CSE544: Principles of Database Systems

Query Optimization and Database Statistics

Announcements

- Homework 2 is posted, due May 6
 - SimpleDB
 - Understand existing code PLUS write more code

- Start early!!

- Project M2 (Proposal) due April 26
 - Define clear, limited goals! Don't try too much
- Review 4 (Anatomy): due April 29

Outline

• Chapter 15 in the textbook

• Paper on selectivity of conjuncts

Query Optimization

- Why?
 - Because of data independence
- What?
 - Search among many equivalent logical/physical plans, choose the cheapest
- Who?
 - System R, 1979: super-influential, laid out most of the key concepts; see book, 15.6
 - Today's optimizers are much more advanced

Query Optimization

Three major components:

1. Search space

- 2. Plan enumeration algorithms
- 3. Cardinality and cost estimation

1. Search Space

• This is the set of all alternative plans that are considered by the optimizer

- Defined by:
 - The set of *algebraic laws*
 - The set of plans used by the optimizer

Relational Algebra Laws: Joins

Commutativity : Associativity: Distributivity: $R \bowtie S = S \bowtie R$ $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$ $R \bowtie (S \cup T) = (R \bowtie S) \cup (R \bowtie T)$

Outer joins get more complicated

Relational Algebra Laws: Selections

R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R \bowtie_{D=E} S) = \sigma_{A=5 \text{ AND } G=9}(R \bowtie_{D=E} S) =$$

Relational Algebra Laws: Selections

R(A, B, C, D), S(E, F, G)

 $\sigma_{\mathsf{F}=3}(\mathsf{R} \bowtie_{\mathsf{D}=\mathsf{E}} \mathsf{S}) = \mathsf{R} \bowtie_{\mathsf{D}=\mathsf{E}} (\sigma_{\mathsf{F}=3}(\mathsf{S}))$ $\sigma_{\mathsf{A}=5 \,\mathsf{AND} \,\mathsf{G}=9}(\mathsf{R} \bowtie_{\mathsf{D}=\mathsf{E}} \mathsf{S}) = \sigma_{\mathsf{A}=5}(\mathsf{R}) \bowtie_{\mathsf{D}=\mathsf{E}} \sigma_{\mathsf{G}=9}(\mathsf{S})$

Group-by and Join

R(A, B), S(C,D)

 $\gamma_{A, sum(D)}(R(A,B) \bowtie_{B=C} S(C,D)) =$

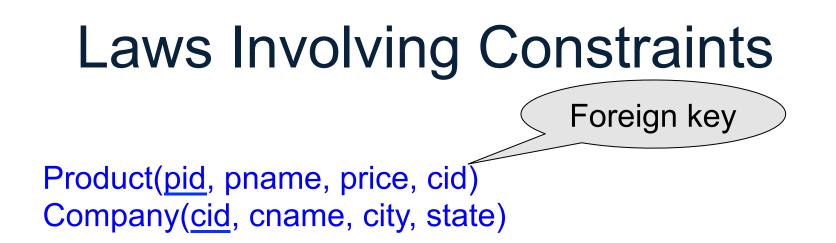
Group-by and Join

R(A, B), S(C,D)

 $\begin{array}{l} \gamma_{A, \text{ sum}(D)}(\mathsf{R}(A,B) \bowtie_{\mathsf{B}=\mathsf{C}} \mathsf{S}(\mathsf{C},\mathsf{D})) = \\ \gamma_{A, \text{ sum}(D)}(\mathsf{R}(A,B) \bowtie_{\mathsf{B}=\mathsf{C}} (\gamma_{\mathsf{C}, \text{ sum}(D)} \mathsf{S}(\mathsf{C},\mathsf{D}))) \end{array}$

