
CSE 544: Principles of Database
Systems

Anatomy of a DBMS,
Parallel Databases

CSE544 - Spring, 2013 1

Announcements
•  Lecture on Thursday, May 2nd:

– Moved to 9am-10:30am, CSE 403

•  Paper reviews:
– Anatomy paper was due yesterday; will discuss

today in class
–  Join processing paper due Wednesday

•  HW2 is due on Monday, May 6th

–  Lots of work! You should have already started!

CSE544 - Spring, 2013 2

Overview of Today’s Lecture

•  Discuss in class the Anatomy paper

•  Parallel databases (Chapter 22.1 – 22.5)

CSE544 - Spring, 2013 3

CSE544 - Spring, 2013

DMBS Architecture: Outline
•  Main components of a modern DBMS
•  Process models
•  Storage models
•  Query processor

4

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

CSE544 - Spring, 2013

DMBS Architecture: Outline
•  Main components of a modern DBMS
•  Process models
•  Storage models
•  Query processor

6

Process Model
Q: Why not simply queue all user requests, and serve them one at the

time?

Process Model
Q: Why not simply queue all user requests, and serve them one at the

time?
A: Because of the high disk I/O latency

 Corollary: in a main memory db you can service transactions
sequentially!

Alternatives
1.  Process per connection
2.  Server process (thread per connection)

•  OS threads or DBMS threads
3.  Server process with I/O process

CSE544 - Spring, 2013

Process Per Connection
•  Overview

–  DB server forks one process for each client connection

•  Advantages
–  ?

•  Drawbacks
–  ?

9

CSE544 - Spring, 2013

Process Per Connection
•  Overview

–  DB server forks one process for each client connection

•  Advantages
–  Easy to implement (OS time-sharing, OS isolation, debuggers, etc.)

•  Drawbacks
–  Need OS-supported “shared memory” (for lock table, buffer pool)
–  Not scalable: memory overhead and expensive context switches

10

Server Process

•  Overview
–  Dispatcher thread listens to requests, dispatches worker threads

•  Advantages
–  ?
–  ?

•  Drawbacks
–  ?

Server Process

•  Overview
–  Dispatcher thread listens to requests, dispatches worker threads

•  Advantages
–  Shared structures can simply reside on the heap
–  Threads are lighter weight than processes: memory, context switching

•  Drawbacks
–  Concurrent programming is hard to get right (race conditions,

deadlocks)
–  Subtle API thread differences across different operating systems make

portability difficult

Sever Process with I/O Process

Problem: entire process blocks on synchronous I/O calls

•  Solution 1: Use separate process(es) for I/O tasks

•  Solution 2: Modern OS provide asynchronous I/O

CSE544 - Spring, 2013 13

CSE544 - Spring, 2013

DBMS Threads vs OS Threads

•  Why do DBMSs implement their own threads?

14

CSE544 - Spring, 2013

DBMS Threads vs OS Threads

•  Why do DBMSs implement their own threads?
–  Legacy: originally, there were no OS threads
–  Portability: OS thread packages are not completely portable
–  Performance: fast task switching

•  Drawbacks
–  Replicating a good deal of OS logic
–  Need to manage thread state, scheduling, and task switching

•  How to map DBMS threads onto OS threads or processes?
–  Rule of thumb: one OS-provided dispatchable unit per physical device
–  See page 9 and 10 of Hellerstein and Stonebraker’s paper

15

CSE544 - Spring, 2013

Historical Perspective (1981)
In 1981:
•  No OS threads
•  No shared memory between processes

–  Makes one process per user hard to program
•  Some OSs did not support many to one communication

–  Thus forcing the one process per user model
•  No asynchronous I/O

–  But inter-process communication expensive
–  Makes the use of I/O processes expensive

•  Common original design: DBMS threads, frequently yielding control
to a scheduling routine

16

CSE544 - Spring, 2013

Commercial Systems
•  Oracle

–  Unix default: process-per-user mode
–  Unix: DBMS threads multiplexed across OS processes
–  Windows: DBMS threads multiplexed across OS threads

•  DB2
–  Unix: process-per-user mode
–  Windows: OS thread-per-user

•  SQL Server
–  Windows default: OS thread-per-user
–  Windows: DBMS threads multiplexed across OS threads

17

CSE544 - Spring, 2013

DMBS Architecture: Outline
•  Main components of a modern DBMS
•  Process models
•  Storage models
•  Query processor

18

CSE544 - Spring, 2013

Storage Model
•  Problem: DBMS needs spatial and temporal control over storage

–  Spatial control for performance
–  Temporal control for correctness and performance

•  Alternatives
–  Use “raw” disk device interface directly
–  Use OS files

19

CSE544 - Spring, 2013

Spatial Control
Using “Raw” Disk Device Interface

•  Overview
–  DBMS issues low-level storage requests directly to disk device

•  Advantages
–  ?
–  ?

