
1

CSE 544: Principles of Database
Systems

Lecture 18:
Concurrency Control

CSE544 - Spring, 2013

Project Presentations
Friday, June 7th, 9:30-2:30, in CSE 405 (details TBA)

What to include:
•  Describe the problem:

–  why is it important, why is it non-trivial
•  Overview prior approaches,

–  related work
•  Your approach
•  Your results

–  theoretical, empirical, experimental
•  Discuss their significance

–  do they work ? do they solve the problem you set out to do ? do
they improve over existing work ?

•  Conclusions

CSE544 - Spring, 2013 2 Rule of thumb: 1 slide / minute, less slack. 15’ è 12 slides.

Reading Material
Main textbook (Ramakrishnan and Gehrke):
•  Chapters 16, 17, 18

More background material: Garcia-Molina,

Ullman, Widom:
•  Chapters 17.2, 17.3, 17.4
•  Chapters 18.1, 18.2, 18.3, 18.8, 18.9

CSE544 - Spring, 2013 3

Concurrency Control

•  Multiple concurrent transactions T1, T2, …

•  They read/write common elements A1, A2, …

•  How can we prevent unwanted interference ?

CSE544 - Spring, 2013 4

The SCHEDULER is responsible for that

Schedules

CSE544 - Spring, 2013 5

A schedule is a sequence
of interleaved actions
from all transactions

Example

CSE544 - Spring, 2013 6

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A Serial Schedule

CSE544 - Spring, 2013 7

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Serializable Schedule

CSE544 - Spring, 2013 8

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s) This is NOT a serial schedule,

but is serializable

A Non-Serializable Schedule

CSE544 - Spring, 2013 10

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

Serializable Schedules

•  The role of the scheduler is to ensure that
the schedule is serializable

CSE544 - Spring, 2013 11

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

Serializable Schedules

•  The role of the scheduler is to ensure that
the schedule is serializable

CSE544 - Spring, 2013 12

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may do serial schedules only

A Serializable Schedule

CSE544 - Spring, 2013 13

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

We don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute

Ignoring Details

•  Assume worst case updates:
– We never commute actions done by transactions

•  As a consequence, we only care about
reads and writes
– Transaction = sequence of R(A)’s and W(A)’s

CSE544 - Spring, 2013 14

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW

CSE544 - Spring, 2013 15

Conflicts

CSE544 - Spring, 2013 16

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

A “conflict” means: you can’t swap the two operations

Conflict Serializability

•  A schedule is conflict serializable if it
can be transformed into a serial
schedule by a series of swappings of
adjacent non-conflicting actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Testing for Conflict-Serializability
Precedence graph:
•  A node for each transaction Ti,
•  An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

•  The schedule is serializable iff the precedence
graph is acyclic

CSE544 - Spring, 2013 18

Example 1

CSE544 - Spring, 2013 19

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE544 - Spring, 2013 20

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

Example 2

CSE544 - Spring, 2013 21

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE544 - Spring, 2013 22

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

View Equivalence

•  A serializable schedule need not be
conflict serializable, even under the “worst
case update” assumption

CSE544 - Spring, 2013 23

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

View Equivalence

•  A serializable schedule need not be
conflict serializable, even under the “worst
case update” assumption

CSE544 - Spring, 2013 24

Is this schedule conflict-serializable ? No…

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

View Equivalence

•  A serializable schedule need not be
conflict serializable, even under the “worst
case update” assumption

CSE544 - Spring, 2013 25

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but not conflict-equivalent

View Equivalence

CSE544 - Spring, 2013 26

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable

View Equivalence

Two schedules S, S’ are view equivalent if:
•  If T reads an initial value of A in S,

then T reads the initial value of A in S’

•  If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

•  If T writes the final value of A in S,
then T writes the final value of A in S’

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:
•  If a schedule is conflict serializable,

then it is also view serializable
•  But not vice versa

CSE544 - Spring, 2013 28

Schedules with Aborted
Transactions

•  When a transaction aborts, the recovery
manager undoes its updates

•  But some of its updates may have affected
other transactions !

CSE544 - Spring, 2013 29

Schedules with Aborted
Transactions

CSE544 - Spring, 2013 30

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

Recoverable Schedules

A schedule is recoverable if:
•  It is conflict-serializable, and
•  Whenever a transaction T commits, all

transactions who have written elements
read by T have already committed

CSE544 - Spring, 2013 31

Recoverable Schedules

32

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable

Recoverable Schedules

33

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

How do we recover ?

Cascading Aborts

•  If a transaction T aborts, then we need to
abort any other transaction T’ that has
read an element written by T

•  A schedule avoids cascading aborts if
whenever a transaction reads an element,
the transaction that has last written it has
already committed.

CSE544 - Spring, 2013 34

Avoiding Cascading Aborts

35

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

Without cascading aborts

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

With cascading aborts

Review of Schedules

Serializability

•  Serial
•  Serializable
•  Conflict serializable
•  View serializable

Recoverability

•  Recoverable
•  Avoids cascading

deletes

CSE544 - Spring, 2013 36

Scheduler

•  The scheduler:
•  Module that schedules the transaction’s

actions, ensuring serializability

•  Two main approaches
•  Pessimistic: locks
•  Optimistic: time stamps, MV, validation

Pessimistic Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the

lock before reading/writing that element
•  If the lock is taken by another transaction,

then wait
•  The transaction must release the lock(s)

CSE544 - Spring, 2013 38

Notation

CSE544 - Spring, 2013 39

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

A Non-Serializable Schedule

CSE544 - Spring, 2013 40

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

Example

41

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule

But…

42

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests must
preceed all unlock requests

•  This ensures conflict serializability ! (will
prove this shortly)

CSE544 - Spring, 2013 43

Example: 2PL transactions

44

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable

Two Phase Locking (2PL)

45

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)

46

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

A New Problem:
Non-recoverable Schedule

47

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);
Commit

Abort

What about Aborts?

