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Announcements 

•  Project milestone report due next Wednesday 
–  See project page for details 

•  HW3 due next Thursday 

•  No lecture and OH next Tuesday 

•  Today: finish discussion on concurrency control 
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Outline 

•  Transactions motivation, definition, properties 

•  Concurrency control and locking 

•  Optimistic concurrency control 
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Motivating Example  

UPDATE Budget 

SET money=money-100 
WHERE pid = 1 

 

UPDATE Budget 

SET money=money+60 

WHERE pid = 2 
 

UPDATE Budget 

SET money=money+40 

WHERE pid = 3 

SELECT sum(money) 
FROM Budget 

Would like to treat 
each group of 

instructions as a unit 
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Definition 

•  A transaction = one or more operations, (seemingly) 
single real-world transition 

•  Examples  
–  Transfer money between accounts 
–  Purchase a group of products 
–  Register for a class (either waitlist or allocated) 
–  What else? 
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ACID Properties 

•  Atomicity: Either all changes performed by transaction 
occur or none occurs 

•  Consistency: A transaction as a whole does not violate 
integrity constraints 

•  Isolation: Transactions appear to execute one after the 
other in sequence 

•  Durability: If a transaction commits, its changes will survive 
failures 
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Types of Problems: Summary 

•  Concurrent execution problems 
–  Write-read conflict: dirty read (includes inconsistent read) 

•  A transaction reads a value written by another transaction that has 
not yet committed 

–  Read-write conflict: unrepeatable read 
•  A transaction reads the value of the same object twice. Another 

transaction modifies that value in between the two reads 
–  Write-write conflict: lost update 

•  Two transactions update the value of the same object. The second 
one to write the value overwrite the first change 

•  Failure problems 
–  DBMS can crash in the middle of a series of updates 
–  Can leave the database in an inconsistent state 
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Outline 

•  Transactions motivation, definition, properties 

•  Concurrency control and locking 

•  Optimistic concurrency control 
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A Serial Schedule 

T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 
READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 
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Serializable Schedule 

•  A schedule is serializable if it is equivalent to a serial 
schedule 
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A Serializable Schedule 

T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(B,s) 
s := s*2 
WRITE(B,s) 

Notice:  
This is NOT a serial schedule 
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Notation 

T1: r1(A); w1(A); r1(B); w1(B) 
T2: r2(A); w2(A); r2(B); w2(B) 
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Serializable Execution 

•  Serializability: interleaved execution has same effect as 
some serial execution 

•  Schedule of two transactions (Figure 1) 
r0[A] → w0[A] → r1[A] → r1[B] → c1→	

→ r0[B] → w0[B] → c0!
!

•  Serializable schedule: equiv. to serial schedule 
r0[A] → w0[A] → r1[A] → r0[B] → 
→ w0[B] → c0 → r1[B] → c1!
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Conflict Serializability 

Conflicts: (aka bad things happen if swapped) 
ri(X); wi(Y) Two actions by same transaction Ti: 

wi(X); wj(X) Two writes by Ti, Tj to same element 

wi(X); rj(X) 
Read/write by Ti, Tj to same element 

ri(X); wj(X) 
CSE 544 - Fall 2015 15 



Conflict Serializability 

•  A schedule is conflict serializable if it can be 
transformed into a serial schedule by a series of 
swappings of adjacent non-conflicting actions 

Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 
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The Precedence Graph Test 

Is a schedule conflict-serializable ? 
Simple test: 
•  Build a graph of all transactions Ti 

•  Edge from Ti to Tj if Ti makes an action that conflicts with 
one of Tj and comes first 

•  Fact: if the graph has no cycles, then it is conflict 
serializable ! 
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Example 2 

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B) 

1 2 3 

This schedule is NOT conflict-serializable 

A 
B 

B 
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Conflict Serializability 

•  A serializable schedule need not be conflict serializable, 
even under the “worst case update” assumption 

w1(Y); w1(X); w2(Y); w2(X); w3(X); 

w1(Y); w2(Y); w2(X); w1(X); w3(X); 

Lost write 

Equivalent,  but can’t swap 
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Scheduler 

•  The scheduler is the module that schedules the 
transaction’s actions, ensuring serializability 

