CSE 544

Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 11 —
Transactions: Concurrency Control

Announcements

« HW2 due tonight

« HW3 posted

— Due in two weeks
— Check website for OH

* Next couple of lectures we will talk about transactions

CSE 544 - Fall 2015

Where We Are

« Data models
— Relational
— IMS / Codasyl
— Unstructured

* Query processing
— Algorithms for relational operators
— Indexing and physical design

* Dealing with the real world
— Data warehousing
— Transaction processing

References

« Concurrency control and recovery.

Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

- Database management systems.

Ramakrishnan and Gehrke.
Third Ed. Chapters 16 and 17.

CSE 544 - Fall 2015 4

Outline

* Transactions motivation, definition, properties

« Concurrency control and locking

» Optimistic concurrency control

CSE 544 - Fall 2015

Motivating Example

UPDATE Budget SELECT sum (money)
SET money=money-100 FROM Budget

WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

-
Would like to treat
each group of

SET money=money+40 kmstruc:tlons as a unltj

WHERE pid = 3

UPDATE Budget

CSE 544 - Fall 2015

Definition

A transaction = one or more operations, single real-
world transition

« Examples
— Transfer money between accounts
— Purchase a group of products

— Register for a class (either waitlist or allocated)
— What else?

CSE 544 - Fall 2015

Transactions

* Major component of database systems
 Critical for most applications; arguably more so than SQL

« Fact: Turing awards to database researchers:
— Charles Bachman 1973 for CODASYL
— Edgar Codd 1981 for inventing relational dbms
— Jim Gray 1998 for inventing transactions
— Michael Stonebraker 2015 for postgres

CSE 544 - Fall 2015 8

Transaction Example

START TRANSACTION

UPDATE Budget SET money money - 100

WHERE pid = 1

UPDATE Budget SET money money + 60

WHERE pid = 2

UPDATE Budget SET money money + 40
WHERE pid = 3

COMMIT

CSE 544 - Fall 2015

ROLLBACK

 If the application gets to a place where it can’t complete
the transaction successfully, it can execute ROLLBACK

« This causes the system to “abort” the transaction

— Database returns to a state without any of the changes made by
the transaction

CSE 544 - Fall 2015 10

Reasons for Rollback

« User changes their mind (“ctl-C"/cancel)

« Explicit in program, when app program finds a problem
— e.g., when qty on hand < gty being sold

« System-initiated abort
— System crash

— Housekeeping
* e.g., due to timeouts, admission control, etc

CSE 544 - Fall 2015 11

ACID Properties

tomicity: Either all changes performed by transaction
OCCUr or none occurs

onsistency: A transaction as a whole does not violate
iIntegrity constraints

solation: Transactions appear to execute one after the
other in sequence

urability: If a transaction commits, its changes will survive
failures

* Q: Benefits & drawbacks of providing ACID transactions?

CSE 544 - Fall 2015 12

What Could Go Wrong?

Why is it hard to provide ACID properties?

Concurrent operations
— Isolation problems
— We saw one example earlier

Failures can occur at any time
— Atomicity and durability problems
— Next lecture

Transaction may need to abort

CSE 544 - Fall 2015

13

In a World Without Transactions

Client 1: INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*) 0.0!
FROM SmallProduct 4=
What could go wrong ? Inconsistent reads

CSE 544 - Fall 2015 14

Different Types of Problems

Client 1:
UPDATE Product

Client 2:
UPDATE Product

SET Price = Price — 1.99
WHERE pname = ‘Gizmo’

SET Price = Price*0.5
WHERE pname='Gizmo’

What could go wrong ?

CSE 544 - Fall 2015

Lost update

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000
WHERE Account.number = 1001

Aborted by
system

Client 2: SELECT Account.amount
FROM Account
WHERE Account.number = 1001

What could go wrong ? Dirty reads ‘8,

CSE 544 - Fall 2015 16

Types of Problems: Summary

« Concurrent execution problems
— Write-read conflict: dirty read (includes inconsistent read)

« A transaction reads a value written by another transaction that has
not yet committed

— Read-write conflict: unrepeatable read

A transaction reads the value of the same object twice. Another
transaction modifies that value in between the two reads

— Write-write conflict: lost update

« Two transactions update the value of the same object. The second
one to write the value overwrite the first change

« Falilure problems
— DBMS can crash in the middle of a series of updates
— Can leave the database in an inconsistent state

CSE 544 - Fall 2015 17

Outline

« Transactions motivation, definition, properties
« Concurrency control and locking

» Optimistic concurrency control

CSE 544 - Fall 2015

18

Schedules

« Given multiple transactions

* A schedule is a sequence of interleaved actions from all
transactions

CSE 544 - Fall 2015 19

Example Schedule

T1 T2

READ(A,t) READ(A, s)
t . =t+100 S :=8*2
WRITE(A, t) WRITE(A,s)
READ(B,t) @ READ(B,s)
t . =t+100 S :=8*2
WRITE(B,t) WRITE(B,s)

CSE 544 - Fall 2015 20

Time

A Serial Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)

READ(B, t)

t:=t+100

WRITE(B,1)
READ(A,s)
S =82
WRITE(A,s)
READ(B,s)
S =82

WRITE(B,s)

CSE 544 - Fall 2015

21

Serializable Schedule

* A schedule is serializable if it is equivalent to a serial
schedule

CSE 544 - Fall 2015

22

A Serializable Schedule

T1 T2
READ(A, 1)
t:=t+100
WRITE(A, 1)
READ(A)
S =82
WRITE(A s)
READ(B, t)
t:=t+100
WRITE(B, t)
READ(B,s)
Notice: g '=8*2

This is NOT a serial schedule WRITE(B,s)

