
CSE 544: Principles of Database
Systems

Parallel Databases

CSE544 - Spring, 2013 1

Announcements

•  Paper reviews:
– Join processing paper was due yesterday
– MapReduce paper due on Monday, May 6th

•  HW2 is due on Monday, May 6th

– You should have made lots of progress by
now!

CSE544 - Spring, 2013 2

Overview of Today’s Lecture

•  Parallel databases (Chapter 22.1 – 22.5)

•  MapReduce – base on the paper

CSE544 - Spring, 2013 3

Architectures for Parallel
Databases

•  Shared memory

•  Shared disk

•  Shared nothing

CSE544 - Spring, 2013 4

Shared Memory

Interconnection Network

P P P

Global Shared Memory

D D D
CSE544 - Spring, 2013 5

Shared Disk

Interconnection Network

P P P

M M M

D D D
CSE544 - Spring, 2013 6

Shared Nothing

Interconnection Network

P P P

M M M

D D D
CSE544 - Spring, 2013 7

Shared Memory
•  Nodes share both RAM and disk
•  Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query
to run faster (see query plans)

•  Easy to use and program
•  But very expensive to scale: last remaining

cash cows in the hardware industry

CSE544 - Spring, 2013 8

Shared Disk
•  All nodes access the same disks
•  Found in the largest "single-box" (non-

cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:
•  Also hard to scale past a certain point:

existing deployments typically have fewer
than 10 machines

CSE544 - Spring, 2013 9

Shared Nothing
•  Cluster of machines on high-speed network
•  Called "clusters" or "blade servers”
•  Each machine has its own memory and disk: lowest

contention.

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
•  Today, this is the most scalable architecture.
•  Most difficult to administer and tune.

We discuss only Shared Nothing in class
10

In Class

•  You have a parallel machine. Now what?

•  How do you speed up your DBMS?

CSE544 - Spring, 2013 11

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

•  Inter-query parallelism
–  Transaction per node
–  OLTP

CSE544 - Spring, 2013

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

•  Inter-query parallelism
–  Transaction per node
–  OLTP

•  Inter-operator parallelism
–  Operator per node
–  Both OLTP and Decision Support

CSE544 - Spring, 2013

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

•  Inter-query parallelism
–  Transaction per node
–  OLTP

•  Inter-operator parallelism
–  Operator per node
–  Both OLTP and Decision Support

•  Intra-operator parallelism
–  Operator on multiple nodes
–  Decision Support

CSE544 - Spring, 2013

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

•  Inter-query parallelism
–  Transaction per node
–  OLTP

•  Inter-operator parallelism
–  Operator per node
–  Both OLTP and Decision Support

•  Intra-operator parallelism
–  Operator on multiple nodes
–  Decision Support

CSE544 - Spring, 2013 We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

•  Selection: σA=123(R)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

CSE544 - Spring, 2013 16

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

•  Selection: σA=123(R)
–  Scan file R, select records with A=123

•  Group-by: γA,sum(B)(R)
–  Scan file R, insert into a hash table using attr. A as key
–  When a new key is equal to an existing one, add B to the value

•  Join: R ⋈ S
–  Scan file S, insert into a hash table using attr. B as key
–  Scan file R, probe the hash table using attr. B

CSE544 - Spring, 2013 17

Parallel Query Processing
How do we compute these operations on a shared-nothing parallel db?

•  Selection: σA=123(R) (that’s easy, won’t discuss…)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

Before we answer that: how do we store R (and S) on a shared-nothing
parallel db?

CSE544 - Spring, 2013 18

Horizontal Data Partitioning

CSE544 - Spring, 2013 19

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSE544 - Spring, 2013 20

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Horizontal Data Partitioning

CSE544 - Spring, 2013 21

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning
•  Block Partition:

–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

•  Hash partitioned on attribute A:
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1

•  Range partitioned on attribute A:
–  Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
–  Tuple t goes to chunk i, if vi-1 < t.A < vi

22 CSE544 - Spring, 2013

Parallel GroupBy
Data: R(K,A,B,C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

•  R is hash-partitioned on A

•  R is block-partitioned

•  R is hash-partitioned on K

23 CSE544 - Spring, 2013

Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
•  R is block-partitioned or hash-partitioned

on K

24

R1 R2 RP . . .

