CSE 544 Principles of Database Management Systems

Alvin Cheung Fall 2015

Lecture 1 - Introduction and the Relational Model

Outline

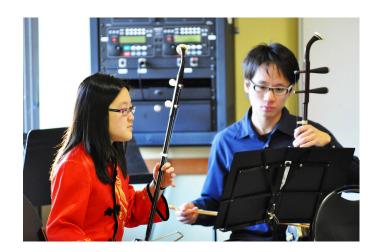
- Introduction
- Class overview
- Why database management systems (DBMS)?
- The relational model

Course Staff

- Instructor: Alvin Cheung
 - Office hours: Wednesdays 2:30pm-3:30pm (or by appointment)
 - Location: CSE 530

• TA Extraordinaire: Shumo Chu

- Graduate student in the database group
- 544 survivor veteran
- Office hours and location: to be announced on course website
- Use cse544-staff@cs.washington.edu to reach us


Who I think I am

- Assistant professor (arrived 9 months ago)
- PhD from MIT
- Research interests: database management systems
- Current research focus
 - New database architectures
 - Database applications
- Research interests: programming systems
- Current research focus
 - Domain-specific languages and compilers
 - Program synthesis
- Hint: Take CSE 501 next time it's offered!

VPLSE

Who I think I am

CSE 544 - Fall 2015

My Teaching Style

- I speak fast (and sometimes in a weird accent)
 - Especially when I get excited
- But I care a ton about your progress in class
- When you look bored, I speed up
 - If no one asks questions, I go even faster!
- If you are bored, feel free to sleep (at your peril)
- If you are bored, feel free to check your email / facebook / etc (at your peril)
- If you are lost, ask me a question!
 - Or just yell "HELP!"

Goals of the Class/Class Content

- Study principles of data management
 - Data models, data independence, declarative query language, etc.
- Study key Database Mgmt Systems (DBMS) design issues
 - Storage, query execution and optimization, transactions
 - Parallel data processing, data warehousing, streaming data, etc.
- Study some current, hot research topics
- Ensure that
 - You are comfortable using a DBMS locally and in the cloud
 - You have an idea about how to build a DBMS
 - You know a bit about current research topics in data management
 - You get to explore in depth a data management problem (project)

Class Format

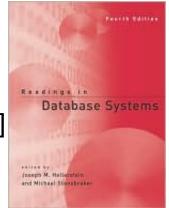
- Two lectures per week: Tues & Thurs @ 10:30am
- Mix of lecture and discussion
 - Mostly based on papers
 - Must read papers before lecture and submit a paper review
 - Come prepared to discuss the papers assigned for the class
 - Class participation counts for a non-negligible part of your grade

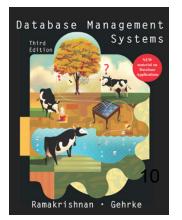
Class Topics

- Fundamentals
 - Relational algebra
 - Physical design
 - Query optimization
- Transactions (aka how Amazon / airlines / banks work)
 - Concurrency control
 - Recovery
- Analytics (aka big data?)
 - Data warehousing
 - Parallel processing frameworks
- Advanced topics
 - New architectures
 - Database applications

CSE 544 - Fall 2015

The Originators


Magdalena Balazinska


Dan Suciu

Readings and Notes

- Readings are based on papers
 - Mix of old seminal papers and new papers
 - Papers available online on class website
 - Some come from the "red book" [no need to get it]
 - Three types of readings
 - Mandatory, additional resources
- Background readings from the following book
 - Database Management Systems. Third Ed. Ramakrishnan and Gehrke. McGraw-Hill. [recommended]
- Lecture notes (the slides)
 - Posted on class website after each lecture

CSE 544 - Fall 2015

Class Resources

- Website: lectures, assignments, projects <u>http://www.cs.washington.edu/544</u>
 List of all the **deadlines**
- Mailing list on course website: Make sure you register
 Your @uw.edu email address is already on the list
- Discussion board: Discuss assignments, papers, weather, stock, etc
 - HW: Introduce yourself to everyone by posting a new message on discussion board

Evaluation

Class participation & paper reviews 20%

- Paper reviews are due by the beginning of each lecture
- Reading questions are posted on class website
- You need to speak up in class from time to time
- Assignments 35%: **Individual**
 - HW1: Using a DBMS / data analysis pipeline
 - HW2: Building a simple DBMS
 - HW3: Analyzing a large dataset with a cloud DBMS

Project 45%: Groups of up to three students

- Small research or engineering. Start to think about it now!

