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Announcements 
•  Project Milestone: was due on Friday 

–  Expect feedback by the end of this week 

•  Project presentations: Friday, 6/7 
–  Reserve all day, stay tuned for announcements 

•  Homework 3: was due yesterday 
–  Did you remember to turn off your servers!?! 

•  Homework 4: will be posted in 2-3 days 

•  Next paper review: next Wednesday, 5/29 
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Complexity Classes 

A decision problem: 
•  We have a property (a.k.a. problem) 
•  Given an input X of size n, decide if it 

satisfies the property 

•  In other words, define have to compute a 
function f(X) = 0 or 1 
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We are interested in these classes 

All computable problems 

PSPACE 

NP 

PTIME 

NCk … 
NL 

L 
AC0 



The Class AC0 

What is AC0 ? 
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The Class AC0 

A problem f is in AC0 if, for every n, there 
exists a Boolean circuit s.t.: 
•  It consists of unbounded fan-in AND, 

unbounded fan-in OR, and NOT gates 
•  If the inputs X1, …, Xn encode an input X, 

then the circuit’s output is f(X) 
•  The circuit size is nO(1) 
•  The circuit depth is O(1) 
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Example in AC0 

Problem: given an input string X1, …, Xn in {0,1}n, 
check if it has at least two 1’s 

0100101 - yes 00001000 - no 



Example in AC0 
Problem: given an input string X1, …, Xn in {0,1}n, 
check if it has at least two 1’s 

0100101 - yes 00001000 - no 

X1 X2 X3 X4 Xn Xn-1 Xn-2 

.  .  . 

Size = n(n-1)/2+1 
Depth = 2 



Are these in AC0 or not? 
Carry bit: The sum 
(XnXn-1…X1) + (YnYn-1…Y1) 
has a carry bit 
 
 
 
Triangle: A graph given by the n × n 
adjacency matrix contains a directed triangle 
 
 
 
 
Parity: X1,…,Xn has an even number of 1’s  
 
 
s-t Reachability (GAP): A graph given by the 
n × n adjacency matrix contains a path from 
node s to node t 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 1 

1 0 0 0 0 

0 1 0 0 0 YES 

(1001)+(0101)  = (1110)  NO 
(1001)+(0111)  = (10000) YES 

10010101101   YES 
10010101100   NO 

s t 



Are these in AC0 or not? 
Carry bit: The sum 
(XnXn-1…X1) + (YnYn-1…Y1) 
has a carry bit 
 
 
 
Triangle: A graph given by the n × n 
adjacency matrix contains a directed triangle 
 
 
 
 
Parity: X1,…,Xn has an even number of 1’s  
 
 
s-t Reachability (GAP): A graph given by the 
n × n adjacency matrix contains a path from 
node s to node t 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 1 

1 0 0 0 0 

0 1 0 0 0 YES 

In AC0 

In AC0 

Not in AC0 

(1001)+(0101)  = (1110)  NO 
(1001)+(0111)  = (10000) YES 

10010101101   YES 
10010101100   NO 

Not in AC0 

s t 

Make sure you 
understand why! 



Relational Queries 

All computable problems 

PSPACE 

NP 

PTIME 

NCk … 
NL 

L 
AC0 

Theorem: Every Boolean relational query defines a property that is in AC0 
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Example 

R: a b c 
a 1 1 0 
b 0 1 0 
c 0 0 0 

select distinct R.A, S.C 
from R, S 
where R.B=S.B 

S: a b c 
a 0 0 0 
b 0 0 1 
c 0 0 1 

R A B

a a

b b

a b

S B C

c c

b c
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Example 

Q  =  ∃z.R(‘a’,z) ∧ S(z,’c’) Prove that Q is in AC0 

R: a b c 
a 1 1 0 
b 0 1 0 
c 0 0 0 

Example circuit for n = 3 (i.e. ADom={a,b,c}) 

select distinct R.A, S.C 
from R, S 
where R.B=S.B 

S: a b c 
a 0 0 0 
b 0 0 1 
c 0 0 1 

R A B

a a

b b

a b

S B C

c c

b c
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Example 

Example circuit for n = 3 (i.e. ADom={a,b,c}) 

R: a b c 
a 1 1 0 
b 0 1 0 
c 0 0 0 

S: a b c 
a 0 0 0 
b 0 0 1 
c 0 0 1 

Prove that Q is in AC0 Q  =  ∃z.R(‘a’,z) ∧ S(z,’c’) 

select distinct R.A, S.C 
from R, S 
where R.B=S.B 

R A B

a a

b b

a b

S B C

c c

b c
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Example 

Example circuit for n = 3 (i.e. ADom={a,b,c}) 

R: a b c 
a 1 1 0 
b 0 1 0 
c 0 0 0 

S: a b c 
a 0 0 0 
b 0 0 1 
c 0 0 1 

Prove that Q is in AC0 Q  =  ∃z.R(‘a’,z) ∧ S(z,’c’) 

select distinct R.A, S.C 
from R, S 
where R.B=S.B 

R A B

a a

b b

a b

S B C

c c

b c
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Example 

Example circuit for n = 3 (i.e. ADom={a,b,c}) 

