control algorithm
•  Provides yet another level of isolation

•  Very efficient, and very popular
–  Oracle, PostgreSQL, SQL Server 2005

•  Prevents many classical anomalies BUT…
•  Not serializable (!), yet ORACLE and PostgreSQL use it

even for SERIALIZABLE transactions!
–  But “serializable snapshot isolation” now in PostgreSQL

50 CSE 544 - Fall 2015

Snapshot Isolation Rules

•  Each transactions receives a timestamp TS(T)

•  Transaction T sees snapshot at time TS(T) of the database

•  When T commits, updated pages are written to disk

•  Write/write conflicts resolved by “first committer wins” rule
–  Loser gets aborted

•  Read/write conflicts are ignored

51 CSE 544 - Fall 2015

Snapshot Isolation (Details)

•  Multiversion concurrency control:
–  Versions of X: Xt1, Xt2, Xt3, . . .

•  When T reads X, return XTS(T).

•  When T writes X: if other transaction updated X, abort
–  Not faithful to “first committer” rule, because the other transaction

U might have committed after T. But once we abort T, U
becomes the first committer J

52 CSE 544 - Fall 2015

What Works and What Not

•  No dirty reads (Why ?)
•  No inconsistent reads (Why ?)

–  A: Each transaction reads a consistent snapshot

•  No lost updates (“first committer wins”)

•  Moreover: no reads are ever delayed

•  However: read-write conflicts not caught !

53 CSE 544 - Fall 2015

Write Skew

54

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

CSE 544 - Fall 2015

Questions/Discussions

•  How does snapshot isolation (SI) compare to repeatable
reads and serializable?
–  A: SI avoids most but not all phantoms (e.g., write skew)

•  Note: Oracle & PostgreSQL implement it even for isolation
level SERIALIZABLE
–  But most recently: “serializable snapshot isolation”

•  How can we enforce serializability at the app level ?
–  Recall that all read / write conflicts are ignored.
–  A: Use dummy writes for all reads to create write-write conflicts… but

that is confusing for developers!!!

56 CSE 544 - Fall 2015

57

Commercial Systems

Always check documentation as DBMSs keep evolving and
thus changing! Just to get an idea:
•  DB2: Strict 2PL
•  SQL Server:

–  Strict 2PL for standard 4 levels of isolation
–  Multiversion concurrency control for snapshot isolation

•  PostgreSQL: Multiversion concurrency control
•  Oracle: Multiversion concurrency control

CSE 544 - Fall 2015

Important Lesson

•  ACID transactions/serializability make it easy to develop
applications

•  BUT they add overhead and slow things down

•  Lower levels of isolation reduce overhead
•  BUT they are hard to reason about for developers!

CSE 544 - Fall 2015 58