Class Participation

- An important part of your grade
- Because
 - We want you to read & think about papers throughout quarter
 - Important to learn to discuss papers
- Expectations
 - Ask questions, raise issues, think critically
 - Learn to express your opinion
 - Respect other people's opinions

Paper reviews

- Between 1/2 page and 1 page in length
 - Summary of the main points of the paper
 - Critical discussion of the paper
 - Guidelines on course website
- Reading questions
 - For some papers, we will **post reading questions** to help you figure out what to focus on when reading the paper
 - Please address these questions in your reviews
- Grading: credit/no-credit
 - MUST submit review 12 HOURS BEFORE lecture
 - Individual assignments (but feel free to discuss paper with others)

Assignments

- Goals:
 - Hands-on experience using a DBMS, building a simple DBMS, and using a cloud DBMS for data analysis
- HW1: Use a DBMS
- HW2: Build a simple DBMS
- **HW3**: Large-scale data analysis with a cloud DBMS
- See course calendar for deadlines
- HW1 will be posted on next week
- We will accept late assignments with valid excuse

Project Overview

• Topic

- Choose from a list of mini-research topics
- Or come up with your own
- Can be related to your ongoing research
- Can be related to a project in another course
- Must be related to databases / data management
- Must involve either research or significant engineering
- Open ended
- Final deliverables
 - Short conference-style paper (6 pages)
 - Conference-style presentation or posters depending on nb groups

on nb aroup

Amazon AWS

credits available!

Project Goals

- Study in depth a data management problem that you find interesting
 - Understand and model the problem
 - Research and understand related work (no need to be exhaustive)
 - Propose some new approach or some interesting eng. problem
 - Implement some parts
 - Evaluate your solution
 - Write-up and present your results
- Amount of work may vary widely between groups

Project Milestones

- Dates will be posted on course website
 - Project proposal
 - Milestone report
 - Final report
 - Final presentation
- More details will be on the website, including ideas & examples
- We will provide feedback throughout the quarter

Now onward to the world of databases!

CSE 544 - Fall 2015

Let's get started

- What is a database?
 - A collection of files storing related data
- Give examples of databases
 - Accounts database; payroll database; UW's students database;
 Amazon's products database; airline reservation database
 - Your ORCA card transactions, Facebook friends graph, past tweets, etc

Data Management

- Data is valuable but hard and costly to manage
- Example: database for a store
 - Entities: employees, positions (ceo, manager, cashier), stores, products, sells, customers.
 - Relationships: employee positions, staff of each store, inventory of each store.
- What operations do we want to perform on this data?
- What functionality do we need to manage this data?

Required Functionality

- 1. Describe real-world entities in terms of stored data
- 2. Create & persistently store large datasets
- 3. Efficiently query & update
 - 1. Must handle complex questions about data
 - 2. Must handle sophisticated updates
 - 3. Performance matters
- 4. Change structure (e.g., add attributes)
- 5. Concurrency control: enable simultaneous updates
- 6. Crash recovery
- 7. Access control, security, integrity

