CSE 544

Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 12 —
Transactions: Concurrency Control
(Part 2 aka the Interesting Stuff)

Announcements

* Project milestone report due next Wednesday

— See project page for details

« HW3 due next Thursday

* No lecture and OH next Tuesday

« Today: finish discussion on concurrency control

CSE 544 - Fall 2015

References

« Concurrency control and recovery.

Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

- Database management systems.

Ramakrishnan and Gehrke.
Third Ed. Chapters 16 and 17.

CSE 544 - Fall 2015 3

Outline

* Transactions motivation, definition, properties

« Concurrency control and locking

» Optimistic concurrency control

CSE 544 - Fall 2015

Motivating Example

UPDATE Budget SELECT sum (money)
SET money=money-100 FROM Budget

WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

-
Would like to treat
each group of

SET money=money+40 kmstruc:tlons as a unltj

WHERE pid = 3

UPDATE Budget

CSE 544 - Fall 2015

Definition

* A transaction = one or more operations, (seemingly)
single real-world transition

« Examples
— Transfer money between accounts
— Purchase a group of products

— Register for a class (either waitlist or allocated)
— What else?

CSE 544 - Fall 2015

ACID Properties

tomicity: Either all changes performed by transaction
OCCUr or none occurs

onsistency: A transaction as a whole does not violate
iIntegrity constraints

solation: Transactions appear to execute one after the
other in sequence

urability: If a transaction commits, its changes will survive
failures

CSE 544 - Fall 2015 7

Types of Problems: Summary

« Concurrent execution problems
— Write-read conflict: dirty read (includes inconsistent read)

« A transaction reads a value written by another transaction that has
not yet committed

— Read-write conflict: unrepeatable read

A transaction reads the value of the same object twice. Another
transaction modifies that value in between the two reads

— Write-write conflict: lost update

« Two transactions update the value of the same object. The second
one to write the value overwrite the first change

« Falilure problems
— DBMS can crash in the middle of a series of updates
— Can leave the database in an inconsistent state

CSE 544 - Fall 2015 8

Outline

* Transactions motivation, definition, properties

« Concurrency control and locking

» Optimistic concurrency control

CSE 544 - Fall 2015

Time

A Serial Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A,s)
S =82
WRITE(A,s)
READ(B,s)
S =82

WRITE(B,s)

CSE 544 - Fall 2015

10

Serializable Schedule

* A schedule is serializable if it is equivalent to a serial
schedule

CSE 544 - Fall 2015

11

A Serializable Schedule

T1 T2
READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(A)
S =82
WRITE(A s)
READ(B, t)
t:=t+100
WRITE(B, t)
READ(B,s)
Notice: g '=8*2

This is NOT a serial schedule WRITE(B,s)

CSE 544 - Fall 2015 12

Notation

T,:r1(A); wy(A); ry(B); wy(B)
T,: ry(A); Wo(A); rx(B); wy(B)

CSE 544 - Fall 2015

13

Serializable Execution

Serializability: interleaved execution has same effect as
some serial execution

Schedule of two transactions (Figure 1)
r,[A] - w,[A] = r,[A] = [B] —cCc,—
—r,[B] =w,[B] =,

Serializable schedule: equiv. to serial schedule
r,[A] = w,[A] > r,[A] —r,[B] >

— w,[B] =@ ¢, =>r,[B] —=cC

CSE 544 - Fall 2015 14

Conflict Serializability

Conflicts: (aka bad things happen if swapped)

Two actions by same transaction T::

Two writes by T, T, to same element

Read/write by T;, T, to same element

CSE 544 - Fall 2015

Conflict Serializability

» A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

Example:

ri(A); wy(A); ra(A); wo(A); ri(B); wy(B); ry(B); w,(B)

4

ri(A); wy(A); ry(B); wy(B); ra(A); wo(A); ry(B); wo(B)

CSE 544 - Fall 2015 16

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
 Build a graph of all transactions T,

 Edge from T, to T, if T, makes an action that conflicts with
one of T, and comes first

« Fact: if the graph has no cycles, then it is conflict
serializable !