CSE 544 - Fall 2015 23

A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A,s)
S :=8%2
WRITE(A,s)
READ(B,s)
S :=8%2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,)

CSE 544 - Fall 2015

24

Notation

T,:r1(A); wy(A); ry(B); wy(B)
T,: ry(A); Wo(A); rx(B); wy(B)

CSE 544 - Fall 2015

25

Serializable Execution

Serializability: interleaved execution has same effect as
some serial execution

Schedule of two transactions (Figure 1)
r,[A] - w,[A] = r,[A] = [B] —cCc,—
—r,[B] =w,[B] =,

Serializable schedule: equiv. to serial schedule
r,[A] = w,[A] > r,[A] —r,[B] >

— w,[B] =@ ¢, =>r,[B] —=cC

CSE 544 - Fall 2015 26

Ignoring Details

« Sometimes transactions’ actions can commute
accidentally because of specific updates

— Fact: Serializability is undecidable !

 Scheduler should not look at transaction details

 Assume worst case updates
— Only care about reads r(A) and writes w(A)
— Not the actual values involved

CSE 544 - Fall 2015

27

Conflict Serializability

Conflicts: (aka bad things happen if swapped)

Two actions by same transaction T::

Two writes by T, T, to same element

Read/write by T;, T, to same element

CSE 544 - Fall 2015

Conflict Serializability

» A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

Example:

ri(A); wy(A); ra(A); wo(A); ri(B); wy(B); ry(B); w,(B)

4

ri(A); wy(A); ry(B); wy(B); ra(A); wo(A); ry(B); wo(B)

CSE 544 - Fall 2015 29

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
 Build a graph of all transactions T,

 Edge from T, to T, if T, makes an action that conflicts with
one of T, and comes first

« Fact: if the graph has no cycles, then it is conflict
serializable !

CSE 544 - Fall 2015 30

Example 1

r(A); r1(B); wy(A); r3(A); w,(B); wi(A); ry(B); wy(B)

This schedule is conflict-serializable

CSE 544 - Fall 2015 31

Example 2

ry(A); 11(B); Wo(A); ra(B); r3(A); wq(B); wa(A); wo(B)

B
A

52 @

This schedule is NOT conflict-serializable

CSE 544 - Fall 2015 32

Conflict Serializability

« A serializable schedule need not be conflict serializable,
even under the “worst case update” assumption

W4(Y); Wo(Y); Wo(X); Wy(X); Ws(X);
-
W4(Y); W4(X); W,(Y); Wy(X); Ws(X);
Equivalent, but can’'t swap

CSE 544 - Fall 2015 33

Scheduler

The scheduler is the module that schedules the
transaction’s actions, ensuring serializability
How? We discuss three techniques in class:

— Locks
— Timestamps
— Validation

CSE 544 - Fall 2015

34

Outline

« Transactions motivation, definition, properties
« Concurrency control and locking

» Optimistic concurrency control

CSE 544 - Fall 2015

35

Locking Scheduler

Simple idea:

Each element has a unique lock

Each transaction must first acquire the lock before
reading/writing that element

If lock is taken by another transaction, then wait
The transaction must release the lock(s)

CSE 544 - Fall 2015

36

Notation

.(A) = transaction T, acquires lock for element A

u.(A) = transaction T, releases lock for element A

CSE 544 - Fall 2015 37

Example

T1 12

L,(A); READ(A, t)

t:=t+100

WRITE(A, t); U,(A); L(B)
L,(A); READ(A,s)
S =82
WRITE(A,s); U,(A);
L,(B); DENIED...

READ(B, t)

t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S =82
WRITE(B,s); U,(B);

Scheduler has ensured a conflict-serializable schedule °®

Is this enough?

T1 12

L,(A); READ(A, t)

t:=t+100

WRITE(A, t); U,(A);
L,(A); READ(A,s)
S =82
WRITE(A,s); U,(A);
L,(B); READ(B,s)
S =82
WRITE(B,s); U,(B);

L,(B); READ(B, t)

t:=t+100

WRITE(B,t); U,(B);

Locks did not enforce conflict-serializability !!!

39

Two Phase Locking (2PL)

The 2PL rule:

* |In every transaction, all lock requests must preceed all
unlock requests

* This ensures conflict serializability ! (why?)

CSE 544 - Fall 2015 40

Example: 2PL transactions

T1 12

L1(A); L1(B); READ(A, 1)
t :=t+100
WRITE(A, t); U,(A)
L,(A); READ(A,s)

S :=8%2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U, (B):
..GRANTED; READ(B,s)
S :=8%2
WRITE(B,s): A); B):
Now it is conflict-serializable (B,s); Uy(A); Uy()4,1

Example with Multiple Transactions

T T2 T3 | T4
Unlocks second so \l/JVnIockst f'rSFt_
_ - i as not waiting
Growmg foirTgps was waiting | ¢ anyone
phase T
Shrinking
phase

Equivalent to each transaction executing entirely the
moment it enters shrinking phase

CSE 544 - Fall 2015 42

What about Aborts?

o 2PL enforces conflict-serializable schedules

 But what if a transaction releases its locks and then
aborts?

CSE 544 - Fall 2015 43

Example with Abort

T1 T2

L,(A); L{(B); READ(A, t)
t :=t+100
WRITE(A, t); U,(A)
L,(A); READ(A,s)

S :=8%2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S =82
WRITE(B,s); U,(A); U,(B);
Abort Commit 44

Strict 2PL

» Strict 2PL: All locks held by a transaction are released
when the transaction is completed

— Also called “long-duration locks”

* Ensures that schedules are recoverable

— Transactions commit only after all transactions whose changes
they read also commit

* Avoids cascading rollbacks

CSE 544 - Fall 2015 45