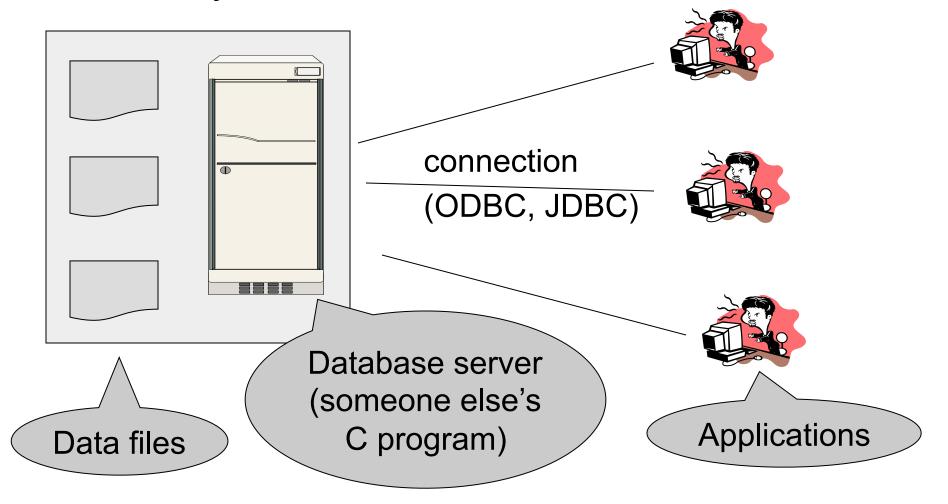
Difficult and costly to implement all these features

We will cover all these topics this quarter

Database Management System

- A DBMS is a software system designed to provide data management services
- Examples of DBMS
 - Oracle, DB2 (IBM), SQL Server (Microsoft),
 - PostgreSQL, MySQL,...

Why should you care?


- From 2006 Gartner report:
 - IBM: 21% market with \$3.2BN in sales
 - Oracle: 47% market with \$7.1BN in sales
 - Microsoft: 17% market with \$2.6BN in sales
- Rise of big data

Data jobs 1 - 30 of 32920 positions 2 3 4 5 >>> ETL Informatica Development Lead / Data Analysts At NTT DATA, We Know That With The Right People On Board, Anything Is Possible. ... NTT DATA Charlotte, NC 🞬 3 Weeks Ago SQL ETL Programmer/Data Specialist Practical Data Solutions (PDS), A Company That Specializes In Healthcare Reporting And Analysis, Has An ... Practical Data Solutions Southbury, CT 🞬 5 Days Ago Easy Apply Data Architect Position Description: The BI Data Architect Will Be Responsible For The Following: Lead, Participate In ... NTT DATA, Inc. Universal City, CA 🞬 4 Weeks Ago Easy Apply Sr. Data Warehouse Developer The Senior Data Warehouse Developer Is Responsible For Developing And Maintaining Applications Using A Variety ... NTT DATA, Inc. 🛷 Minnetonka, MN 🛱 2 Weeks Ago Easy Apply

Typical System Architecture

"Two tier system" or "client-server"

Main DBMS Features

- Data independence
 - Data model
 - Data definition language
 - Data manipulation language
- Efficient data access
- Data integrity and security
- Data administration
- Concurrency control
- Crash recovery
- Reduced application development time

How to decide what features should go into the DBMS?

When not to use a DBMS?

- DBMS is optimized for a certain workload
- Some applications may need
 - A completely different data model
 - Completely different operations
 - A few time-critical operations
- Example
 - Highly optimized scientific simulations

Outline

- Introductions
- Class overview
- Why database management systems (DBMS)?
- The relational model

Relation Definition

- Database is collection of relations
- Relation is a table with rows & columns
 - SQL uses the term "table" to refer to a relation
- Relation R is subset of S₁ x S₂ x ... x S_n
 - Where $\mathbf{S}_{\mathbf{i}}$ is the domain of attribute \mathbf{i}
 - **n** is number of attributes of the relation

Properties of a Relation

- Each row represents an n-tuple of R
- Ordering of rows is immaterial
- All rows are distinct
- Ordering of columns is significant
 - Because two columns can have same domain
 - But columns are labeled so
 - Applications need not worry about order
 - They can simply use the names
- Domain of each column is a primitive type
- Relation consists of a **relation schema** and **instance**

More Definitions

- **Relation schema**: describes column names
 - Relation name
 - Name of each field (or column, or attribute)
 - Domain of each field
- Degree (or arity) of relation: number of attributes
- Database schema: set of all relation schemas

