CSE544

Data Privacy

Data Security

• Dorothy Denning, 1982:

Data Security is the science and study of methods of protecting data (...) from unauthorized disclosure and modification

- Data Security = <u>Confidentiality</u> + <u>Integrity</u>
- Quote from the paper:

Differential privacy arose in a context in which ensuring privacy is a challenge even if all these control problems are solved: privacy-preserving statistical analysis of data.

Outline

• A famous attack

• Differential privacy (the paper)

- In Massachusetts, the Group Insurance Commission (GIC) is responsible for purchasing health insurance for state employees
- GIC has to publish the data:

GIC(**zip, dob, sex**, diagnosis, procedure, ...)

This is private ! Right ?

 Sweeney paid \$20 and bought the voter registration list for Cambridge Massachusetts:

VOTER(name, party, ..., **zip, dob, sex**)

GIC(zip, dob, sex, diagnosis, procedure, ...)

This is private ! Right ?

zip, dob, sex

- William Weld (former governor) lives in Cambridge, hence is in VOTER
- 6 people in VOTER share his **dob**
- only 3 of them were man (same **sex**)
- Weld was the only one in that **zip**
- Sweeney learned Weld's medical records !

 All systems worked as specified, yet an important data has leaked

• How do we protect against that ?

Today's Approaches

• K-anonymity

- Useful, but not really private

- Differential privacy
 - Private, but not really useful

k-Anonymity

Definition: each tuple is equal to at least k-1 others

Anonymizing: through suppression and generalization

First	Last	Age	Race	Disease
Harry	Stone	34	Afr-am	flue
John	Reyser	36	Cauc	mumps
Beatrice	Stone	47	Afr-am	mumps
John	Ramos	22	Hisp	allergy

Hard: NP-complete for supression only Approximations exists

k-Anonymity

<u>Definition</u>: each tuple is equal to at least k-1 others

Anonymizing: through suppression and generalization

First	Last	Age	Race	Disease
*	Stone	30-50	Afr-am	flue
John	R*	20-40	*	mumps
*	Stone	30-50	Afr-am	mumps
John	R*	20-40	*	allergy

Hard: NP-complete for supression only Approximations exists

k-Anonymity

Better: remove identifying attributes, keep only "quasi-identifiers":

Quasi identifiers (anonymized) Sensitive attribu							
	Age	Race	Disease				
	30-50	Afr-am	flue				
	20-40	*	mumps				
	30-50	Afr-am	mumps				
	20-40	*	allergy				

[Samarati&Sweeney'98, Meyerson&Williams'04]

k-Anonymity

BUT: Does not provide protection! Sensitive attribute Quasi identifiers (anonymized) Age Race Disease 30-50 Afr-am flue 20-40 * mumps 30-50 Afr-am mumps * 20-40 mumps

Here we learn immediately that John Ramos, 22, has mumps (how?)

Data Privacy Ideal

Allow queries like this:

SELECT count(*) FROM Patients WHERE age > 24 and disease = 'mumps'

Disallow queries like this:

SELECT disesase FROM Patients WHERE age = 22

"How Is Hard"

From the paper:

 What about designing a system that allows <u>only</u> count(*) queries? Will it be private?

"How Is Hard"

From the paper:

- What about designing a system that allows <u>only</u> count(*) queries? Will it be private?
- No!
 - "How many people in the database have the sickle cell trait?"
 - "How many people in the database not named 'John Ramos' have the sickle cell trait?"
- Query auditing is not the solution (why?)

Adding Random Noise

Answer a query like:

SELECT count(*) FROM Patients WHERE age > 24 and disease = 'mumps'

By adding a random noise.

This fixes the previous problem (why?).

But creates a new problem: query repeatedly, average, remove noise.

More sophisticated attach in the paper: Theorem 1, due to Dinur Nissim.

Differential Privacy

[Dwork]

DEFINITION 1. A randomized function \mathcal{K} gives ε -differential privacy if for all datasets D and D' differing on at most one row, and all $S \subseteq Range(\mathcal{K})$,

 $\Pr[\mathcal{K}(D) \in S] \le \exp(\varepsilon)$

 $\times \Pr[\mathcal{K}(D') \in S], -(1)$

where the probability space in each case is over the coin flips of \mathcal{K} .

Differential Privacy

$\Pr[\mathcal{K}(D) \in S] \le \exp(\varepsilon)$ $\times \Pr[\mathcal{K}(D') \in S], -(1)$

What privacy do the following values for ε ensure to an end user?

- 0
- 0.01
- 0.1
- 1
- 10

Differential Privacy

[Dwork]

$$\Pr[\mathcal{K}(D) \in S] \le \exp(\varepsilon)$$
$$\times \Pr[\mathcal{K}(D') \in S], -(1)$$

What privacy do the following values for ε ensure to an end user?

- 0 = total privacy: algorithm returns *same* answer on all databases
- 0.01 = the two probabilities differ by < 1%
- 0.1 = the two probabilities differ by < 10%
- 1 = the two probabilities differ by $< e \approx 2.71$
- 10 = certainly not good...