R1’ R2’ RP’

. . .

Reshuffle R
on attribute A

CSE544 - Spring, 2013

Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

25 CSE544 - Spring, 2013

Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, S2 RP, SP

Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

26

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSE544 - Spring, 2013

Initially, both R and S are horizontally partitioned on K1 and K2

Speedup and Scaleup

•  Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from

disk
•  If we double the number of nodes P, what

is the new running time?

•  If we double both P and the size of R,
what is the new running time?

CSE544 - Spring, 2013 27

Speedup and Scaleup

•  Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is
the new running time?
– Half (each server holds ½ as many chunks)

•  If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

CSE544 - Spring, 2013 28

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
– On the key K
– On the attribute A

CSE544 - Spring, 2013 29

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSE544 - Spring, 2013 30

Parallel DBMS

•  Parallel query plan: tree of parallel operators
Intra-operator parallelism
– Data streams from one operator to the next
– Typically all cluster nodes process all operators

•  Can run multiple queries at the same time
Inter-query parallelism
– Queries will share the nodes in the cluster

•  Notice that user does not need to know how
his/her SQL query was processed

CSE544 - Spring, 2013 31

32

Loading Data into a Parallel DBMS

AMP = “Access Module Processor” = unit of parallelism
CSE544 - Spring, 2013

Example using Teradata
System

33

Example Parallel Query Execution

SELECT *
 FROM Order o, Line i
 WHERE o.item = i.item
 AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items
ordered

CSE544 - Spring, 2013

Order(oid, item, date), Line(item, …)

34

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

CSE544 - Spring, 2013

Order(oid, item, date), Line(item, …)

35

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

CSE544 - Spring, 2013

Order(oid, item, date), Line(item, …)

36

Example Parallel Query Execution

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

CSE544 - Spring, 2013

Order(oid, item, date), Line(item, …)

Parallel Query Plans

•  Same relational operators

•  Add special split and merge operators
– Handle data routing, buffering, and flow

control

•  Example: exchange operator
–  Inserted between consecutive operators in the

query plan

CSE544 - Spring, 2013 37

Time Permitting….

•  Discussion of Shapiro’s paper on join
algorithms

CSE544 - Spring, 2013 38

Partitioned Hash Join,
or GRACE Join

R ⨝ S

CSE544 - Spring, 2013 39

How does it work?

Partitioned Hash Join,
or GRACE Join

R ⨝ S
•  Step 1:

–  Hash S into M buckets
–  send all buckets to disk

•  Step 2
–  Hash R into M buckets
–  Send all buckets to disk

•  Step 3
–  Join every pair of buckets

CSE544 - Spring, 2013 40

The Idea of Hash-Based
Partitioning

•  Idea: partition a relation R into M-1 buckets, on disk
•  Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M

M main memory buffers Disk Disk

Relation R
OUTPUT

2 INPUT

1

hash function
h M-1

Partitions

1

2

M-1
. . .

1

2

B(R)

Assumption: B(R)/M <= M, i.e. B(R) <= M2

Grace-Join
•  Partition both relations

using hash fn h: R tuples
in partition i will only join S
tuples in partition i.

•  Read in a partition of R,
hash it using h2 (<> h!).
Scan matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash function
h M-1

Partitions

1

2

M-1
. . .

Grace Join

•  Cost: 3B(R) + 3B(S)
•  Assumption: min(B(R), B(S)) <= M2

CSE544 - Spring, 2013 43

Hybrid Hash Join

•  What problem does it address?

CSE544 - Spring, 2013 44

Hybrid Hash Join

•  What problem does it address?

•  If B(R) ≤ M then we can use main memory
hash-join: cost = B(R) + B(S)

•  If B(R) >≈ M then we must use Grace join:
cost jumps to 3*B(R) + 3*B(S)

CSE544 - Spring, 2013 45

Hybrid Hash Join

•  How does it work?

CSE544 - Spring, 2013 46

Hybrid Hash Join

•  How does it work?
•  Use B(R)/M buckets
•  Since B(R)/M << M, there is enough space left

in main memory: use it to store a few buckets
•  Fuzzy math to make this work, but best done

adaptively:
–  Start by keeping all buckets in main memory
–  When the remaining memory (M - B(R)/M) fills up,

spill one bucket to disk

CSE544 - Spring, 2013 47