CSE 544 - Fall 2015 17

Example 2

ry(A); 11(B); Wo(A); ra(B); r3(A); wq(B); wa(A); wo(B)

B
A

52 @

This schedule is NOT conflict-serializable

CSE 544 - Fall 2015 18

Conflict Serializability

« A serializable schedule need not be conflict serializable,
even under the “worst case update” assumption

W4(Y); Wo(Y); Wo(X); Wy(X); Ws(X);
-
W4(Y); W4(X); W,(Y); Wy(X); Ws(X);
Equivalent, but can’'t swap

CSE 544 - Fall 2015 19

Scheduler

The scheduler is the module that schedules the
transaction’s actions, ensuring serializability

How? We discuss three techniques in class:
— Locks

— Timestamps

— Validation

CSE 544 - Fall 2015

20

Outline

« Transactions motivation, definition, properties
« Concurrency control and locking

» Optimistic concurrency control

CSE 544 - Fall 2015

21

Locking Scheduler

Simple idea:

Each element has a unique lock

Each transaction must first acquire the lock before
reading/writing that element

If lock is taken by another transaction, then wait
The transaction must release the lock(s)

CSE 544 - Fall 2015

22

Notation

.(A) = transaction T, acquires lock for element A

u.(A) = transaction T, releases lock for element A

CSE 544 - Fall 2015 23

Example

T1 12

L,(A); READ(A, t)

t:=t+100

WRITE(A, t); U,(A); L(B)
L,(A); READ(A,s)
S =82
WRITE(A,s); U,(A);
L,(B); DENIED...

READ(B, t)

t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S =82
WRITE(B,s); U,(B);

Scheduler has ensured a conflict-serializable schedule %

Is this enough?

T1 12

L,(A); READ(A, t)

t:=t+100

WRITE(A, t); U,(A);
L,(A); READ(A,s)
S =82
WRITE(A,s); U,(A);
L,(B); READ(B,s)
S =82
WRITE(B,s); U,(B);

L,(B); READ(B, t)

t:=t+100

WRITE(B,t); U,(B);

Locks did not enforce conflict-serializability !!!

25

Two Phase Locking (2PL)

The 2PL rule:

* |In every transaction, all lock requests must preceed all
unlock requests

* This ensures conflict serializability ! (why?)

CSE 544 - Fall 2015 26

Example: 2PL transactions

T1 12

L1(A); L1(B); READ(A, 1)
t :=t+100
WRITE(A, t); U,(A)
L,(A); READ(A,s)

S :=8%2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U, (B):
..GRANTED; READ(B,s)
S :=8%2
WRITE(B,s): A); B):
Now it is conflict-serializable (B,s); Uy(A); Uy()2,7

Example with Multiple Transactions

T T2 T3 | T4
Unlocks second so \l/JVnIockst f'rSFt_
_ - i as not waiting
Growmg foirTgps was waiting | ¢ anyone
phase T
Shrinking
phase

Equivalent to each transaction executing entirely the
moment it enters shrinking phase

CSE 544 - Fall 2015 28

What about Aborts?

o 2PL enforces conflict-serializable schedules

 But what if a transaction releases its locks and then
aborts?

CSE 544 - Fall 2015 29

Example with Abort

T1 T2

L,(A); L{(B); READ(A, t)
t :=t+100
WRITE(A, t); U,(A)
L,(A); READ(A,s)

S :=8%2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S =82
WRITE(B,s); U,(A); U,(B);
Abort Commit %

Strict 2PL

» Strict 2PL: All locks held by a transaction are released
when the transaction is completed

— Also called “long-duration locks”

* Ensures that schedules are recoverable

— Transactions commit only after all transactions whose changes
they read also commit

* Avoids cascading rollbacks

CSE 544 - Fall 2015 31

Deadlock

* Transaction T, waits for a lock held by T,;
« But T, waits for a lock held by Tj;;
* While T, waits for

e ...and T,; waits for a lock held by T, !l

* A deadlock is when two or more transactions are waiting
for each other to complete

CSE 544 - Fall 2015 32

Handling Deadlock

Deadlock avoidance
— Acquire locks in pre-defined order
— Acquire all locks at once before starting

Deadlock detection
— Timeouts (but hard to pick the right threshold)
— Wait-for graph
« What commercial systems use (they check graph periodically)

CSE 544 - Fall 2015

33

Lock Modes

S = shared lock (for READ)
X = exclusive lock (for WRITE)

U = update lock

— Initially like S

— Later may be upgraded to X

| = increment lock (for A := A + something)
— Increment operations commute

CSE 544 - Fall 2015

34

Lock Granularity

* Fine granularity locking (e.g., tuples)
— High concurrency
— High overhead in managing locks

« Coarse grain locking (e.g., tables)
— Many false conflicts
— Less overhead in managing locks

« Alternative techniques
— Hierarchical locking (and intentional locks) [commercial DBMSs]
— Lock escalation

CSE 544 - Fall 2015 35

Phantom Problem

« A “phantom”is a tuple that is invisible during part of a
transaction execution but not all of it.