Recall your math: if $|\varepsilon|$ is small, then $\exp(\varepsilon) \approx 1 + \varepsilon$

Achieving Differential Privacy

DEFINITION 2. For $f: \mathcal{D} \to \mathbb{R}^d$, the L_1 sensitivity of f is⁷

$$\Delta f = \max_{D,D'} ||f(D) - f(D')||_1$$
$$= \max_{D,D'} \sum_{i=1}^d |f(D)_i - f(D')_i| \quad (3)$$

for all D, D' differing in at most one row.

Achieving Differential Privacy

Examples. What is the sensitivity of these queries?

SELECT count(*) FROM Patients WHERE disease = 'mumps'

SELECT disease, count(*) FROM Patients GROUP By disease

SELECT avg(age) FROM Patients WHERE disease = 'mumps'

100 queries of the form: SELECT count(*) FROM Patients WHERE [some condition]

Achieving Differential Privacy

Examples. What is the sensitivity of these queries?

SELECT count(*) FROM Patients WHERE disease = 'mumps'

SELECT disease, count(*) FROM Patients GROUP By disease

 $\Lambda f = 1$

SELECT avg(age) FROM Patients WHERE disease = 'mumps'

 Δf = can be high (say, 20 or 30)

100 queries of the form: SELECT count(*) FROM Patients WHERE [some condition]

∆f = 100

CSE544 - Spring, 2013

Note: the number of queries dictates your *privacy budget*

Achieving Differential Privacy

Laplacian distribution

Lap(b) with mean μ =0 has the following pdf:

$$P(z|b) = \frac{1}{2b} \exp(-|z|/b)$$

Variance = $2b^2$

THEOREM 2. For $f : \mathcal{D} \to \mathbb{R}^d$, the mechanism \mathcal{K} that adds independently generated noise with distribution Lap $(\Delta f/\varepsilon)$ to each of the d output terms enjoys ε -differential privacy.⁷

Achieving Differential Privacy

Laplacian distribution

Lap(b) with mean μ =0 has the following pdf:

$$P(z|b) = \frac{1}{2b} \exp(-|z|/b)$$

Variance = $2b^2$

THEOREM 2. For $f : \mathcal{D} \to \mathbb{R}^d$, the mechanism \mathcal{K} that adds independently generated noise with distribution Lap $(\Delta f/\varepsilon)$ to each of the d output terms enjoys ε -differential privacy.⁷

Suppose $\Delta f=1$ and $\epsilon=0.1$

How much noise do we add? (What is a "typical" noise value?)

Achieving Differential Privacy

Laplacian distribution

Lap(b) with mean μ =0 has the following pdf:

$$P(z|b) = \frac{1}{2b} \exp(-|z|/b)$$

Variance = $2b^2$

Suppose $\Delta f=1$ and $\epsilon=0.1$

How much noise do we add? (What is a "typical" noise value?)

b = $\Delta f / \epsilon$ = 10. "Typical" noise is $b\sqrt{2} \approx 14$. Let's compute the probability of noise > b: $2^{*}\int_{b}^{\infty} P(z|b) dz =$ = $2^{*}1/(2b)^{*}\int_{b}^{\infty} exp(-z/b)dz =$ = exp(-1)= 0.36

THEOREM 2. For $f : \mathcal{D} \to \mathbf{R}^d$, the mechanism \mathcal{K} that adds independently generated noise with distribution Lap $(\Delta f/\varepsilon)$ to each of the d output terms enjoys ε -differential privacy.⁷

Is this this answer useful?

Achieving Differential Privacy

Laplacian distribution

Lap(b) with mean μ =0 has the following pdf:

$$P(z|b) = \frac{1}{2b} \exp(-|z|/b)$$

Variance = $2b^2$

Suppose $\Delta f=1$ and $\epsilon=0.1$

How much noise do we add? (What is a "typical" noise value?)

b = $\Delta f / \epsilon$ = 10. "Typical" noise is $b\sqrt{2} \approx 14$. Let's compute the probability of noise > b: $2^{*}\int_{b}^{\infty} P(z|b) dz =$ = $2^{*}1/(2b)^{*}\int_{b}^{\infty} exp(-z/b)dz =$ = exp(-1)= 0.36

THEOREM 2. For $f : \mathcal{D} \to \mathbb{R}^d$, the mechanism \mathcal{K} that adds independently generated noise with distribution Lap $(\Delta f/\varepsilon)$ to each of the d output terms enjoys ε -differential privacy.⁷

Is this this answer useful?

Yes = if the real answer is >> 10 No = if the real answer is << 10

Limitations of Differential Privacy

- Privacy budget ≈ the maximum number of queries that one can ask
 - Once a user exhaust her privacy budget, the system should (theoretically) refuse to answer any new query, forever! (or unitl the database gets updated significantly)
- Protects only individual users, but not general secrets
 - "Hide the fact that our hospital has significantly reduce the number of mumps cases over the last year"

Final Comments on Privacy

In the database literature, privacy is equated with confidentiality

- In real life, privacy is more complex:
 - "Is the right of individuals to determine for themselves when, how and to what extent information about them is communicated to

others"

[Agrawal'03]

The End of CSE 544

What you achieved in 10 weeks:

- 1. Relational data and query model
- 2. Database systems
- 3. Database theory
- 4. Miscellaneous: transactions, provenance, privacy

Three homeworks, one project, nine reading assignments

• You still need to finish the project, turn in HW4