•  How?  We discuss three techniques in class: 
–  Locks 
–  Timestamps 
–  Validation 
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Outline 

•  Transactions motivation, definition, properties 

•  Concurrency control and locking 

•  Optimistic concurrency control 
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Locking Scheduler 

Simple idea: 
•  Each element has a unique lock 
•  Each transaction must first acquire the lock before 

reading/writing that element 
•  If lock is taken by another transaction, then wait 
•  The transaction must release the lock(s) 
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Notation 

li(A) = transaction Ti acquires lock for element A 
 
ui(A) = transaction Ti releases lock for element A 
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Example 
T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); L1(B) 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(B);  

Scheduler has ensured a conflict-serializable schedule 24 



Is this enough? 
T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A); 
L2(B); READ(B,s) 
s := s*2 
WRITE(B,s); U2(B); 

L1(B); READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

Locks did not enforce conflict-serializability !!! 25 



Two Phase Locking (2PL) 

The 2PL rule: 

•  In every transaction, all lock requests must preceed all 
unlock requests 

•  This ensures conflict serializability !  (why?) 
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Example: 2PL transactions 
T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  

Now it is conflict-serializable 27 



Example with Multiple Transactions 

Equivalent to each transaction executing entirely the 
moment it enters shrinking phase 
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T1 T2 T3 T4 

Growing 
phase 

Shrinking 
phase 

Unlocks first 
Was not waiting 
for anyone 

Unlocks second so 
perhaps was waiting 
for T3 



What about Aborts? 

•  2PL enforces conflict-serializable schedules 

•  But what if a transaction releases its locks and then 
aborts? 
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Example with Abort 
T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  

Abort Commit 30 



Strict 2PL 

•  Strict 2PL: All locks held by a transaction are released 
when the transaction is completed 
–  Also called “long-duration locks” 

 
•  Ensures that schedules are recoverable 

–  Transactions commit only after all transactions whose changes 
they read also commit 

•  Avoids cascading rollbacks 
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Deadlock 

•  Transaction T1 waits for a lock held by T2; 
•  But T2 waits for a lock held by T3; 
•  While T3 waits for . . . . 
•  . . . 
•  . . .and T73 waits for a lock held by T1  !! 

•  A deadlock is when two or more transactions are waiting 
for each other to complete 
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Handling Deadlock 

•  Deadlock avoidance 
–  Acquire locks in pre-defined order 
–  Acquire all locks at once before starting 

•  Deadlock detection 
–  Timeouts (but hard to pick the right threshold) 
–  Wait-for graph 

•  What commercial systems use (they check graph periodically) 
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Lock Modes 

•  S = shared lock (for READ) 
•  X = exclusive lock (for WRITE) 

•  U = update lock 
–  Initially like S 
–  Later may be upgraded to X 

•  I = increment lock (for A := A + something) 
–  Increment operations commute 

CSE 544 - Fall 2015 34 
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Lock Granularity 

•  Fine granularity locking (e.g., tuples) 
–  High concurrency 
–  High overhead in managing locks 

•  Coarse grain locking (e.g., tables) 
–  Many false conflicts 
–  Less overhead in managing locks 

•  Alternative techniques 
–  Hierarchical locking (and intentional locks) [commercial DBMSs] 
–  Lock escalation 
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Phantom Problem 
•  A “phantom” is a tuple that is invisible during part of a 

transaction execution but not all of it. 

•  Example: 
–  T0: reads list of books in catalog 
–  T1: inserts a new book into the catalog 
–  T2: reads list of books in catalog 

•  New book will appear! 

•  How can this occur? 
•  Depends on locking details (eg, granularity of locks) 
•  Can’t lock a tuple that doesn’t exist yet 
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Dealing with Phantoms:  
Predicate Locks 

•  Lock predicates rather than actual database elements 
–  “lock all books that have createTime > T” 
–  Two predicates p and p’ are compatible iff no tuple can satisfy 

both at the same time 

•  Issue: very expensive to implement 
–  NP-hard to determine if predicates are compatible with each 

other 
–  What if DB has hidden predicates (e.g., functional dependencies) 

that make p and p’ incompatible? 
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Dealing with Phantoms:  
Granular Locks 