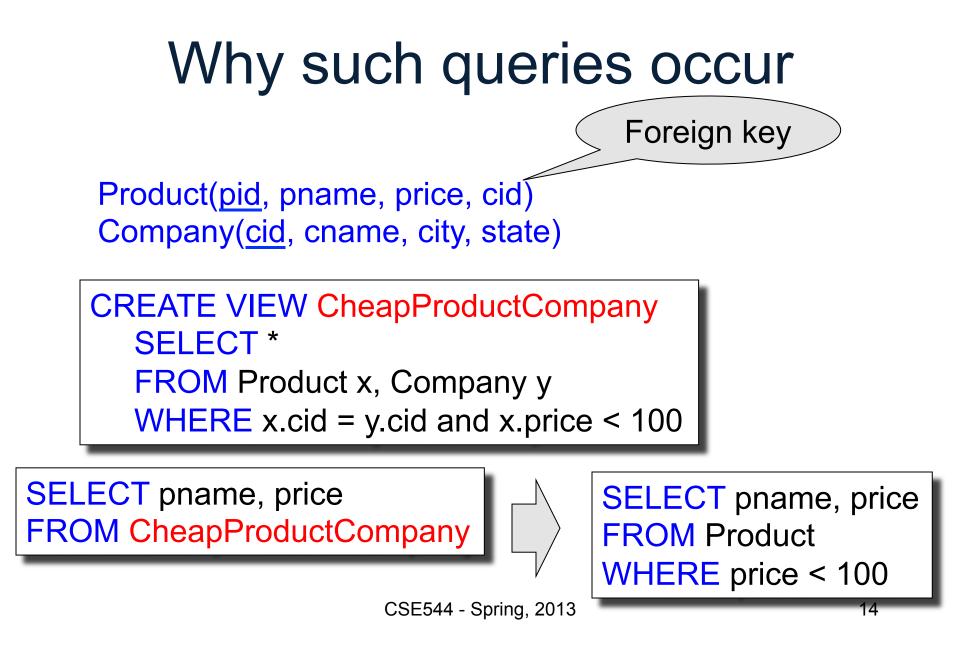
These are very powerful laws. They were introduced only in the 90's.

$$\Pi_{pid, price}(Product \bowtie_{cid=cid} Company) = ?$$



$\Pi_{pid, price}$ (Product $\bowtie_{cid=cid}$ Company) = $\Pi_{pid, price}$ (Product)

Need a second constraint for this law to hold. Which ?



Law of Semijoins

- Input: R(A1,...,An), S(B1,...,Bm)
- Output: T(A1,...,An)
- Semjoin is: $R \ltimes S = \prod_{A1,...,An} (R \Join S)$
- The law of semijoins is:

$$R \bowtie S = (R \ltimes S) \bowtie S$$

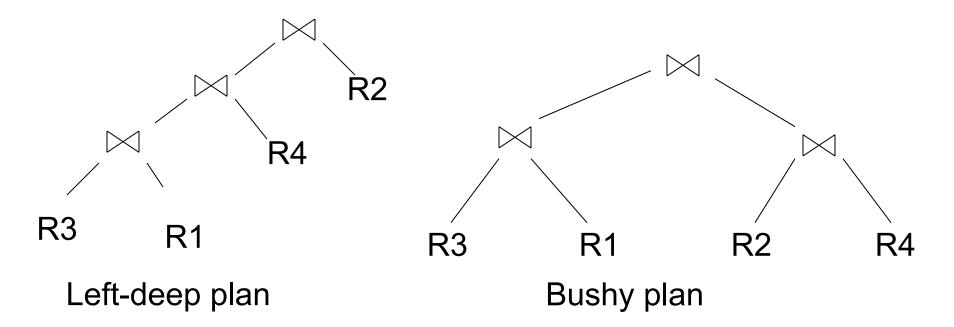
Laws with Semijoins

Used in parallel/distributed databases

Often combined with Bloom Filters

• Read pp. 747 in the textbook

Left-Deep Plans and Bushy Plans



System R considered only left deep plans, and so do some optimizers today

Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

3. Cardinality and cost estimation

CSE544 - Spring, 2013

Enumerating Query Plans

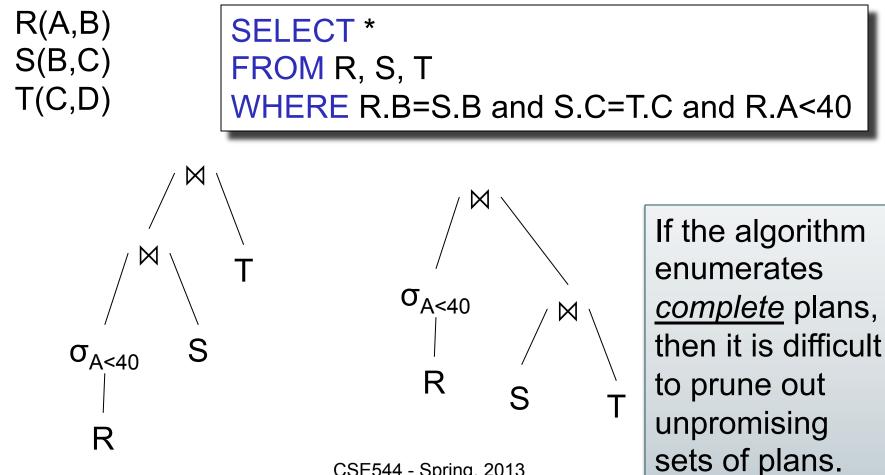
• Dynamic programming

- Pioneered by System R for computing optimal join order, used today by all advanced optimizers
- See book (won't discuss in class)