R: a b c 
a 1 1 0 
b 0 1 0 
c 0 0 0 

S: a b c 
a 0 0 0 
b 0 0 1 
c 0 0 1 

Prove that Q is in AC0 Q  =  ∃z.R(‘a’,z) ∧ S(z,’c’) 

select distinct R.A, S.C 
from R, S 
where R.B=S.B 

R A B

a a

b b

a b

S B C

c c

b c
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Example 

Example circuit for n = 3 (i.e. ADom={a,b,c}) 

R: a b c 
a 1 1 0 
b 0 1 0 
c 0 0 0 

S: a b c 
a 0 0 0 
b 0 0 1 
c 0 0 1 

Prove that Q is in AC0 Q  =  ∃z.R(‘a’,z) ∧ S(z,’c’) 

select distinct R.A, S.C 
from R, S 
where R.B=S.B 

R A B

a a

b b

a b

S B C

c c

b c
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Example 

Example circuit for n = 3 (i.e. ADom={a,b,c}) 

R: a b c 
a 1 1 0 
b 0 1 0 
c 0 0 0 

S: a b c 
a 0 0 0 
b 0 0 1 
c 0 0 1 

OR has n inputs 

Each AND has 
2 inputs 

Circuit  
depth = 2 

Prove that Q is in AC0 Q  =  ∃z.R(‘a’,z) ∧ S(z,’c’) 

select distinct R.A, S.C 
from R, S 
where R.B=S.B 

R A B

a a

b b

a b

S B C

c c

b c
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Another Example 

Practice at home: 
Show that Q is in AC0 by showing how 
to construct a circuit for computing Q. 
What is the depth? 
What fanouts have your OR and AND gates ? 

Q=∃y.R(‘a’,y)∧(∀z.S(y,z)à∃u.R(z,u)) 



Discussion 
In class: make sure you understand very well 
why every relational query is in AC0 

•  Consequence 1 (for theoreticians and their 
friends): 
– SELECT-DISTINCT-FROM-WHERE queries 

cannot express PARITY, GAP 

•  Consequence 2 (for fans of Big Data) 
–  “SQL is embarrassingly parallel” 
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The Classes L and NL 

All computable problems 

PSPACE 

NP 

PTIME 

NCk … 
NL 

L 
AC0 



LOGSPACE and NLOGSPACE 

•  What is LOGSPACE (or L) ? 

•  What is NLOGSPACE (or NL) ? 
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LOGSPACE and NLOGSPACE 
•  A problem is in LOGSPACE (or L) if it can be 

computed by a deterministic Turing machine 
using O(log n) space 

•  A problem is in NLOGSPACE (or NL) if it can 
be computed by a non-deterministic Turing 
machine using O(log n) space 

O(log n) space refers to the working tape: the 
input is on a separate tape of size n 
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Examples 
•  GAP is in NLOGSPACE (why?) 

•  1-GAP (each node has outdegree ≤ 1) is in 
LOGSPACE (why?) 

•  Recall that none of these problems is in AC0 

•  Theorem: GAP is complete for NLOGSPACE 

•  Theorem: 1-GAP is complete for LOGSPACE 
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Datalog 
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T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 
Answer :- T(‘s’,’t’) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
Answer :- T(‘s’,’t’) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), T(z,y) 
Answer :- T(‘s’,’t’) 

It can express GAP 
 
In many ways!! 

This proves that datalog 
can express strictly more 
queries than the relational 
calculus 



The Classes PTIME, NP, PSPACE 

All computable problems 

PSPACE 

NP 

PTIME 

NCk … 
NL 

L 
AC0 



The Classes PTIME, NP, PSPACE 

•  What is PTIME? 

•  What is NP? 

•  What is PSPACE? 
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In class 



What is the Complexity of Datalog? 

All computable problems 

PSPACE 

NP 

PTIME 

NCk … 
NL 

L 
AC0 



Datalog 
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The Same-Generation Problem 

Problem: We have a database of microbes, where each microbe x 
may have several children y: 
 
Parent(x,y) 
 
Find all microbes in the same generation with “M62251” 

Can we solve it in datalog? Is this problem in NLOGSPACE? 



Datalog 
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SG(y,z) :- Parent(x,y), Parent(x,z) 
SG(y,z) :- SG(u,v), Parent(u,y), Parent(v,y) 
Answer(z) :- SG(“M62251”,z) 

The Same-Generation Problem 

Problem: We have a database of microbes, where each microbe x 
may have several children y: 
 
Parent(x,y) 
 
Find all microbes in the same generation with “M62251” 

Can we solve it in datalog? Is this problem in NLOGSPACE? 

