CSE 544: Principles of Database
Systems

Parallel Databases

CSE544 - Spring, 2013

Announcements

* Paper reviews:
— Join processing paper was due yesterday
— MapReduce paper due on Monday, May 6%

« HW2 is due on Monday, May 6%

— You should have made lots of progress by
now!

Overview of Today’s Lecture

» Parallel databases (Chapter 22.1 — 22.5)

 MapReduce — base on the paper

Architectures for Parallel
Databases

* Shared memory

 Shared disk

* Shared nothing

Shared Memory

99 9

Interconnectlon Network

Global Shared Memory

o

CSE544 - Spring, 2013

o

Shared Disk

M M M
Interconnection Network}

5 o o

CSE544 - Spring, 2013

a

Shared Nothing

Interconnectlon Network

© © ©

@ @ @

CSE544 - Spring, 2013

Shared Memory

* Nodes share both RAM and disk
* Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query
to run faster (see query plans)

« Easy to use and program

» But very expensive to scale: last remaining
cash cows in the hardware industry

Shared Disk

 All nodes access the same disks

* Found in the largest "single-box" (non-
cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:

* Also hard to scale past a certain point:
existing deployments typically have fewer
than 10 machines

Shared Nothing

» Cluster of machines on high-speed network
« Called "clusters" or "blade servers”

« Each machine has its own memory and disk: lowest
contention.

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
* Today, this is the most scalable architecture.
 Most difficult to administer and tune.

[We discuss only Shared Nothing in class}

In Class

* You have a parallel machine. Now what?

 How do you speed up your DBMS?

Approaches to
Parallel Query Evaluation = . _

* Inter-query parallelism /\ \ \

— Transaction per node /\ coomed,
_ OLTP ||||||

Approaches to
Parallel Query Evaluation .

<id=cid
cid=cid

* Inter-query parallelism /\ \ \
— Transaction per node /\ cosiomel L
_ OLTP Product Purchass ’
 Inter-operator parallelism /
— Operator per node /\ e

— Both OLTP and Decision Support

CSE544 - Spring, 2013

Approaches to
Parallel Query Evaluation .

cid=cid

* Inter-query parallelism /\ \ \

— Transaction per node /" Customer
— OLTP \

<id=cid

IIIIIII

 Inter-operator parallelism

— Operator per node /
— Both OLTP and Decision Support /\ costomer

 Intra-operator parallelism M o
— Operator on multiple nodes /

— Decision Support /\ Cutome

CSE544 - Spring, 2013

Approaches to

Parallel Query Evaluation .

* Inter-query parallelism
— Transaction per node
— OLTP

 Inter-operator parallelism

— Operator per node
— Both OLTP and Decision Support

 Intra-operator parallelism
— Operator on multiple nodes
— Decision Support

<id=cid

Product Purchase

LWe study only intra-operator parallelism

: most scalable 1

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

Selection: gx-43(R)

Grou p'by: VA,sum(B)(R)

Join: R™'s

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

« Selection: 0a-193(R)
— Scan file R, select records with A=123

* Group-by: YA,sum(B)(R)
— Scan file R, insert into a hash table using attr. A as key
— When a new key is equal to an existing one, add B to the value

« Join: R™S
— Scan file S, insert into a hash table using attr. B as key
— Scan file R, probe the hash table using attr. B

Parallel Query Processing

How do we compute these operations on a shared-nothing parallel db?

« Selection: 0,_43(R) (that’s easy, won't discuss...)

* Group-by: YA,sum(B)(R)

. Join: R™'s

Before we answer that: how do we store R (and S) on a shared-nothing
parallel db?

Horizontal Data Partitioning

Data: Servers:

TATE 1 2 P

CSE544 - Spring, 2013

Horizontal Data Partitioning

Data: Servers:
D
K A B K A1-B K A98 - - - K A B
A

1] A

_J

N

> [

_J

CSE544 - Spring, 2013

Data:

Horizontal Data Partitioning

I=
| >

AN

Servers:
1 9
N\
1
> Which tuples
go to what server?

CSE544 - Spring, 2013

21

Horizontal Data Partitioning

* Block Partition:
— Partition tuples arbitrarily s.t. size(R,)= ... = size(Rp)

« Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1

« Range partitioned on attribute A:
— Partition the range of Ainto -© =vy<v,<...<vp=
— Tuple t goes to chunk i, if v, ; <t A<,

CSE544 - Spring, 2013

o)

22

Parallel GroupBYy

Data: R(K,A,B,C)

Query: Y sumc)(R)

Discuss in class how to compute in each case:
* R is hash-partitioned on A

* R is block-partitioned

* R is hash-partitioned on K

Parallel GroupBYy

Data: R(K,A,B,C)

Query: Y sumc)(R)
* R iIs block-partitioned or hash-partitioned
on K

Reshuffle R
on attribute A

R; R, oL Rp

R1’ R2’ RP’

CSE544 - Spring, 2013

Parallel Join

. Data: R(K1,A, B), S(K2, B, C)
. Query: R(K1,A,B) = S(K2,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

CSE544 - Spring, 2013

Parallel Join

. Data: R(K1,A, B), S(K2, B, C)
. Query: R(K1,A,B) = S(K2,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

Reshuffle R on R.B
and Son S.B

r R,1, S’»] R’z, S,z - e . R,P’ S’P
Each server computes
the join locally

CSE544 - Spring, 2013

Speedup and Scaleup

 Consider:

— Query: VA,sum(C)(R)
— Runtime: dominated by reading chunks from
disk

* |f we double the number of nodes P, what
IS the new running time?