•  Disadvantages
–  ?

20

CSE544 - Spring, 2013

Spatial Control
Using “Raw” Disk Device Interface

•  Overview
–  DBMS issues low-level storage requests directly to disk device

•  Advantages
–  DBMS can ensure that important queries access data sequentially
–  Can provide highest performance

•  Disadvantages
–  Requires devoting entire disks to the DBMS
–  Reduces portability as low-level disk interfaces are OS specific
–  Many devices are in fact “virtual disk devices”

•  SAN = storage area network; NAS = network attached device

21

CSE544 - Spring, 2013

Spatial Control
Using OS Files

•  Overview
–  DBMS creates one or more very large OS files

•  Advantages
–  ?

•  Disadvantages
–  ?

22

CSE544 - Spring, 2013

Spatial Control
Using OS Files

•  Overview
–  DBMS creates one or more very large OS files

•  Advantages
–  Allocating large file on empty disk can yield good physical locality

•  Disadvantages
–  Must control the timing of writes for correctness and performance
–  OS may further delay writes
–  OS may lead to double buffering, leading to unnecessary copying
–  DB must fine tune when the log tail is flushed to disk

23

CSE544 - Spring, 2013

Historical Perspective (1981)
•  Recognizes mismatch problem between OS files and DBMS needs

–  If DBMS uses OS files and OS files grow with time, blocks get scattered
–  OS uses tree structure for files but DBMS needs its own tree structure

•  Other proposals at the time
–  Extent-based file systems
–  Record management inside OS

24

CSE544 - Spring, 2013

Commercial Systems
•  Most commercial systems offer both alternatives

–  Raw device interface for peak performance
–  OS files more commonly used

•  In both cases, we end-up with a DBMS file abstraction implemented
on top of OS files or raw device interface

25

CSE544 - Spring, 2013

Temporal Control
Buffer Manager

•  Correctness problems
–  DBMS needs to control when data is written to disk in order to provide

transactional semantics (we will study transactions later)
–  OS buffering can delay writes, causing problems when crashes occur

•  Performance problems
–  OS optimizes buffer management for general workloads
–  DBMS understands its workload and can do better
–  Areas of possible optimizations

•  Page replacement policies
•  Read-ahead algorithms (physical vs logical)
•  Deciding when to flush tail of write-ahead log to disk

26

CSE544 - Spring, 2013

Historical Perspective (1981)
•  Problems with OS buffer pool management long recognized

–  Accessing OS buffer pool involves an expensive system call
–  Faster to access a DBMS buffer pool in user space

–  LRU replacement does not match DBMS workload
–  DBMS can do better

–  OS can do only sequential prefetching, DBMS knows which page it
needs next and that page may not be sequential

–  DBMS needs ability to control when data is written to disk

27

CSE544 - Spring, 2013

Commercial Systems
•  DBMSs implement their own buffer pool managers

•  Modern filesystems provide good support for DBMSs
–  Using large files provides good spatial control
–  Using interfaces like the mmap suite

•  Provides good temporal control
•  Helps avoid double-buffering at DBMS and OS levels

28

CSE544 - Spring, 2013

DMBS Architecture: Outline
•  Main components of a modern DBMS
•  Process models
•  Storage models
•  Query processor

29

Query Processor

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

31

Query Processor
1.  Parsing and Authorization

–  Catalog management
2.  Query rewrite

–  View inlining, etc
3.  Optimizer

–  System R v.s. Volcano/Cascades style
–  Selectivity estimation

4.  Query execution
–  Iterator model: init(), get_next(), close()
–  What is the “Halloween problem”?

5.  Access methods
–  Pass a search predicate (SARG) to init()

CSE544 - Spring, 2013

Query Compilation/Recompilation
[Chaudhuri]

The “prepare” statement
must choose a plan
without knowing the
actual predicate values.
Discuss the Anatomy
paper

Parallel Databases

CSE544 - Spring, 2013 33

Parallel v.s. Distributed
Databases

•  Parallel database system:
–  Improve performance through parallel

implementation
– Will discuss in class

•  Distributed database system:
– Data is stored across several sites, each site

managed by a DBMS capable of running
independently

– Will not discuss in class

CSE544 - Spring, 2013 34

Parallel DBMSs
•  Goal

–  Improve performance by executing multiple
operations in parallel

•  Key benefit

– Cheaper to scale than relying on a single
increasingly more powerful processor

•  Key challenge
– Ensure overhead and contention do not kill

performance

CSE544 - Spring, 2013 35

Performance Metrics
for Parallel DBMSs

•  Speedup
–  More processors è higher speed

•  Scaleup
–  More processors è can process more data

•  Batch scaleup/speedup
–  Decision Support: individual query should run faster

(speedup) or same speed (scaleup)
•  Transaction scaleup/speedup

–  OLTP: Transactions Per Second (TPS) should
increase (speedup) or should stay constant (scaleup)

