
CSE 544
Principles of Database
Management Systems

Alvin Cheung
Fall 2015

Lecture 11 –
Transactions: Concurrency Control

CSE 544 - Fall 2015

Announcements

•  HW2 due tonight

•  HW3 posted
–  Due in two weeks
–  Check website for OH

•  Next couple of lectures we will talk about transactions

2

3

Where We Are

•  Data models
–  Relational
–  IMS / Codasyl
–  Unstructured

•  Query processing
–  Algorithms for relational operators
–  Indexing and physical design

•  Dealing with the real world
–  Data warehousing
–  Transaction processing

CSE 544 - Fall 2015

References

•  Concurrency control and recovery.
 Michael J. Franklin. The handbook of computer science
and engineering. A. Tucker ed. 1997

•  Database management systems.

 Ramakrishnan and Gehrke.
 Third Ed. Chapters 16 and 17.

4

CSE 544 - Fall 2015

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

5

CSE 544 - Fall 2015

Motivating Example

UPDATE Budget

SET money=money-100
WHERE pid = 1

UPDATE Budget

SET money=money+60

WHERE pid = 2

UPDATE Budget

SET money=money+40

WHERE pid = 3

SELECT sum(money)
FROM Budget

Would like to treat
each group of

instructions as a unit

6

CSE 544 - Fall 2015

Definition

•  A transaction = one or more operations, single real-
world transition

•  Examples
–  Transfer money between accounts
–  Purchase a group of products
–  Register for a class (either waitlist or allocated)
–  What else?

7

CSE 544 - Fall 2015

Transactions

•  Major component of database systems
•  Critical for most applications; arguably more so than SQL

•  Fact: Turing awards to database researchers:
–  Charles Bachman 1973 for CODASYL
–  Edgar Codd 1981 for inventing relational dbms
–  Jim Gray 1998 for inventing transactions
–  Michael Stonebraker 2015 for postgres

8

CSE 544 - Fall 2015

Transaction Example

START TRANSACTION!

UPDATE Budget SET money = money - 100 !

WHERE pid = 1!

UPDATE Budget SET money = money + 60 !

WHERE pid = 2!

UPDATE Budget SET money = money + 40 !

WHERE pid = 3!

COMMIT!

9

CSE 544 - Fall 2015

ROLLBACK

•  If the application gets to a place where it can’t complete
the transaction successfully, it can execute ROLLBACK

•  This causes the system to “abort” the transaction
–  Database returns to a state without any of the changes made by

the transaction

10

CSE 544 - Fall 2015

Reasons for Rollback

•  User changes their mind (“ctl-C”/cancel)

•  Explicit in program, when app program finds a problem
–  e.g., when qty on hand < qty being sold

•  System-initiated abort
–  System crash
–  Housekeeping

•  e.g., due to timeouts, admission control, etc

11

CSE 544 - Fall 2015

ACID Properties

•  Atomicity: Either all changes performed by transaction
occur or none occurs

•  Consistency: A transaction as a whole does not violate
integrity constraints

•  Isolation: Transactions appear to execute one after the
other in sequence

•  Durability: If a transaction commits, its changes will survive
failures

•  Q: Benefits & drawbacks of providing ACID transactions?
12

CSE 544 - Fall 2015

What Could Go Wrong?

•  Why is it hard to provide ACID properties?

•  Concurrent operations
–  Isolation problems
–  We saw one example earlier

•  Failures can occur at any time
–  Atomicity and durability problems
–  Next lecture

•  Transaction may need to abort
13

CSE 544 - Fall 2015

In a World Without Transactions
Client 1: INSERT INTO SmallProduct(name, price)

 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99

Client 2: SELECT count(*)

 FROM Product

 SELECT count(*)
 FROM SmallProduct

What could go wrong ? Inconsistent reads
14

CSE 544 - Fall 2015

Different Types of Problems

Client 1:
 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’

Client 2:

 UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’

Lost update What could go wrong ?

