CSE544: Principles of Database Systems

Query Execution

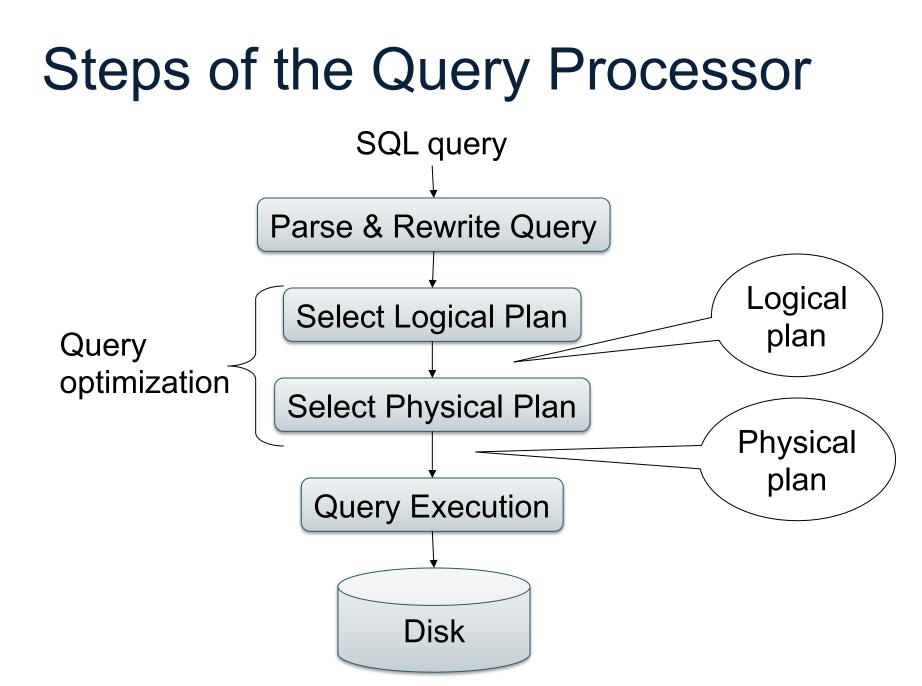
Announcements

- Homework 2 is posted, due May 6
 - SimpleDB
 - Understand existing code PLUS write more code
 Start early!!
- Review 3 (Selectivity estimation): due April 24
- Project meetings: tomorrow, April 24
- Project M2 (Proposal) due April 26
 - Please try to choose your project by Wednesday
 - Proposal: define clear, limited goals! Don't try too much

Outline

• Relational Algebra: Ch. 4.2

• Query Evaluation: Ch. 12-14



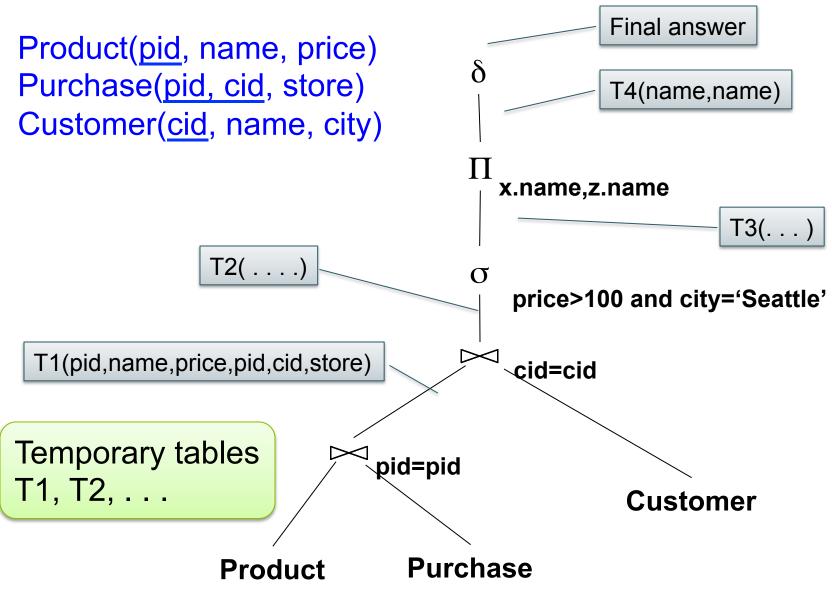
SQL = WHAT

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = y.cid and x.price > 100 and z.city = 'Seattle'

It's clear WHAT we want, unclear HOW to get it

Relational Algebra = HOW



Extended Algebra Operators

- Union \cup ,
- Difference -
- Selection o
- Projection П
- Join 🖂
- Rename p
- Duplicate elimination δ
- Grouping and aggregation $\boldsymbol{\gamma}$
- Sorting τ

Relational Algebra

Extended Relational Algebra

Relational Algebra: Sets v.s. Bags Semantics

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b}, . . .