CSE544 - Spring, 2013 36

Linear v.s. Non-linear Speedup

CSE544 - Spring, 2013

processors (=P)

Speedup

37

Linear v.s. Non-linear Scaleup

processors (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

CSE544 - Spring, 2013 38

Challenges to
Linear Speedup and Scaleup

•  Startup cost
– Cost of starting an operation on many

processors

•  Interference
– Contention for resources between processors

•  Skew
– Slowest processor becomes the bottleneck

CSE544 - Spring, 2013 39

Architectures for Parallel
Databases

•  Shared memory

•  Shared disk

•  Shared nothing

CSE544 - Spring, 2013 40

Shared Memory

Interconnection Network

P P P

Global Shared Memory

D D D
CSE544 - Spring, 2013 41

Shared Disk

Interconnection Network

P P P

M M M

D D D
CSE544 - Spring, 2013 42

Shared Nothing

Interconnection Network

P P P

M M M

D D D
CSE544 - Spring, 2013 43

Shared Nothing

•  Most scalable architecture
– Minimizes interference by minimizing resource

sharing
– Can use commodity hardware
– Terminology: processor = server = node
– P = number of nodes

•  Also most difficult to program and manage

44

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy
•  Inter-query parallelism

–  Transaction per node
–  OLTP

•  Inter-operator parallelism
–  Operator per node
–  Both OLTP and Decision Support

•  Intra-operator parallelism
–  Operator on multiple nodes
–  Decision Support

CSE544 - Spring, 2013 We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Review in Class
Basic query processing on one node.

Given relations R(A,B) and S(B, C), compute:

•  Selection: σA=123(R)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

CSE544 - Spring, 2013

Horizontal Data Partitioning
•  Partition a table R(K, A, B, C) into P chunks R1, …,

RP, stored at the P nodes

•  Block Partition: size(R1)≈ … ≈ size(RP)

•  Hash partitioned on attribute A:
–  Tuple t goes to chunk i = (h(t.A) mod P) + 1

•  Range partitioned on attribute A:
–  Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
–  Tuple t goes to chunk i, if vi-1 ≤ t.A < vi

47 CSE544 - Spring, 2013

Parallel GroupBy

R(K,A,B,C), discuss in class how to compute
these GroupBy’s, for each of the partitions

•  γA,sum(C)(R)

•  γB,sum(C)(R)

48 CSE544 - Spring, 2013

Parallel GroupBy

γA,sum(C)(R)
•  If R is partitioned on A, then each node

computes the group-by locally
•  Otherwise, hash-partition R(K,A,B,C) on A,

then compute group-by locally:

49

R1 R2 RP . . .

R1’ R2’ RP’ . . .

Reshuffle R
on attribute

Speedup and Scaleup

•  The runtime is dominated by the time to
read the chunks from disk, i.e. size(Ri)

•  If we double the number of nodes P, what
is the new running time of γA,sum(C)(R)?

•  If we double both P and the size of the
relation R, what is the new running time?

CSE544 - Spring, 2013

Uniform Data v.s. Skewed Data

•  Uniform partition:
– size(R1) ≈ … ≈ size(RP) ≈ size(R) / P
– Linear speedup, constant scaleup

•  Skewed partition:
– For some i, size(Ri) ≫ size(R) / P
– Speedup and scaleup will suffer

CSE544 - Spring, 2013

Uniform Data v.s. Skewed Data
•  Let R(K,A,B,C); which of the following partition

methods may result in skewed partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

•  Range-partition
–  On the key K
–  On the attribute A

CSE544 - Spring, 2013

Uniform Data v.s. Skewed Data
•  Let R(K,A,B,C); which of the following partition

methods may result in skewed partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

•  Range-partition
–  On the key K
–  On the attribute A

Uniform

Uniform

May be skewed

Assuming uniform
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

May be skewed Difficult to partition
the range of A uniformly.

CSE544 - Spring, 2013

Parallel Join

•  In class: compute R(A,B) ⋈ S(B,C)

54 CSE544 - Spring, 2013

R1, S1 R2, S2 RP, SP . . .

Parallel Join

•  In class: compute R(A,B) ⋈ S(B,C)

55

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSE544 - Spring, 2013

Parallel Query Plans

•  Same relational operators

•  Add special split and merge operators
– Handle data routing, buffering, and flow

control

•  Example: exchange operator
–  Inserted between consecutive operators in the

query plan

CSE544 - Spring, 2013 56

