
CSE 544: Principles of Database 
Systems 

Parallel Databases 
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Announcements 

•  Paper reviews: 
– Join processing paper was due yesterday 
– MapReduce paper due on Monday, May 6th 

•  HW2 is due on Monday, May 6th 

– You should have made lots of progress by 
now! 
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Overview of Today’s Lecture 

•  Parallel databases (Chapter 22.1 – 22.5) 

•  MapReduce – base on the paper 
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Architectures for Parallel 
Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 

CSE544 - Spring, 2013         4 



Shared Memory 
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P P P 

Global Shared Memory 

D D D 
CSE544 - Spring, 2013                 5 



Shared Disk 
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Shared Nothing 

Interconnection Network 
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Shared Memory 
•  Nodes share both RAM and disk 
•  Dozens to hundreds of processors 

Example: SQL Server runs on a single machine 
and can leverage many threads to get a query 
to run faster (see query plans) 

•  Easy to use and program 
•  But very expensive to scale: last remaining 

cash cows in the hardware industry 
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Shared Disk 
•  All nodes access the same disks 
•  Found in the largest "single-box" (non-

cluster) multiprocessors 

Oracle dominates this class of systems. 

Characteristics: 
•  Also hard to scale past a certain point: 

existing deployments typically have fewer 
than 10 machines 
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Shared Nothing 
•  Cluster of machines on high-speed network 
•  Called "clusters" or "blade servers” 
•  Each machine has its own memory and disk: lowest 

contention. 
 
NOTE: Because all machines today have many cores 
and many disks, then shared-nothing systems typically 
run many "nodes” on a single physical machine. 

Characteristics: 
•  Today, this is the most scalable architecture. 
•  Most difficult to administer and tune. 

We discuss only Shared Nothing in class 
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In Class 

•  You have a parallel machine.  Now what?   

•  How do you speed up your DBMS? 
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•  Inter-query parallelism 
–  Transaction per node 
–  OLTP 
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Basic Query Processing: 
Quick Review in Class 

Basic query processing on one node. 
 
Given relations R(A,B) and S(B, C), no indexes, how do we compute: 

•  Selection:  σA=123(R) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 
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Basic Query Processing: 
Quick Review in Class 

Basic query processing on one node. 
 
Given relations R(A,B) and S(B, C), no indexes, how do we compute: 

•  Selection:  σA=123(R) 
–  Scan file R, select records with A=123 

•  Group-by:  γA,sum(B)(R) 
–  Scan file R, insert into a hash table using attr. A as key 
–  When a new key is equal to an existing one, add B to the value 

•  Join:  R ⋈ S 
–  Scan file S, insert into a hash table using attr. B as key 
–  Scan file R, probe the hash table using attr. B 
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Parallel Query Processing 
How do we compute these operations on a shared-nothing parallel db? 

•  Selection:  σA=123(R)    (that’s easy, won’t discuss…) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 

Before we answer that: how do we store R (and S) on a shared-nothing 
parallel db? 
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Horizontal Data Partitioning 
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Horizontal Data Partitioning 
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Horizontal Data Partitioning 
•  Block Partition:  

–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)  

•  Hash partitioned on attribute A: 
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1 

•  Range partitioned on attribute A: 
–  Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞ 
–  Tuple t goes to chunk i, if vi-1 < t.A < vi 
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Parallel GroupBy 
Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
Discuss in class how to compute in each case: 

•  R is hash-partitioned on A 

•  R is block-partitioned 

•  R is hash-partitioned on K 
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Parallel GroupBy 

Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
•  R is block-partitioned or hash-partitioned 

on K 

24 

R1  R2  RP  .  .  . 
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Reshuffle R 
on attribute A 
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Parallel Join 

•  Data: R(K1,A, B), S(K2, B, C) 
•  Query: R(K1,A,B) ⋈ S(K2,B,C) 
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Parallel Join 

•  Data: R(K1,A, B), S(K2, B, C) 
•  Query: R(K1,A,B) ⋈ S(K2,B,C) 
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R1, S1  R2, S2  RP, SP  .  .  . 

R’1, S’1  R’2, S’2  R’P, S’P  .  .  . 

Reshuffle R on R.B 
and S on S.B 

Each server computes 
the join locally 
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Speedup and Scaleup 

•  Consider: 
– Query: γA,sum(C)(R) 
– Runtime: dominated by reading chunks from 

disk 
•  If we double the number of nodes P, what 

is the new running time? 

•  If we double both P and the size of R, 
what is the new running time? 
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Speedup and Scaleup 

•  Consider: 
– Query: γA,sum(C)(R) 
– Runtime: dominated by reading chunks from disk 

•  If we double the number of nodes P, what is 
the new running time? 
– Half (each server holds ½ as many chunks) 

•  If we double both P and the size of R, what is 
the new running time? 
– Same (each server holds the same # of chunks) 
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Uniform Data v.s. Skewed Data 

•  Let R(K,A,B,C); which of the following 
partition methods may result in skewed 
partitions? 

