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Parallel Databases 

 

CSE544 - Spring, 2013                 1 



Announcements 
•  Lecture on Thursday, May 2nd:  

– Moved to 9am-10:30am, CSE 403 

•  Paper reviews: 
– Anatomy paper was due yesterday; will discuss 

today in class 
–  Join processing paper due Wednesday 

•  HW2 is due on Monday, May 6th 

–  Lots of work!  You should have already started! 
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Overview of Today’s Lecture 

•  Discuss in class the Anatomy paper 

•  Parallel databases (Chapter 22.1 – 22.5) 
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DMBS Architecture: Outline 
•  Main components of a modern DBMS 
•  Process models 
•  Storage models 
•  Query processor 
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DBMS Architecture 
 
 
 
 
 
 
 

Process Manager 

Admission Control 

Connection Mgr 

 
 
 
 
 
 
 

Query Processor 

Parser 

Query Rewrite 

Optimizer 

Executor 

 
 
 

Storage Manager 

Access Methods 

Lock Manager 

Buffer Manager 

Log Manager 

 
 
 
 
 
 
 

Shared Utilities 

Memory Mgr 

Disk Space Mgr 

Replication Services 

Admin Utilities 

[Anatomy of a Db System.   
J. Hellerstein & M. Stonebraker.  
Red Book. 4ed.] 
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DMBS Architecture: Outline 
•  Main components of a modern DBMS 
•  Process models 
•  Storage models 
•  Query processor 
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Process Model 
Q: Why not simply queue all user requests, and serve them one at the 

time? 



Process Model 
Q: Why not simply queue all user requests, and serve them one at the 

time? 
A: Because of the high disk I/O latency 

 Corollary: in a main memory db you can service transactions 
sequentially! 

 
Alternatives 
1.  Process per connection 
2.  Server process (thread per connection) 

•  OS threads  or DBMS threads 
3.  Server process with I/O process 
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Process Per Connection 
•  Overview 

–  DB server forks one process for each client connection 

•  Advantages 
–  ? 

•  Drawbacks 
–  ? 
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Process Per Connection 
•  Overview 

–  DB server forks one process for each client connection 

•  Advantages 
–  Easy to implement (OS time-sharing, OS isolation, debuggers, etc.) 

•  Drawbacks 
–  Need OS-supported “shared memory” (for lock table, buffer pool) 
–  Not scalable: memory overhead and expensive context switches 
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Server Process  

•  Overview 
–  Dispatcher thread listens to requests, dispatches worker threads 

•  Advantages 
–  ? 
–  ? 

•  Drawbacks 
–  ? 



Server Process  

•  Overview 
–  Dispatcher thread listens to requests, dispatches worker threads 

•  Advantages 
–  Shared structures can simply reside on the heap  
–  Threads are lighter weight than processes: memory, context switching 

•  Drawbacks 
–  Concurrent programming is hard to get right (race conditions, 

deadlocks) 
–  Subtle API thread differences across different operating systems make 

portability difficult 



Sever Process with I/O Process 

Problem: entire process blocks on synchronous I/O calls 

•  Solution 1: Use separate process(es) for I/O tasks 

•  Solution 2: Modern OS provide asynchronous I/O 
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DBMS Threads vs OS Threads 

•  Why do DBMSs implement their own threads? 
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DBMS Threads vs OS Threads 

•  Why do DBMSs implement their own threads? 
–  Legacy: originally, there were no OS threads 
–  Portability: OS thread packages are not completely portable 
–  Performance: fast task switching 

•  Drawbacks 
–  Replicating a good deal of OS logic 
–  Need to manage thread state, scheduling, and task switching 

•  How to map DBMS threads onto OS threads or processes? 
–  Rule of thumb: one OS-provided dispatchable unit per physical device 
–  See page 9 and 10 of Hellerstein and Stonebraker’s paper 
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Historical Perspective (1981) 
In 1981: 
•  No OS threads 
•  No shared memory between processes 

–  Makes one process per user hard to program 
•  Some OSs did not support many to one communication 

–  Thus forcing the one process per user model 
•  No asynchronous I/O 

–  But inter-process communication expensive 
–  Makes the use of I/O processes expensive 

•  Common original design: DBMS threads, frequently yielding control 
to a scheduling routine 
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Commercial Systems 
•  Oracle 

–  Unix default: process-per-user mode 
–  Unix: DBMS threads multiplexed across OS processes  
–  Windows: DBMS threads multiplexed across OS threads 

•  DB2 
–  Unix: process-per-user mode 
–  Windows: OS thread-per-user 

•  SQL Server 
–  Windows default: OS thread-per-user 
–  Windows: DBMS threads multiplexed across OS threads 
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DMBS Architecture: Outline 
•  Main components of a modern DBMS 
•  Process models 
•  Storage models 
•  Query processor 
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Storage Model 
•  Problem: DBMS needs spatial and temporal control over storage 

–  Spatial control for performance 
–  Temporal control for correctness and performance   

•  Alternatives 
–  Use “raw” disk device interface directly 
–  Use OS files 
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Spatial Control 
Using “Raw” Disk Device Interface 

•  Overview 
–  DBMS issues low-level storage requests directly to disk device 

•  Advantages 
–  ? 
–  ? 