• Search space pruning

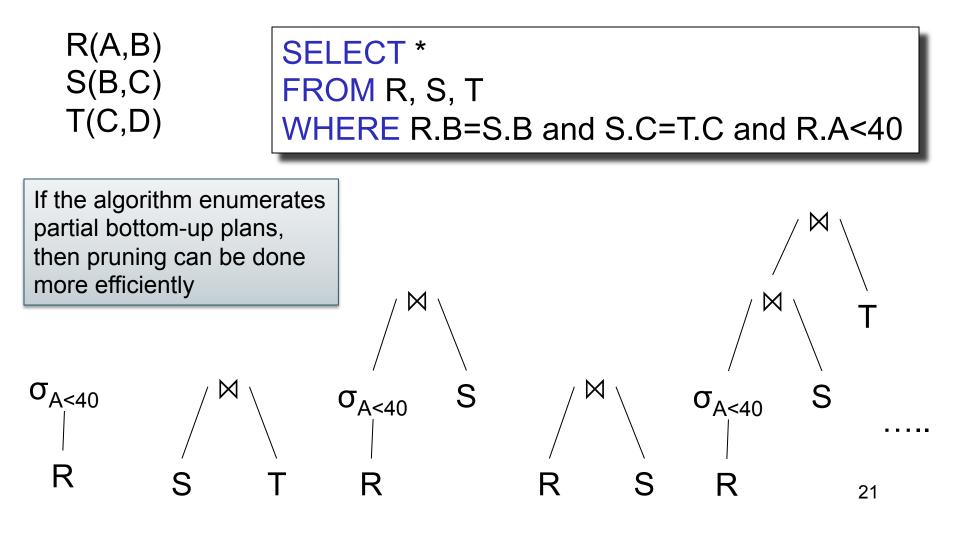
- Enumerate partial plans, drop unpromising partial plans
- Bottom-up v.s. top-down plans
- Access path selection
 - Refers to the plan for accessing a single table

Complete Plans

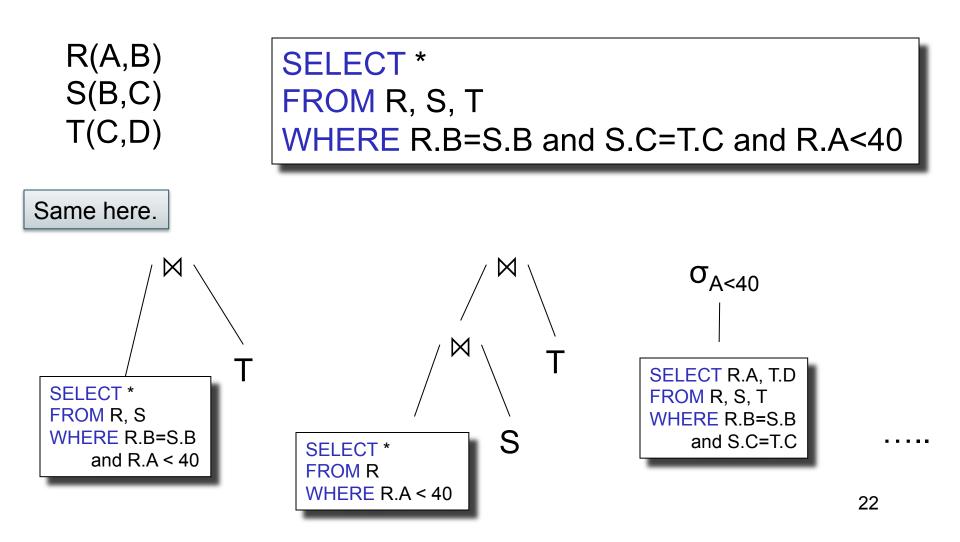


CSE544 - Spring, 2013

Bottom-up Partial Plans



Top-down Partial Plans



Access Path Selection

Supplier(sid,sname,scategory,scity,sstate)

σ_{scategory = 'organic' ∧ scity='Seattle'} (Supplier)

Clustered index on scity Unclustered index on (scategory,scity) B(Supplier) = 10k T(Supplier) = 1M

V(Supplier,city) = 1000 V(Supplier,scategory)=100

Access plan options:

- Table scan: cost = ?
- Index scan on scity: cost = ?
- Index scan on scategory, scity: cost =

?