 Example:
— TO: reads list of books in catalog
— T1: inserts a new book into the catalog

— T2: reads list of books in catalog
* New book will appear!

« How can this occur?
« Depends on locking details (eg, granularity of locks)
« Can'tlock a tuple that doesn't exist yet

CSE 544 - Fall 2015 36

Dealing with Phantoms:
Predicate Locks

* Lock predicates rather than actual database elements
— “lock all books that have createTime > T~

— Two predicates p and p’ are compatible iff no tuple can satisfy
both at the same time

* |ssue: very expensive to implement
— NP-hard to determine if predicates are compatible with each

other
— What if DB has hidden predicates (e.g., functional dependencies)

that make p and p’ incompatible?

CSE 544 - Fall 2015 37

Dealing with Phantoms:
Granular Locks

* Implement multi-level locking
— Tuple
— Table
— Entire database

» Allow transactions to lock at any granularity
— Lock tuples if reading
— Lock the entire table if inserting new records
— Need a hierarchy of locks: table lock > tuple lock

* Issue: can cause many deadlocks among transactions

CSE 544 - Fall 2015 38

Dealing with Phantoms:
Intent Locks

* Reduce possibility of deadlocks with three lock modes:
— Shared
— Exclusive
— Intent

 Intent: transaction will be locking at finer granularity
* Lock compatibilities:

Request \ Current mode | None Intent | Shared | Exclusive
None e e

Intent v v

Shared v e

Exclusive e

CSE 544 - Fall 2015 39

Degrees of Isolation

* Isolation level “serializable” (i.e. ACID)
— Gold standard
— Requires strict 2PL and predicate locking
— But often too inefficient

— Imagine there are only a few update operations and many long
read operations

 Weaker isolation levels
— Sacrifice correctness for efficiency

— Often used in practice (often default)
— Sometimes are hard to understand

CSE 544 - Fall 2015 40

Degrees of Isolation

* Four levels of isolation

— All levels use long-duration exclusive locks
— READ UNCOMMITTED: no read locks
— READ COMMITTED: short duration read locks
— REPEATABLE READ:

* Long duration read locks on individual items
— SERIALIZABLE:

» All locks long duration and lock predicates

« Trade-off: consistency vs concurrency
« Commercial systems give choice of level + others

CSE 544 - Fall 2015

The Tree Protocol

* An alternative to 2PL, for tree structures
« E.g. B+ trees (the indexes of choice in databases)

 Because
— Indexes are hot spots!
— 2PL would lead to great lock contention

— Also, unlike data, the index is not directly visible to transactions
— So only need to guarantee that index returns correct values

CSE 544 - Fall 2015 42

The Tree Protocol

Rules:

* Alock on a node A may only be acquired if the transaction holds a
lock on its parent B

* Nodes can be unlocked in any order (no 2PL necessary)
« Cannot relock a node for which already released a lock

« “Crabbing”

— First lock parent then lock child
— Keep parent locked only if may need to update it
— Release lock on parent if child is not full

* The tree protocol is NOT 2PL, yet ensures conflict-serializability !
* (More in the R&G)

CSE 544 - Fall 2015 43

Outline

« Transactions motivation, definition, properties
« Concurrency control and locking

« Optimistic concurrency control

CSE 544 - Fall 2015

44

Locking vs Optimistic

Locking prevents unserializable behavior from occurring:
it causes transactions to wait for locks

Optimistic methods assume no unserializable behavior
will occur: they abort transactions if it does

Locking typically better in case of high levels of
contention; optimistic better otherwise

CSE 544 - Fall 2015 45

Optimistic Concurrency Control

Timestamp-based technique

« Each object, O, has read and write timestamps: RTS(O) and WTS(O)
« [Each transaction, T, has a timestamp TS(T)

 INVARIANT: Timestamp order defines serialization order

Transaction wants to read object O
— If TS(T) < WTS(O) abort
— Else read and update RTS(O) to larger of TS(T) or RTS(O)

Transaction wants to write object O
— If TS(T) < RTS(O) abort
— If TS(T) < WTS(O) ignore my write and continue (Thomas Write Rule)
— Otherwise, write O and update WTS(O) to TS(T)

CSE 544 - Fall 2015 46

Optimistic Concurrency Control

Timestamp-based technique
 \What about aborts? Need to add a commit bit C to each element
* Read dirty data:

— T wants to read X, and WT(X) < TS(T)

— If C(X)= false, T needs to wait for it to become true in case previous
writer aborts

* Write dirty data:
— T wants to write X, and WT(X) > TS(T)
— If C(X)= false, T needs to wait for it to become true in case of abort

- Bottom line: When T requests r(X) or w(X), scheduler examines
RT(X), WT(X), C(X), and decides one of:

— To grant the request, or

— To rollback T (and restart with later timestamp)
— To delay T until C(X) = true

47

Optimistic Concurrency Control

Multiversion-based technique
* Object timestamps: RTS(O) & WTS(O); transaction timestamps TS(T)

« Transaction can read most recent version that precedes TS(T)
— When reading object, update RTS(O) to larger of TS(T) or RTS(O)

« Transaction wants to write object O
— If TS(T) < RTS(O) abort
— Otherwise, create a new version of O with WTS(O) = TS(T)

« Common variant (used in commercial systems)
— To write object O only check for conflicting writes not reads
— Use locks for writes to avoid aborting in case conflicting transaction aborts

CSE 544 - Fall 2015 48

Optimistic Concurrency Control

Validation-based technique

 Phase 1: Read
— Transaction reads from database and writes to a private workspace
— Each transaction keeps track of its read set RS(T) and write set WS(T)

 Phase 2: Validate
— At commit time, system performs validation using read/write sets

— Validation checks if transaction could have conflicted with others
« Each transaction gets a timestamp
» Check if timestamp order is equivalent to a serial order

— If there is a potential conflict: abort

 Phase 3: Write
— If no conflict, transaction changes are copied into database

49

Snapshot Isolation

A type of multiversion concurrency control algorithm
Provides yet another level of isolation

Very efficient, and very popular
— Oracle, PostgreSQL, SQL Server 2005

Prevents many classical anomalies BUT...

Not serializable (!), yet ORACLE and PostgreSQL use it
even for SERIALIZABLE transactions!

— But “serializable snapshot isolation” now in PostgreSQL

CSE 544 - Fall 2015 50

Snapshot Isolation Rules

Each transactions receives a timestamp TS(T)
Transaction T sees snapshot at time TS(T) of the database
When T commits, updated pages are written to disk

Write/write conflicts resolved by “first committer wins” rule
— Loser gets aborted

Read/write conflicts are ignored

CSE 544 - Fall 2015 51

Snapshot Isolation (Details)

* Multiversion concurrency control:
— Versions of X: Xy, Xz, Xz - - -

* When T reads X, return Xrg)-

 When T writes X: if other transaction updated X, abort

— Not faithful to “first committer” rule, because the other transaction
U might have committed after T. But once we abort T, U
becomes the first committer ©

CSE 544 - Fall 2015 52

What Works and What Not

No dirty reads (Why 7?)
No inconsistent reads (Why ?)
— A: Each transaction reads a consistent snapshot

No lost updates (“first committer wins”)

Moreover: no reads are ever delayed

However: read-write conflicts not caught !

CSE 544 - Fall 2015

53

Write Skew

T1: T2:
READ(X); READ(Y);
if X>=50 if Y >= 50
thenY = -50; WRITE(Y) then X = -50; WRITE(X)
COMMIT COMMIT

In our notation:

R1(X), Ry(Y), W4 (Y), W5(X), C4,Cy

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

CSE 544 - Fall 2015

54

Questions/Discussions

How does snapshot isolation (S1) compare to repeatable
reads and serializable?
— A: Sl avoids most but not all phantoms (e.g., write skew)

Note: Oracle & PostgreSQL implement it even for isolation
level SERIALIZABLE

— But most recently: “serializable snapshot isolation”

How can we enforce serializability at the app level ?

— Recall that all read / write conflicts are ignored.

— A: Use dummy writes for all reads to create write-write conflicts... but
that is confusing for developers!!!

CSE 544 - Fall 2015 56

Commercial Systems

Always check documentation as DBMSs keep evolving and
thus changing! Just to get an idea:

« DB2: Strict 2PL
« SQL Server:

— Strict 2PL for standard 4 levels of isolation
— Multiversion concurrency control for snapshot isolation

« PostgreSQL: Multiversion concurrency control
« QOracle: Multiversion concurrency control

CSE 544 - Fall 2015 o7

Important Lesson

ACID transactions/serializability make it easy to develop
applications

BUT they add overhead and slow things down

Lower levels of isolation reduce overhead
BUT they are hard to reason about for developers!

CSE 544 - Fall 2015 58