•  Disadvantages 
–  ? 
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Spatial Control 
Using “Raw” Disk Device Interface 

•  Overview 
–  DBMS issues low-level storage requests directly to disk device 

•  Advantages 
–  DBMS can ensure that important queries access data sequentially  
–  Can provide highest performance 

•  Disadvantages 
–  Requires devoting entire disks to the DBMS  
–  Reduces portability as low-level disk interfaces are OS specific 
–  Many devices are in fact “virtual disk devices” 

•  SAN = storage area network; NAS = network attached device 
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Spatial Control 
Using OS Files 

•  Overview 
–  DBMS creates one or more very large OS files 

•  Advantages 
–  ? 

•  Disadvantages 
–  ? 
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Spatial Control 
Using OS Files 

•  Overview 
–  DBMS creates one or more very large OS files 

•  Advantages 
–  Allocating large file on empty disk can yield good physical locality 

•  Disadvantages 
–  Must control the timing of writes for correctness and performance  
–  OS may further delay writes 
–  OS may lead to double buffering, leading to unnecessary copying 
–  DB must fine tune when the log tail is flushed to disk 
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Historical Perspective (1981) 
•  Recognizes mismatch problem between OS files and DBMS needs 

–  If DBMS uses OS files and OS files grow with time, blocks get scattered 
–  OS uses tree structure for files but DBMS needs its own tree structure 

•  Other proposals at the time 
–  Extent-based file systems 
–  Record management inside OS 
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Commercial Systems 
•  Most commercial systems offer both alternatives 

–  Raw device interface for peak performance 
–  OS files more commonly used 

•  In both cases, we end-up with a DBMS file abstraction implemented 
on top of OS files or raw device interface 
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Temporal Control 
Buffer Manager  

•  Correctness problems 
–  DBMS needs to control when data is written to disk in order to provide 

transactional semantics (we will study transactions later) 
–  OS buffering can delay writes, causing problems when crashes occur 

•  Performance problems 
–  OS optimizes buffer management for general workloads 
–  DBMS understands its workload and can do better 
–  Areas of possible optimizations 

•  Page replacement policies 
•  Read-ahead algorithms (physical vs logical) 
•  Deciding when to flush tail of write-ahead log to disk 
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Historical Perspective (1981) 
•  Problems with OS buffer pool management long recognized 

–  Accessing OS buffer pool involves an expensive system call 
–  Faster to access a DBMS buffer pool in user space 

–  LRU replacement does not match DBMS workload 
–  DBMS can do better 

–  OS can do only sequential prefetching, DBMS knows which page it 
needs next and that page may not be sequential 

–  DBMS needs ability to control when data is written to disk 
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Commercial Systems 
•  DBMSs implement their own buffer pool managers 

•  Modern filesystems provide good support for DBMSs 
–  Using large files provides good spatial control 
–  Using interfaces like the mmap suite 

•  Provides good temporal control 
•  Helps avoid double-buffering at DBMS and OS levels 
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DMBS Architecture: Outline 
•  Main components of a modern DBMS 
•  Process models 
•  Storage models 
•  Query processor 
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Query Processor 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 
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Query Processor 
1.  Parsing and Authorization 

–  Catalog management 
2.  Query rewrite 

–  View inlining, etc 
3.  Optimizer 

–  System R v.s. Volcano/Cascades style 
–  Selectivity estimation 

4.  Query execution 
–  Iterator model: init(), get_next(), close() 
–  What is the “Halloween problem”? 

5.  Access methods 
–  Pass a search predicate (SARG) to init() 
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Query Compilation/Recompilation 
[Chaudhuri] 

The “prepare” statement 
must choose a plan 
without knowing the 
actual predicate values.  
Discuss the Anatomy 
paper 



Parallel Databases 
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Parallel v.s. Distributed 
Databases 

•  Parallel database system: 
–  Improve performance through parallel 

implementation 
– Will discuss in class 

•  Distributed database system: 
– Data is stored across several sites, each site 

managed by a DBMS capable of running 
independently 

– Will not discuss in class 
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Parallel DBMSs 
•  Goal 