Relational Algebra has two semantics:

- Set semantics
- Bag semantics

Union and Difference

What do they mean over bags?

What about Intersection ?

Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

• Derived using join (will explain later)

$$R1 \cap R2 = R1 \bowtie R2$$

What is the meaning of \cap under bag semantics?

Projection

• Eliminates columns

$$\Pi_{A1,\ldots,An}(\mathsf{R})$$

- Example:
 - $\Pi_{SSN, Name}$ (Employee)
 - Answer(SSN, Name)

Semantics differs over set or over bags

Employee

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

Π _{Name,Salary}(Employee)

Name	Salary		
John	20000		
John	60000		
John	20000		

Name	Salary	
John	20000	
John	60000	

Bag semantics

Set semantics

Which is more efficient?

Natural Join

- Meaning: $R1 \bowtie R2 = \Pi_A(\sigma(R1 \times R2))$
- Where:
 - σ checks equality of all common attributes - Π_A eliminates the duplicate attributes

Natural Join

S

Α	В
Х	Y
Х	Z
Y	Z
Z	V

 B
 C

 Z
 U

 V
 W

 Z
 V

	Α	В	С
R ⋈ S =	Х	Z	U
$\Pi_{ABC}(\sigma_{R.B=S.B}(R\timesS))$	Х	Z	V
	Y	Z	U
	Y	Z	V
	Z	V	W

Natural Join

 Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

• Given R(A, B, C), S(D, E), what is $R \bowtie S$?

• Given R(A, B), S(A, B), what is $R \bowtie S$?

Theta Join

• A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

• Here θ can be any condition

– Example band join: R $\bowtie_{R.A-5<S.B \land S.B<R.A+5} S$

Eq-join

• A theta join where θ is an equality

$$R1 \bowtie_{A=B} R2 = \sigma_{A=B} (R1 \times R2)$$

• This is by far the most used variant of join in practice

Semijoin

$$\mathsf{R} \ltimes_{\mathsf{C}} \mathsf{S} = \Pi_{\mathsf{A1},\ldots,\mathsf{An}} (\mathsf{R} \bowtie_{\mathsf{C}} \mathsf{S})$$

• Where A_1, \ldots, A_n are the attributes of R

 $R \ltimes_C S$ returns tuples in R that join with some tuple in S

- Duplicates in R are preserved
- Duplicates in S don't matter

Semijoin is *important*; we will return to it

Anti-Semi-Join

Notation: R ▷ S

- Warning: not a standard notation

 Meaning: all tuples in R that do NOT have a matching tuple in S

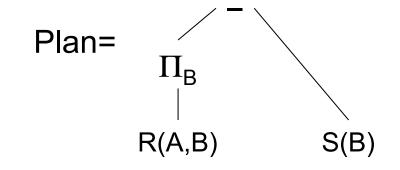
SELECT DISTINCT R.B FROM R WHERE not exists (SELECT * FROM S WHERE R.B=S.B)

Plan=

SELECT DISTINCT * FROM R WHERE not exists (SELECT * FROM S WHERE R.B=S.B)

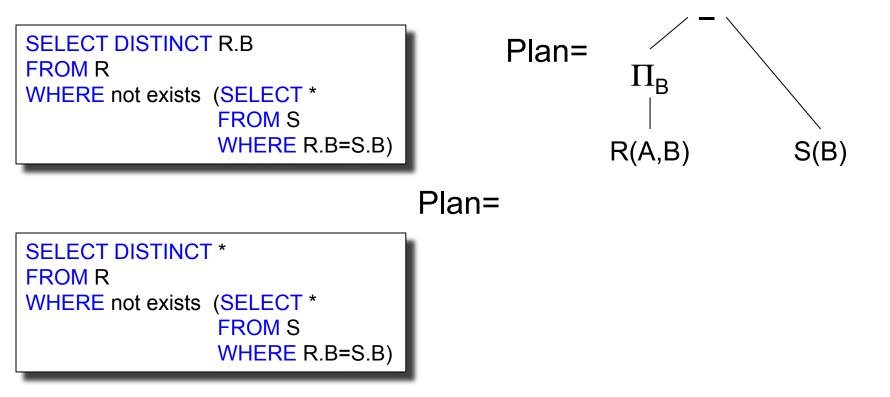
SELECT DISTINCT R.B FROM R WHERE not exists (SELECT * FROM S WHERE R.B=S.B)