•  Block partition 

•  Hash-partition 
– On the key K 
– On the attribute A 
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Uniform Data v.s. Skewed Data 

•  Let R(K,A,B,C); which of the following 
partition methods may result in skewed 
partitions? 

•  Block partition 

•  Hash-partition 
– On the key K 
– On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming good 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 
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Parallel DBMS 

•  Parallel query plan: tree of parallel operators 
Intra-operator parallelism 
– Data streams from one operator to the next 
– Typically all cluster nodes process all operators 

•  Can run multiple queries at the same time 
Inter-query parallelism 
– Queries will share the nodes in the cluster 

•  Notice that user does not need to know how 
his/her SQL query was processed 
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Loading Data into a Parallel DBMS 

AMP = “Access Module Processor” = unit of parallelism 
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Example using Teradata 
System 
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Example Parallel Query Execution 

SELECT *  
  FROM Order o, Line i 
 WHERE o.item = i.item 
   AND o.date = today() 

join 

select 

scan scan 

date = today() 

o.item = i.item 

Order o Item i 

Find all orders from today, along with the items 
ordered 
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Example Parallel 
Query Execution 

AMP 1 AMP 2 AMP 3 

select 
date=today() 

select 
date=today() 

select 
date=today() 

scan 
Order o 

scan 
Order o 

scan 
Order o 

hash 
h(o.item) 

hash 
h(o.item) 

hash 
h(o.item) 

AMP 1 AMP 2 AMP 3 

join 

select 

scan 

date = today() 

o.item = i.item 

Order o 
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Example Parallel 
Query Execution 

AMP 1 AMP 2 AMP 3 

scan 
Item i 

AMP 1 AMP 2 AMP 3 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

join 

scan 
date = today() 

o.item = i.item 

Order o 
Item i 
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Example Parallel Query Execution 

AMP 1 AMP 2 AMP 3 

join join join 
o.item = i.item o.item = i.item o.item = i.item 

contains all orders and all 
lines where hash(item) = 1 

contains all orders and all 
lines where hash(item) = 2 

contains all orders and all 
lines where hash(item) = 3 
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Parallel Query Plans 

•  Same relational operators 

•  Add special split and merge operators 
– Handle data routing, buffering, and flow 

control 

•  Example: exchange operator  
–  Inserted between consecutive operators in the 

query plan 
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Time Permitting…. 

•  Discussion of Shapiro’s paper on join 
algorithms 
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Partitioned Hash Join, 
or GRACE Join 

R ⨝ S 
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Partitioned Hash Join, 
or GRACE Join 

R ⨝ S 
•  Step 1: 

–  Hash S into M buckets 
–  send all buckets to disk 

•  Step 2 
–  Hash R into M buckets 
–  Send all buckets to disk 

•  Step 3 
–  Join every pair of buckets 
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The Idea of Hash-Based 
Partitioning 

•  Idea: partition a relation R into M-1 buckets, on disk 
•  Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M 

M main memory buffers Disk Disk 

Relation R 
OUTPUT 

2 INPUT 

1 

hash function 
h M-1 

Partitions 

1 

2 

M-1 
. . . 

1 

2 

B(R) 

Assumption:     B(R)/M <= M,   i.e. B(R) <= M2 



Grace-Join 
•  Partition both relations 

using hash fn h:  R tuples 
in partition i will only join S 
tuples in partition i. 

•  Read in a partition of R, 
hash it using h2 (<> h!). 
Scan matching partition 
of S, search for 
matches. 

Partitions 
of R & S 

Input buffer 
for Ri 

Hash table for partition 
Si ( < M-1 pages) 

B main memory buffers Disk 

Output  
 buffer 

Disk 

Join Result 

hash 
fn 
h2 

h2 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash function 
h M-1 

Partitions 

1 

2 

M-1 
. . . 



Grace Join 

•  Cost: 3B(R) + 3B(S) 
•  Assumption: min(B(R), B(S)) <= M2 
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Hybrid Hash Join 

•  What problem does it address? 
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Hybrid Hash Join 

•  What problem does it address? 

•  If B(R) ≤ M then we can use main memory 
hash-join: cost = B(R) + B(S) 

•  If B(R) >≈ M then we must use Grace join: 
cost jumps to 3*B(R) + 3*B(S) 
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Hybrid Hash Join 

•  How does it work? 
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Hybrid Hash Join 

•  How does it work? 
•  Use B(R)/M buckets 
•  Since B(R)/M << M, there is enough space left 

in main memory: use it to store a few buckets 
•  Fuzzy math to make this work, but best done 

adaptively: 
–  Start by keeping all buckets in main memory 
–  When the remaining memory (M  - B(R)/M) fills up, 

spill one bucket to disk 
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