–  Improve performance by executing multiple 
operations in parallel 

 
•  Key benefit 

– Cheaper to scale than relying on a single 
increasingly more powerful processor 

•  Key challenge 
– Ensure overhead and contention do not kill 

performance 
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Performance Metrics  
for Parallel DBMSs 

•  Speedup 
–  More processors è higher speed 

•  Scaleup 
–  More processors è can process more data 

•  Batch scaleup/speedup 
–  Decision Support: individual query should run faster 

(speedup) or same speed (scaleup) 
•  Transaction scaleup/speedup 

–  OLTP: Transactions Per Second (TPS) should 
increase (speedup) or should stay constant (scaleup) 
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Linear v.s. Non-linear Speedup 
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# processors (=P) 

Speedup 
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Linear v.s. Non-linear Scaleup 

# processors (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
– Cost of starting an operation on many 

processors 

•  Interference 
– Contention for resources between processors 

•  Skew 
– Slowest processor becomes the bottleneck 
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Architectures for Parallel 
Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Shared Memory 

Interconnection Network 

P P P 

Global Shared Memory 

D D D 
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Shared Disk 

Interconnection Network 

P P P 

M M M 

D D D 
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Shared Nothing 

Interconnection Network 

P P P 

M M M 

D D D 
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Shared Nothing 

•  Most scalable architecture 
– Minimizes interference by minimizing resource 

sharing 
– Can use commodity hardware 
– Terminology: processor = server = node 
– P = number of nodes 

•  Also most difficult to program and manage 
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Purchase 

pid=pid 

cid=cid 

Customer 

Product 
Purchase 

pid=pid 

cid=cid 

Customer 

Product 

Taxonomy 
•  Inter-query parallelism 

–  Transaction per node 
–  OLTP 

•  Inter-operator parallelism 
–  Operator per node 
–  Both OLTP and Decision Support 

•  Intra-operator parallelism 
–  Operator on multiple nodes 
–  Decision Support 
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Review in Class 
Basic query processing on one node. 
 
Given relations R(A,B) and S(B, C), compute: 

•  Selection:  σA=123(R) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 
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Horizontal Data Partitioning 
•  Partition a table R(K, A, B, C) into P chunks R1, …, 

RP, stored at the P nodes 

•  Block Partition: size(R1)≈ … ≈ size(RP)  

•  Hash partitioned on attribute A: 
–  Tuple t goes to chunk i = (h(t.A) mod P) + 1 

•  Range partitioned on attribute A: 
–  Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞ 
–  Tuple t goes to chunk i, if vi-1 ≤ t.A < vi 
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Parallel GroupBy 

R(K,A,B,C), discuss in class how to compute 
these GroupBy’s, for each of the partitions 

•  γA,sum(C)(R) 
 
 
•  γB,sum(C)(R) 
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Parallel GroupBy 

γA,sum(C)(R) 
•  If R is partitioned on A, then each node 

computes the group-by locally 
•  Otherwise, hash-partition R(K,A,B,C) on A, 

then compute group-by locally: 
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R1  R2  RP  .  .  . 

R1’  R2’  RP’  .  .  . 

Reshuffle R 
on attribute 



Speedup and Scaleup 

•  The runtime is dominated by the time to 
read the chunks from disk, i.e. size(Ri) 

•  If we double the number of nodes P, what 
is the new running time of γA,sum(C)(R)? 

•  If we double both P and the size of the 
relation R, what is the new running time? 
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Uniform Data v.s. Skewed Data 

•  Uniform partition:  
– size(R1) ≈ … ≈ size(RP) ≈    size(R) / P 
– Linear speedup, constant scaleup 

•  Skewed partition:  
– For some i,  size(Ri)  ≫ size(R) / P 
– Speedup and scaleup will suffer 
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Uniform Data v.s. Skewed Data 
•  Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

•  Range-partition 
–  On the key K 
–  On the attribute A 
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Uniform Data v.s. Skewed Data 
•  Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

•  Range-partition 
–  On the key K 
–  On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming uniform 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 

May be skewed Difficult to partition 
the range of A uniformly.  
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Parallel Join 

•  In class: compute R(A,B) ⋈ S(B,C) 
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R1, S1 R2, S2 RP, SP .  .  . 



Parallel Join 

•  In class: compute R(A,B) ⋈ S(B,C) 
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R1, S1 R2, S2 RP, SP .  .  . 

R’1, S’1 R’2, S’2 R’P, S’P .  .  . 

Reshuffle R on R.B 
and S on S.B 

Each server computes 
the join locally 
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Parallel Query Plans 

•  Same relational operators 

•  Add special split and merge operators 
– Handle data routing, buffering, and flow 

control 

•  Example: exchange operator  
–  Inserted between consecutive operators in the 

query plan 
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