R(A,B)

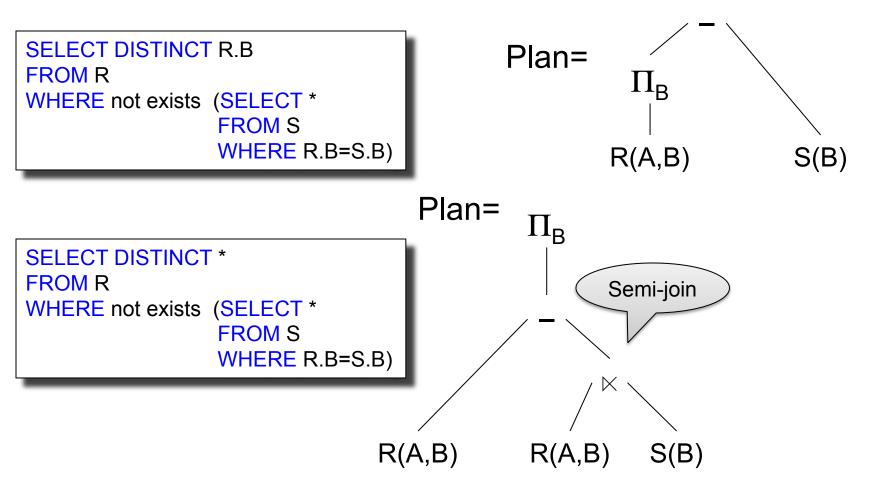




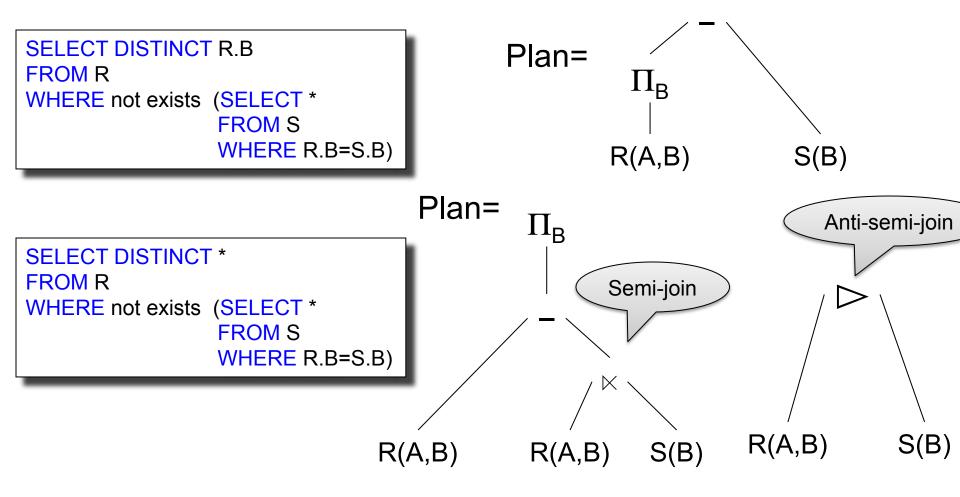
R(A,B)



R(A,B)



R(A,B)