•  Implement multi-level locking 
–  Tuple  
–  Table 
–  Entire database 

•  Allow transactions to lock at any granularity 
–  Lock tuples if reading 
–  Lock the entire table if inserting new records 
–  Need a hierarchy of locks: table lock > tuple lock 

•  Issue: can cause many deadlocks among transactions 
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Dealing with Phantoms:  
Intent Locks 

•  Reduce possibility of deadlocks with three lock modes: 
–  Shared 
–  Exclusive 
–  Intent 

•  Intent: transaction will be locking at finer granularity 
•  Lock compatibilities: 
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Request   \  Current mode None Intent Shared Exclusive 
None ✓ ✓ 
Intent ✓ ✓ 
Shared ✓ ✓ 
Exclusive ✓ 
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Degrees of Isolation 

•  Isolation level “serializable” (i.e. ACID) 
–  Gold standard 
–  Requires strict 2PL and predicate locking 
–  But often too inefficient 
–  Imagine there are only a few update operations and many long 

read operations 

•  Weaker isolation levels 
–  Sacrifice correctness for efficiency 
–  Often used in practice (often default) 
–  Sometimes are hard to understand 
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Degrees of Isolation 

•  Four levels of isolation 
–  All levels use long-duration exclusive locks 
–  READ UNCOMMITTED: no read locks 
–  READ COMMITTED: short duration read locks 
–  REPEATABLE READ:  

•  Long duration read locks on individual items 
–  SERIALIZABLE:  

•  All locks long duration and lock predicates 

•  Trade-off: consistency vs concurrency 
•  Commercial systems give choice of level + others 
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The Tree Protocol 

•  An alternative to 2PL, for tree structures 
•  E.g. B+ trees (the indexes of choice in databases) 

•  Because 
–  Indexes are hot spots! 
–  2PL would lead to great lock contention 

–  Also, unlike data, the index is not directly visible to transactions 
–  So only need to guarantee that index returns correct values 
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The Tree Protocol 

Rules: 
•  A lock on a node A may only be acquired if the transaction holds a 

lock on its parent B 
•  Nodes can be unlocked in any order (no 2PL necessary) 
•  Cannot relock a node for which already released a lock 
•  “Crabbing” 

–  First lock parent then lock child 
–  Keep parent locked only if may need to update it 
–  Release lock on parent if child is not full 

•  The tree protocol is NOT 2PL, yet ensures conflict-serializability ! 
•  (More in the R&G) 
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Outline 

•  Transactions motivation, definition, properties 

•  Concurrency control and locking 

•  Optimistic concurrency control 
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Locking vs Optimistic 

•  Locking prevents unserializable behavior from occurring: 
it causes transactions to wait for locks 

•  Optimistic methods assume no unserializable behavior 
will occur: they abort transactions if it does 

•  Locking typically better in case of high levels of 
contention; optimistic better otherwise 
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Optimistic Concurrency Control 

Timestamp-based technique 
•  Each object, O, has read and write timestamps: RTS(O) and WTS(O) 
•  Each transaction, T, has a timestamp TS(T) 
•  INVARIANT: Timestamp order defines serialization order 

Transaction wants to read object O 
–  If TS(T) < WTS(O)  abort 
–  Else read and update RTS(O) to larger of TS(T) or RTS(O) 

Transaction wants to write object O 
–  If TS(T) < RTS(O) abort 
–  If TS(T) < WTS(O) ignore my write and continue (Thomas Write Rule) 
–  Otherwise, write O and update WTS(O) to TS(T) 
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Optimistic Concurrency Control 
Timestamp-based technique 
•  What about aborts? Need to add a commit bit C to each element 
•  Read dirty data: 

–  T wants to read X, and WT(X) < TS(T) 
–  If C(X)= false, T needs to wait for it to become true in case previous 

writer aborts 
•  Write dirty data: 

–  T wants to write X, and WT(X) > TS(T) 
–  If C(X)= false, T needs to wait for it to become true in case of abort 

•  Bottom line: When T requests r(X) or w(X), scheduler examines 
RT(X), WT(X), C(X), and decides one of: 
–  To grant the request, or 
–  To rollback T (and restart with later timestamp) 
–  To delay T until C(X) = true 
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Optimistic Concurrency Control 