YES: 



Datalog 
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The Same-Generation Problem 

Problem: We have a database of microbes, where each microbe x 
may have several children y: 
 
Parent(x,y) 
 
Find all microbes in the same generation with “M62251” 

Can we solve it in datalog? Is this problem in NLOGSPACE? 

YES! 
(in class…) 

YES: 
SG(y,z) :- Parent(x,y), Parent(x,z) 
SG(y,z) :- SG(u,v), Parent(u,y), Parent(v,y) 
Answer(z) :- SG(“M62251”,z) 



Discussion 

•  The same-generation problem was a trap: 
– SG is no more complex than GAP! 
– Lesson: GAP is more than meets the eyes 

•  But datalog is more expressive than 
NLOGSPACE: it captures all of PTIME, in 
ways we discuss next, in three steps 
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Step 1: Complexity of Datalog 
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Theorem. Datalog is in PTIME. 

More precisely, fix any Boolean datalog program P. 
The problem: given D, check if P(D) = true is in PTIME 

Proof: … [discuss in class] 



Step 1: Complexity of Datalog 
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Theorem. Datalog is in PTIME. 

More precisely, fix any Boolean datalog program P. 
The problem: given D, check if P(D) = true is in PTIME 

Proof: … [discuss in class] 

Which of the following are in PTIME? 
Stratified, inflationary-fixpoint, partial-fixpoint datalog¬. 



Step 2: The Circuit Value Problem 

AND 

OR OR 

AND 

OR 

0 1 

Root 

Circuit Value Problem 

Note: NOT nodes could be added w.l.o.g. (why?) 

Input = a rooted DAG; leaves labeled 0/1, internal nodes labeled AND/OR 
Output = check if the value of the root is 1 



Step 2: The Circuit Value Problem 

AND 

OR OR 

AND 

OR 

0 1 

Root 

Theorem. 
The Circuit Value Problem 
is complete for PTIME 

Circuit Value Problem 

Note: NOT nodes could be added w.l.o.g. (why?) 

In class: 
1.  How can we compute it in PTIME? 
2.  Why isn’t it in NLOGSPACE? 

Input = a rooted DAG; leaves labeled 0/1, internal nodes labeled AND/OR 
Output = check if the value of the root is 1 



Step 2: The Circuit Value Problem 

Theorem. Datalog can express the Circuit Value Problem 

AND 

OR OR 

AND 

OR 

0 1 

Root 
EDBs: 

root(x) 
and(x,y1,y2) 
or(x,y1,y2) 
zeroLeaf(x) 
oneLeaf(x) 



Step 2: The Circuit Value Problem 

Theorem. Datalog can express the Circuit Value Problem 

AND 

OR OR 

AND 

OR 

0 1 

Root 
EDBs: 

root(x) 
and(x,y1,y2) 
or(x,y1,y2) 
zeroLeaf(x) 
oneLeaf(x) 

oneNode(x) :- oneLeaf(x) 
oneNode(x) :- or(x,y1,y2), oneNode(y1) 
oneNode(x) :- or(x,y1,y2), oneNode(y2) 
oneNode(x) :- and(x,y1,y2), oneNode(y1), oneNode(y2) 
Answer() :- root(x), oneNode(x) 



Discussion 

•  Step 1:  datalog is in PTIME 
–  Stratified, and inflationary datalog¬ are in PTIME 

•  Step 2: datalog can express a PTIME complete 
problem 

•  Step 3: can datalog express all PTIME 
problems? 
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Step 3 
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Theorem. For every problem in PTIME there exists 
a program in inflationary-fixpoint datalog¬ that expresses 
that problem 

Caveat: the program must have access to 
a total order on the active domain.  Otherwise 
inflationary-fixpoint datalog¬ cannot even express 
parity! 

Make sure you understand why 
pure datalog (without negation) 
cannot express all of PTIME 



Finally: partial-fixpoint Datalog¬  

Theorem. Partial-fixpoint datalog¬ can express 
precisely the problems that are in PSPACE 

Same caveat: for completeness we need 
access to an order relation 



Which are “Easy” to Parallelize? 

•  Relational calculus = AC0 

•  Add transitive closure = NLOGSPACE 

•  Inflationary datalog = PTIME 
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Which are “Easy” to Parallelize? 

•  Relational calculus = AC0 

•  YES!! “embarrassingly parallel” 

•  Add transitive closure = NLOGSPACE 
•  MAYBE: the path-doubling program 

•  Inflationary datalog = PTIME 
•  NO: circuit value problem 
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Descriptive Complexity 

•  In computational complexity one describes 
complexity classes in terms of a 
computational model 
– Turing Machine, circuit, etc 

•  In descriptive complexity one describes 
complexity classes in terms of the logic 
(“query language”) that captures that class 
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Descriptive Complexity 
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Partial fixpoint datalog¬ = PSPACE 

Inflationary datalog¬ = PTIME 

RC + Transitive Closure = NL 

RC = AC0 

[Immerman, Vardi] 
Assume we have access to an order relation < 
(and to a BIT relation for AC0) 