•  2PL enforces
conflict-serializable schedules

•  But does not enforce
recoverable schedules

CSE544 - Spring, 2013 48

Strict 2PL

•  Strict 2PL: All locks held by a transaction are
released when the transaction is completed

•  Schedule is recoverable
–  Transactions commit only after all transactions whose

changes they read also commit
•  Schedule avoids cascading aborts

–  Transactions read only after the txn that wrote that
element committed

•  Schedule is strict: read book

CSE544 - Spring, 2013 49

Lock Modes

Standard:
•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)
Lots of fancy locks:
•  U = update lock

–  Initially like S
–  Later may be upgraded to X

•  I = increment lock (for A := A + something)
–  Increment operations commute

50

Lock Granularity

•  Fine granularity locking (e.g., tuples)
–  High concurrency
–  High overhead in managing locks

•  Coarse grain locking (e.g., tables, predicate locks)
–  Many false conflicts
–  Less overhead in managing locks

•  Alternative techniques
–  Hierarchical locking (and intentional locks) [commercial DBMSs]
–  Lock escalation

CSE544 - Spring, 2013 51

Deadlocks

•  Trasaction T1 waits for a lock held by T2;
•  But T2 waits for a lock held by T3;
•  While T3 waits for
•  . . .
•  . . .and T73 waits for a lock held by T1 !!

CSE544 - Spring, 2013 52

Deadlocks

•  When T1 waits for T2, which waits for T3, which
waits for T4, …, which waits for T1 – cycle !

•  Deadlock avoidance
–  Acquire locks in pre-defined order
–  Acquire all locks at once before starting

•  Deadlock detection
–  Timeouts
–  Wait-for graph (this is what commercial systems use)

CSE544 - Spring, 2013 53

The Locking Scheduler

Task 1:
Add lock/unlock requests to transactions

•  Examine all READ(A) or WRITE(A) actions
•  Add appropriate lock requests
•  Ensure Strict 2PL !

CSE544 - Spring, 2013 54

The Locking Scheduler
Task 2:

Execute the locks accordingly
•  Lock table: a big, critical data structure in a DBMS !
•  When a lock is requested, check the lock table

–  Grant, or add the transaction to the element’s wait list

•  When a lock is released, re-activate a transaction from
its wait list

•  When a transaction aborts, release all its locks
•  Check for deadlocks occasionally

CSE544 - Spring, 2013 55

Lock Performance

CSE544 - Spring, 2013 56

Th
ro

ug
hp

ut

Active Transactions

thrashing

Why ?

The Tree Protocol

•  An alternative to 2PL, for tree structures
•  E.g. B-trees (the indexes of choice in databases)

•  Because
–  Indexes are hot spots!
–  2PL would lead to great lock contention

CSE544 - Spring, 2013 57

The Tree Protocol
Rules:
•  The first lock may be any node of the tree
•  Subsequently, a lock on a node A may only be acquired if the

transaction holds a lock on its parent B
•  Nodes can be unlocked in any order (no 2PL necessary)
•  “Crabbing”

–  First lock parent then lock child
–  Keep parent locked only if may need to update it
–  Release lock on parent if child is not full

•  The tree protocol is NOT 2PL, yet ensures conflict-serializability !

CSE544 - Spring, 2013 58

Phantom Problem

•  So far we have assumed the database to
be a static collection of elements (=tuples)

•  If tuples are inserted/deleted then the
phantom problem appears

CSE544 - Spring, 2013 59

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

61

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

62

Suppose there are two blue products, X1, X2:

This is conflict serializable ! What’s wrong ??

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

Phantom Problem

63

Suppose there are two blue products, X1, X2:

Not serializable due to phantoms

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

Phantom Problem

•  A “phantom” is a tuple that is
invisible during part of a transaction
execution but not invisible during the entire
execution

•  In our example:
– T1: reads list of products
– T2: inserts a new product
– T1: re-reads: a new product appears !

CSE544 - Spring, 2013 64

Phantom Problem

•  In a static database:
– Conflict serializability implies serializability

•  In a dynamic database, this may fail
due to phantoms

•  Strict 2PL guarantees conflict
serializability, but not serializability

65

Dealing With Phantoms

•  Lock the entire table, or
•  Lock the index entry for ‘blue’

–  If index is available
•  Or use predicate locks

– A lock on an arbitrary predicate

Dealing with phantoms is expensive !

Isolation Levels in SQL

1.  “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE544 - Spring, 2013 67

ACID

1. Isolation Level: Dirty Reads

•  “Long duration” WRITE locks
– Strict 2PL

•  No READ locks
– Read-only transactions are never delayed

CSE544 - Spring, 2013 68

Possible pbs: dirty and inconsistent reads

2. Isolation Level: Read Committed

•  “Long duration” WRITE locks
– Strict 2PL

•  “Short duration” READ locks
– Only acquire lock while reading (not 2PL)

CSE544 - Spring, 2013 69

Unrepeatable reads
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

•  “Long duration” WRITE locks
– Strict 2PL

•  “Long duration” READ locks
– Strict 2PL

CSE544 - Spring, 2013 70

This is not serializable yet !!! Why ?

4. Isolation Level Serializable

•  “Long duration” WRITE locks
– Strict 2PL

•  “Long duration” READ locks
– Strict 2PL

•  Deals with phantoms too

CSE544 - Spring, 2013 71