Multiversion-based technique  
 
•  Object timestamps: RTS(O) & WTS(O); transaction timestamps TS(T) 

•  Transaction can read most recent version that precedes TS(T)  
–  When reading object, update RTS(O) to larger of TS(T) or RTS(O) 

•  Transaction wants to write object O 
–  If TS(T) < RTS(O) abort 
–  Otherwise, create a new version of O with WTS(O) = TS(T) 

•  Common variant (used in commercial systems) 
–  To write object O only check for conflicting writes not reads 
–  Use locks for writes to avoid aborting in case conflicting transaction aborts 
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Optimistic Concurrency Control 
Validation-based technique 
 
•  Phase 1: Read 

–  Transaction reads from database and writes to a private workspace 
–  Each transaction keeps track of its read set RS(T) and write set WS(T) 

•  Phase 2: Validate 
–  At commit time, system performs validation using read/write sets 
–  Validation checks if transaction could have conflicted with others 

•  Each transaction gets a timestamp 
•  Check if timestamp order is equivalent to a serial order  

–  If there is a potential conflict: abort  

•  Phase 3: Write 
–  If no conflict, transaction changes are copied into database 
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Snapshot Isolation 

•  A type of multiversion concurrency control algorithm 
•  Provides yet another level of isolation 

•  Very efficient, and very popular 
–  Oracle, PostgreSQL, SQL Server 2005 

•  Prevents many classical anomalies BUT… 
•  Not serializable (!), yet ORACLE and PostgreSQL use it 

even for SERIALIZABLE transactions! 
–  But “serializable snapshot isolation” now in PostgreSQL 
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Snapshot Isolation Rules 

•  Each transactions receives a timestamp TS(T) 

•  Transaction T sees snapshot at time TS(T) of the database 

•  When T commits, updated pages are written to disk 

•  Write/write conflicts resolved by “first committer wins” rule 
–  Loser gets aborted 

•  Read/write conflicts are ignored 
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Snapshot Isolation (Details) 

•  Multiversion concurrency control: 
–  Versions of X:   Xt1, Xt2, Xt3, . . . 

•  When T reads X, return XTS(T). 

•  When T writes X: if other transaction updated X, abort 
–  Not faithful to “first committer” rule, because the other transaction 

U might have committed after T.  But once we abort T, U 
becomes the first committer J 
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What Works and What Not 

•  No dirty reads (Why ?) 
•  No inconsistent reads (Why ?) 

–  A: Each transaction reads a consistent snapshot 

•  No lost updates (“first committer wins”) 

•  Moreover: no reads are ever delayed 

•  However: read-write conflicts not caught ! 
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Write Skew 
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T1: 
   READ(X); 
   if X >= 50 
         then Y = -50; WRITE(Y) 
   COMMIT 

T2: 
   READ(Y); 
   if Y >= 50 
         then X = -50; WRITE(X) 
   COMMIT 

In our notation: 

R1(X), R2(Y), W1(Y), W2(X), C1,C2 

Starting with X=50,Y=50, we end with X=-50, Y=-50. 
Non-serializable !!! 
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Questions/Discussions 

•  How does snapshot isolation (SI) compare to repeatable 
reads and serializable?  
–  A: SI avoids most but not all phantoms (e.g., write skew) 

•  Note: Oracle & PostgreSQL implement it even for isolation 
level SERIALIZABLE 
–  But most recently: “serializable snapshot isolation” 

•  How can we enforce serializability at the app level ?  
–  Recall that all read / write conflicts are ignored. 
–  A: Use dummy writes for all reads to create write-write conflicts… but 

that is confusing for developers!!! 
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Commercial Systems 

Always check documentation as DBMSs keep evolving and 
thus changing! Just to get an idea: 
•  DB2: Strict 2PL 
•  SQL Server: 

–  Strict 2PL for standard 4 levels of isolation 
–  Multiversion concurrency control for snapshot isolation 

•  PostgreSQL: Multiversion concurrency control 
•  Oracle: Multiversion concurrency control 
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Important Lesson 

•  ACID transactions/serializability make it easy to develop 
applications 

•  BUT they add overhead and slow things down 

•  Lower levels of isolation reduce overhead 
•  BUT they are hard to reason about for developers!  
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