15

CSE 544 - Fall 2015

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000
 WHERE Account.number = 1001

Client 2: SELECT Account.amount

 FROM Account
 WHERE Account.number = 1001

What could go wrong ? Dirty reads

Aborted by
system

16

CSE 544 - Fall 2015

Types of Problems: Summary

•  Concurrent execution problems
–  Write-read conflict: dirty read (includes inconsistent read)

•  A transaction reads a value written by another transaction that has
not yet committed

–  Read-write conflict: unrepeatable read
•  A transaction reads the value of the same object twice. Another

transaction modifies that value in between the two reads
–  Write-write conflict: lost update

•  Two transactions update the value of the same object. The second
one to write the value overwrite the first change

•  Failure problems
–  DBMS can crash in the middle of a series of updates
–  Can leave the database in an inconsistent state

17

CSE 544 - Fall 2015

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

18

Schedules

•  Given multiple transactions

•  A schedule is a sequence of interleaved actions from all
transactions

CSE 544 - Fall 2015 19

Example Schedule

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSE 544 - Fall 2015 20

A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 544 - Fall 2015 21

Time

Serializable Schedule

•  A schedule is serializable if it is equivalent to a serial
schedule

CSE 544 - Fall 2015 22

A Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

Notice:
This is NOT a serial schedule

CSE 544 - Fall 2015 23

A Non-Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 544 - Fall 2015 24

Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

CSE 544 - Fall 2015 25

CSE 544 - Fall 2015

Serializable Execution

•  Serializability: interleaved execution has same effect as
some serial execution

•  Schedule of two transactions (Figure 1)
r0[A] → w0[A] → r1[A] → r1[B] → c1→	

→ r0[B] → w0[B] → c0!
!

•  Serializable schedule: equiv. to serial schedule
r0[A] → w0[A] → r1[A] → r0[B] →
→ w0[B] → c0 → r1[B] → c1!

26

Ignoring Details

•  Sometimes transactions’ actions can commute
accidentally because of specific updates
–  Fact: Serializability is undecidable !

•  Scheduler should not look at transaction details

•  Assume worst case updates
–  Only care about reads r(A) and writes w(A)
–  Not the actual values involved

CSE 544 - Fall 2015 27

Conflict Serializability

Conflicts: (aka bad things happen if swapped)
ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 544 - Fall 2015 28

Conflict Serializability

•  A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CSE 544 - Fall 2015 29

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
•  Build a graph of all transactions Ti

•  Edge from Ti to Tj if Ti makes an action that conflicts with
one of Tj and comes first

•  Fact: if the graph has no cycles, then it is conflict
serializable !

CSE 544 - Fall 2015 30

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

CSE 544 - Fall 2015 31

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A
B

B

CSE 544 - Fall 2015 32

Conflict Serializability

•  A serializable schedule need not be conflict serializable,
even under the “worst case update” assumption

w1(Y); w1(X); w2(Y); w2(X); w3(X);

w1(Y); w2(Y); w2(X); w1(X); w3(X);

Lost write

Equivalent, but can’t swap
CSE 544 - Fall 2015 33

Scheduler

•  The scheduler is the module that schedules the
transaction’s actions, ensuring serializability

•  How? We discuss three techniques in class:
–  Locks
–  Timestamps
–  Validation

CSE 544 - Fall 2015 34

CSE 544 - Fall 2015

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

•  Optimistic concurrency control

35

Locking Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the lock before

reading/writing that element
•  If lock is taken by another transaction, then wait
•  The transaction must release the lock(s)

CSE 544 - Fall 2015 36

Notation

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

CSE 544 - Fall 2015 37

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule 38

Is this enough?
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! 39

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests must preceed all
unlock requests

•  This ensures conflict serializability ! (why?)

CSE 544 - Fall 2015 40

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable 41

Example with Multiple Transactions

Equivalent to each transaction executing entirely the
moment it enters shrinking phase

CSE 544 - Fall 2015 42

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

What about Aborts?

•  2PL enforces conflict-serializable schedules

•  But what if a transaction releases its locks and then
aborts?

CSE 544 - Fall 2015 43

Example with Abort
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Abort Commit 44

Strict 2PL

•  Strict 2PL: All locks held by a transaction are released
when the transaction is completed
–  Also called “long-duration locks”

•  Ensures that schedules are recoverable

–  Transactions commit only after all transactions whose changes
they read also commit

•  Avoids cascading rollbacks

CSE 544 - Fall 2015 45