Even More Definitions

- Relation instance: concrete table content
 - Set of tuples (also called records) matching the schema
- Cardinality of relation instance: number of tuples
- **Database instance**: set of all relation instances

Example

Relation schema

Supplier(<u>sno: integer</u>, sname: string, scity: string, sstate: string)

• Relation instance

sno	sname	scity	sstate
1	s1	city 1	WA
2	s2	city 1	WA
3	s3	city 2	MA
4	s4	city 2	MA

Integrity Constraints

Integrity constraint

- Condition specified on a database schema
- Restricts data that can be stored in db instance
- DBMS enforces integrity constraints
 - Ensures only legal database instances exist
- Simplest form of constraint is domain constraint
 - Attribute values must come from attribute domain

Key Constraints

 Key constraint: "certain minimal subset of fields is a unique identifier for a tuple"

Candidate key

- Minimal set of fields
- That uniquely identify each tuple in a relation

Primary key

- One candidate key can be selected as primary key

Foreign Key Constraints

• A relation can refer to a tuple in another relation

• Foreign key

- Field that refers to tuples in another relation
- Typically, this field refers to the primary key of other relation
- Can pick another field as well

```
CREATE TABLE Part (
```

```
pno integer,
```

```
pname varchar(20),
```

```
psize integer,
```

```
pcolor varchar(20),
```

```
PRIMARY KEY (pno)
```

CREATE TABLE Supply(
 sno integer,
 pno integer,
 qty integer,
 price integer
);

```
CREATE TABLE Supply(
```

```
sno integer,
```

```
pno integer,
```

```
qty integer,
```

```
price integer,
```

```
PRIMARY KEY (sno,pno)
```

CREATE TABLE Supply (

sno integer,

pno integer,

qty integer,

price integer,

PRIMARY KEY (sno,pno),

FOREIGN KEY (sno) REFERENCES Supplier,

FOREIGN KEY (pno) REFERENCES Part

CREATE TABLE Supply (

sno integer,

pno integer,

qty integer,

price integer,

PRIMARY KEY (sno,pno),

FOREIGN KEY (sno) REFERENCES Supplier

ON DELETE NO ACTION,

FOREIGN KEY (pno) REFERENCES Part

ON DELETE CASCADE

General Constraints

• Table constraints serve to express complex constraints over a single table

```
CREATE TABLE Part (
   pno integer,
   pname varchar(20),
   psize integer,
   pcolor varchar(20),
   PRIMARY KEY (pno),
   CHECK ( psize > 0 )
);
```

• It is also possible to create constraints over many tables

Relational Queries

- Query inputs and outputs are relations
- Query evaluation
 - Input: instances of input relations
 - Output: instance of output relation

Relational Algebra

- Query language associated with relational model
- Queries specified in an operational manner
 - A query gives a step-by-step procedure
- Relational operators
 - Take one or two relation instances as argument
 - Return one relation instance as result
 - Easy to compose into relational algebra expressions

Relational Operators

- Selection: $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (\land, \lor) of terms
 - Term is: attr. op constant, attr. op attr.
 - Op is: <, <=, =, ≠, >=, or >
- Projection: $\pi_{\text{list-of-attributes}}(S)$
- Union (\cup), Intersection (\cap), Set difference (–),
- Cross-product or cartesian product (x)
- Join: $\mathbb{R} \bowtie_{\theta} \mathbb{S} = \sigma_{\theta}(\mathbb{R} \times \mathbb{S})$
- Division: R/S
- Rename ρ(R(F),E)

Selection & Projection Examples

Patient

no	name	zip	disease	
1	p1	98125	flu	
2	p2	98125	heart	
3	р3	98120	lung	
4	p4	98120	heart	

$\pi_{zip,q}$	π _{zip,disease} (Patient)		
	zip	disease	
	98125	flu	
	98125	heart	
	98120	lung	
	98120	heart	

$\sigma_{disease='heart'}$ (Patient)				
no	name	zip	disease	
2	p2	98125	heart	
4	p4	98120	heart	

$$\pi_{zip} (\sigma_{disease='heart'}(Patient))$$

zip
98120
98125