* |f we double both P and the size of R,
what is the new running time??

CSE544 - Spring, 2013 27

Speedup and Scaleup

 Consider:

— Query: Ya sumc)(R)
— Runtime: dominated by reading chunks from disk

 |f we double the number of nodes P, what is
the new running time??
— Half (each server holds 2z as many chunks)

 |f we double both P and the size of R, what is

the new running time?
— Same (each server holds the same # of chunks)

CSE544 - Spring, 2013 28

Uniform Data v.s. Skewed Data

* Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

* Block partition

* Hash-partition
— On the key K
— On the attribute A

Uniform Data v.s. Skewed Data

* Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

* Block partition Uniform
* Hash-partition | R oncion
— On the key K Uniform 3 s

. of the attribute A, then
— On the attribute A —May be skewed ll recorcs end up i e

Parallel DBMS

» Parallel query plan: tree of parallel operators
Intra-operator parallelism

— Data streams from one operator to the next

— Typically all cluster nodes process all operators
« Can run multiple queries at the same time

Inter-query parallelism

— Queries will share the nodes in the cluster

 Notice that user does not need to know how
his/her SQL query was processed

Loading Data into a Parallel DBMS

Example using Teradata

%%Lﬁé@gorithm produces

A Customer Row is Inserted—l

ucket
2. A Hash-ID

The Hash Bucket Points
to One AMP

Node 1 Node 2 Node 3 Node 4

AMP = “Access Module Processor” = unit of parallelis

CSE544 - Spring, 2013 32

Order(oid, item, date), Line(item, ...)

Example Parallel Query Execution

Find all orders from today, along with the items
ordered

SELECT *

FROM Order o, Line 1
WHERE o.item i.item ‘

AND o.date today ()

o.item = i.item

date = today()

Order o

ltem i

CSE544 - Spring, 2013 33

Order(oid, item, date), Line(item, e ~
Example Parallel
Query Execution =

\
AMP 1 AMP 2 AMP 3
hash hash hash
h(o.item) | h(o.item) h(o.item)
date=today() date=today() date=today()
Cscan)D scan scan
Order o Order o Order o

AMP 1 AMP 2 AMP 3

Order(oid, item, date), Line(item, ...)

Example Parallel
Query Execution

AMP 1

ha

sh

Scan

h(i.item)

ltem |

AMP 1

AMP 2

hash

Scan

h(i.item)

ltem i

AMP 2

~

o.item = i.item

hash

h(i.item)

scan .
ltem i

AMP 3

Order(oid, item, date), Line(item, ...)

Example Parallel Query Execution

m join join
o.item = i.item o.item = i.item o.item = i.item

AMP 1 AMP 2 AMP 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSE544 - Spring, 2013 36

Parallel Query Plans

« Same relational operators

* Add special split and merge operators

— Handle data routing, buffering, and flow
control

 Example: exchange operator

— Inserted between consecutive operators in the
guery plan

Time Permitting....

* Discussion of Shapiro’s paper on join
algorithms

Partitioned Hash Join,
or GRACE Join
RXS

How does it work?

Partitioned Hash Join,
or GRACE Join

RNXS
o Step 1:
— Hash S into M buckets
— send all buckets to disk
¢ Step 2
— Hash R into M buckets
— Send all buckets to disk
¢ Step 3

— Join every pair of buckets

The ldea of Hash-Based
Partitioning

 l|dea: partition a relation R into M-1 buckets, on disk
« Each bucket has size approx. B(R)/(M-1) = B(R)/M

B(R)

Relation R
OUTPUT Partitions
S 1 S
1
INPUT 2 5
> fup\ac%%n o0
h M-1
M-1
~ ~
Disk M main memory buffers Disk
Assumption: B(R)M <=M, i.e. B(R) <= M?

Grace-Join

Partition both relations
using hash fn h: R tuples
in partition i will only join S
tuples in partition i.

Read in a partition of R,
hash it using h2 (<> hl).
Scan matching partition
of S, search for
matches.

Original

Relation OUTPUT Partitions
1 S
1
INPUT 2
hash 2
> function
2 = = h ¢ o 0 0
M-1
M-1
~ N~
Disk B main memory buffers Disk
Partitions _
of R&S Join Result
Hash table for partition
S
hash| Si(<M-1pages) | [———
fn .
h2 N o 0 ¢ .
o 0 ¢ éhz . M
Input buffer Output .
=Y for Ri buffer U,

B main memory buffers Disk

Grace Join

» Cost: 3B(R) + 3B(S)
« Assumption: min(B(R), B(S)) <= M?

Hybrid Hash Join

* What problem does it address?

Hybrid Hash Join

* What problem does it address?

* If B(R) <M then we can use main memory
hash-join: cost = B(R) + B(S)

* If B(R) >= M then we must use Grace join:
cost jumps to 3*B(R) + 3*"B(S)

Hybrid Hash Join

« How does it work?

Hybrid Hash Join

How does it work?
Use B(R)/M buckets

Since B(R)/M << M, there is enough space left
IN main memory: use it to store a few buckets

Fuzzy math to make this work, but best done
adaptively:
— Start by keeping all buckets in main memory

— When the remaining memory (M - B(R)/M) fills up,
spill one bucket to disk