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate)

σ_{scategory = 'organic' ∧ scity='Seattle'} (Supplier)

Clustered index on scity Unclustered index on (scategory,scity) B(Supplier) = 10k T(Supplier) = 1M

V(Supplier,city) = 1000 V(Supplier,scategory)=100

Access plan options:

- Table scan:
- Index scan on scity:
- Index scan on scategory, scity:

cost =	10k	= 10k
cost =	10k/1000	= 10
cost =	1M/1000*100	= 10

Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

3. Cardinality and cost estimation

3. Cardinality and Cost Estimation

- Collect statistical summaries of stored data
- Estimate <u>size</u> (=cardinality) in a bottom-up fashion
 - This is the most difficult part, and still inadequate in today's query optimizers
- Estimate cost by using the estimated size
 - Hand-written formulas, similar to those we used for computing the cost of each physical operator

Statistics on Base Data

- Collected information for each relation
 - Number of tuples (cardinality)
 - Indexes, number of keys in the index
 - Number of physical pages, clustering info
 - Statistical information on attributes
 - Min value, max value, number distinct values
 - Histograms
 - Correlations between columns (hard)
- Collection approach: periodic, using sampling

Size Estimation Problem

S = SELECT list FROM R1, ..., Rn WHERE cond₁ AND cond₂ AND . . . AND cond_k

How can we do this ? Note: doesn't have to be exact.

Size Estimation Problem

S = SELECT list FROM R1, ..., Rn WHERE $cond_1 AND cond_2 AND ... AND cond_k$

Remark: $T(S) \leq T(R1) \times T(R2) \times ... \times T(Rn)$

Selectivity Factor

• Each condition *cond* reduces the size by some factor called <u>selectivity factor</u>

Assuming independence, multiply the selectivity factors

Example

R(A,B) S(B,C) T(C,D)

SELECT * FROM R, S, T WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3Selectivity of S.C = T.C is 1/10Selectivity of R.A < 40 is $\frac{1}{2}$

What is the estimated size of the query output ?

CSE544 - Spring, 2013

Rule of Thumb

 If selectivities are unknown, then: selectivity factor = 1/10 [System R, 1979]

Using Data Statistics

- Condition is A = c /* value selection on R */
 Selectivity = 1/V(R,A)
- Condition is A < c /* range selection on R */
 Selectivity = (c Low(R, A))/(High(R,A) Low(R,A))T(R)
- Condition is A = B /* $R \bowtie_{A=B} S */$
 - Selectivity = 1 / max(V(R,A),V(S,A))
 - (will explain next)

Assumptions

- <u>Containment of values</u>: if V(R,A) <= V(S,B), then the set of A values of R is included in the set of B values of S
 - Note: this indeed holds when A is a foreign key in R, and B is a key in S
- <u>Preservation of values</u>: for any other attribute C,
 V(R ⋈_{A=B} S, C) = V(R, C) (or V(S, C))

Selectivity of $R \bowtie_{A=B} S$

Assume $V(R,A) \le V(S,B)$

- Each tuple t in R joins with T(S)/V(S,B) tuple(s) in S
- Hence $T(R \bowtie_{A=B} S) = T(R) T(S) / V(S,B)$

In general: $T(R \bowtie_{A=B} S) = T(R) T(S) / max(V(R,A),V(S,B))$

Size Estimation for Join

Example:

- T(R) = 10000, T(S) = 20000
- V(R,A) = 100, V(S,B) = 200
- How large is $R \bowtie_{A=B} S$?

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

CSE544 - Spring, 2013

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500
				4		

Estimatě = 1200 Estimate = 1*80 + 5*500 = 2580

Types of Histograms

• How should we determine the bucket boundaries in a histogram ?

Types of Histograms

• How should we determine the bucket boundaries in a histogram ?

- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Employee(ssn, name, age) Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use Voptimal histograms or some variations

Difficult Questions on Histograms

- Small number of buckets
 - Hundreds, or thousands, but not moreWHY ?
- Not updated during database update, but recomputed periodically – WHY ?
- Multidimensional histograms rarely used – WHY ?

Summary of Query Optimization

• Three parts:

- search space, algorithms, size/cost estimation

- Ideal goal: find optimal plan. But
 - Impossible to estimate accurately
 - Impossible to search the entire space
- Goal of today's optimizers:

- Avoid very bad plans