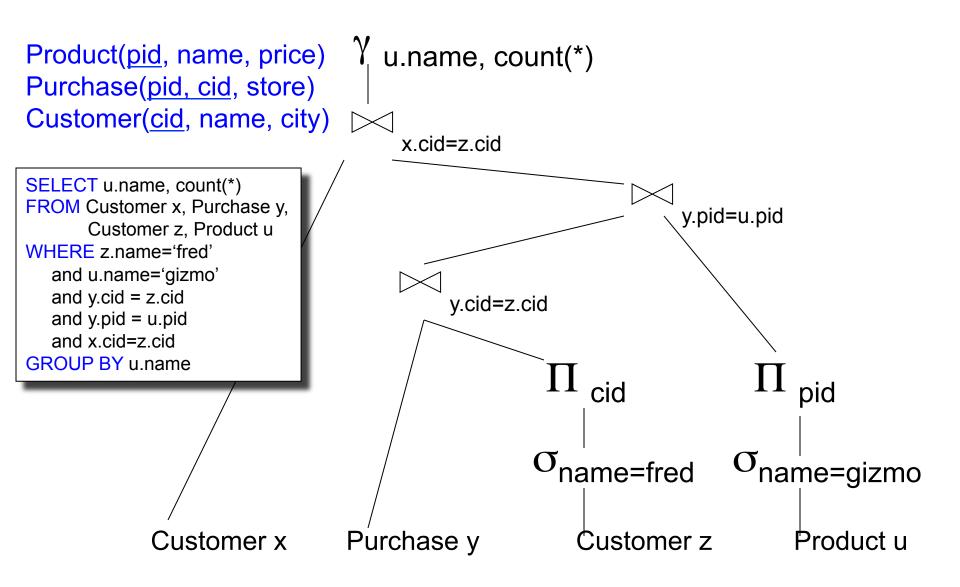
Operators on Bags

- Duplicate elimination $\delta(R) = \frac{\text{SELECT DISTINCT}}{\text{FROM R}}$
- Grouping $\gamma_{A,sum(B)}$ (R) =

• Sorting $\tau_{A,B}$ (R)

SELECT A,sum(B) FROM R GROUP BY A

Complex RA Expressions



Query Evaluation

Physical Operators

Each of the logical operators may have one or more implementations = physical operators

Will discuss several basic physical operators, with a focus on join

Question in Class

Purchase(<u>pid,cid</u>,store) ⋈_{cid=cid} Customer(<u>cid</u>, name, city)

Propose three physical operators for the join, assuming the tables are in main memory:

1. 2. 3.

Question in Class

Purchase(<u>pid,cid</u>,store) ⋈_{cid=cid} Customer(<u>cid</u>, name, city)

Propose three physical operators for the join, assuming the tables are in main memory:

- 1. Nested Loop Join
- 2. Merge join
- 3. Hash join

Purchase(<u>pid, cid</u>, store) Customer(<u>cid</u>, name, city)

 $Purchase(\underline{pid,cid},store) \bowtie_{cid=cid} Customer(\underline{cid}, name, city)$

1. Nested Loop Join

```
for x in Purchase do {
  for y in Customer do {
     if (x.cid == y.cid) output(x,y);
  }
}
```

Purchase = *outer relation* Customer = *inner relation* Note: sometimes terminology is switched

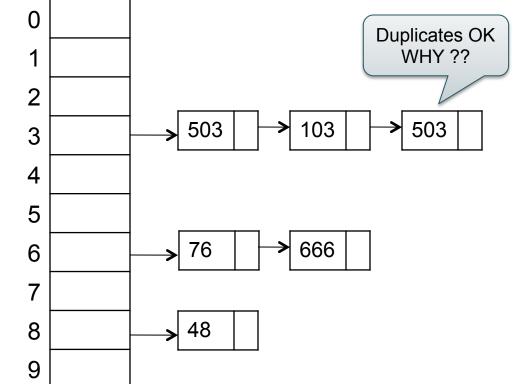
Discuss the possible use of an index Cusomer(cid)

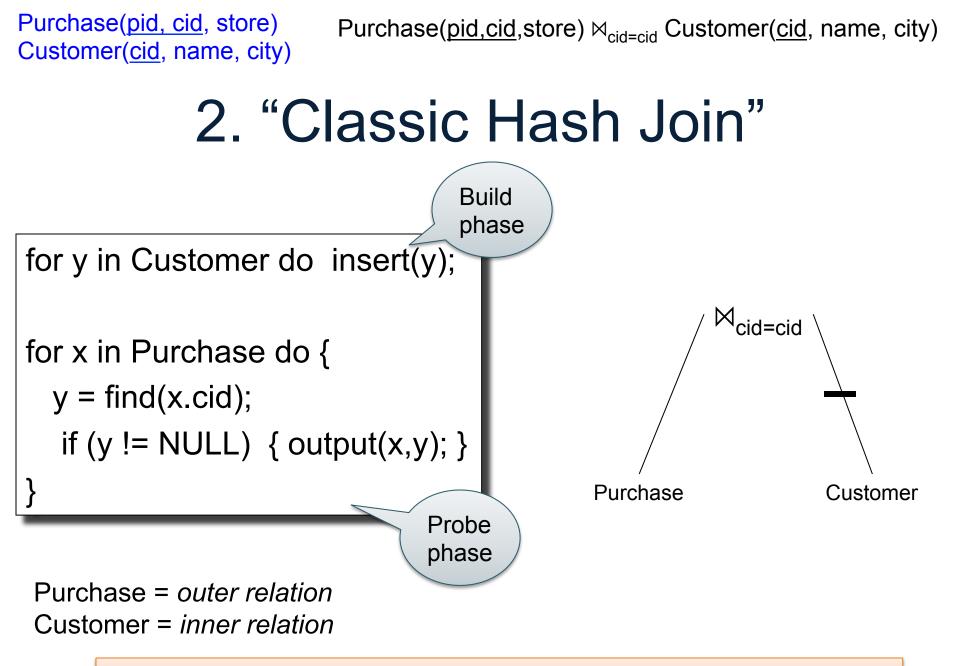
Hash Tables Separate chaining:

A (naïve) hash function:

 $h(x) = x \mod 10$

Operations on a hash table:





What changes if the join attribute is not a key in the inner relation?

3. Merge Join (main memory)

```
Purchase1= sort(Purchase, cid);
Customer1=sort(Customer, cid)
x=Purchase1.get next(); y=Customer1.get next();
While (x!=NULL and y!=NULL) {
  case:
    x.cid < y.cid: x = Purchase1.get next();
    x.cid > y.cid: y = Customer1.get next();
    x.cid == y.cid { output(x,y);
                                                  Why ???
                     y = Purchase1.get next();
```

The Iterator Model

- Each operator implements this interface
- open()
- get_next()
- close()

Purchase(<u>pid, cid</u>, store) Customer(<u>cid</u>, name, city)

 $Purchase(\underline{pid,cid},store) \bowtie_{cid=cid} Customer(\underline{cid}, name, city)$

Main Memory Nested Loop Join

open() { Purchase.open(); Customer.open(); x = Purchase.get_next(); close() { Purchase.close(); Customer.close();

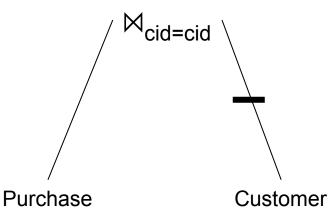
```
get_next( ) {
 repeat {
   y= Customer.get next();
   if (y == NULL)
     { Customer.close();
       x= Purchase.get_next( );
       if (x== NULL) return NULL;
       Customer.open();
       y= Customer.get next();
 until (x.cid == y.cid);
 return (x,y)
```

ALL operators need to be implemented this way !

Classic Hash Join

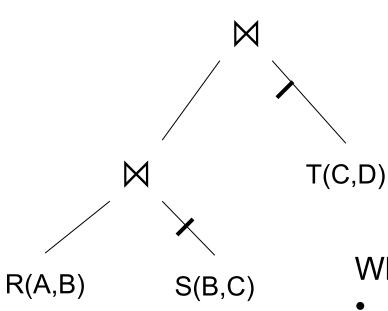
What do these operators do for the classic Hash Join?

- open()
- get_next()



close()

Discussion in class



Every operator is a hash-join and implements the iterator model

What happens:

- When we call open() at the top?
- When we call get_next() at the top?

External Memory Algorithms

• Data is too large to fit in main memory

 Issue: disk access is 3-4 orders of magnitude slower than memory access

 Assumption: runtime dominated by # of disk I/O's; will ignore the main memory part of the runtime

Cost Parameters

The *cost* of an operation = total number of I/Os Cost parameters (used both in the book and by Shapiro):

- B(R) = number of blocks for relation R
- T(R) = number of tuples in relation R
- V(R, A) = number of distinct values of attribute A
- M = size of main memory buffer pool, in blocks

Facts: (1) B(R) << T(R): (2) When A is a key, V(R,A) = T(R) When A is not a key, V(R,A) << T(R)

Ad-hoc Convention

• The operator *reads* the data from disk

• The operator *does not write* the data back to disk (e.g.: pipelining)

• Thus:

Any main memory join algorithms for $R \bowtie S$: Cost = B(R)+B(S)

External Memory Join Algorithms

Nested Loop Joins

- Merge Join
- Hash join: read paper, discuss next week

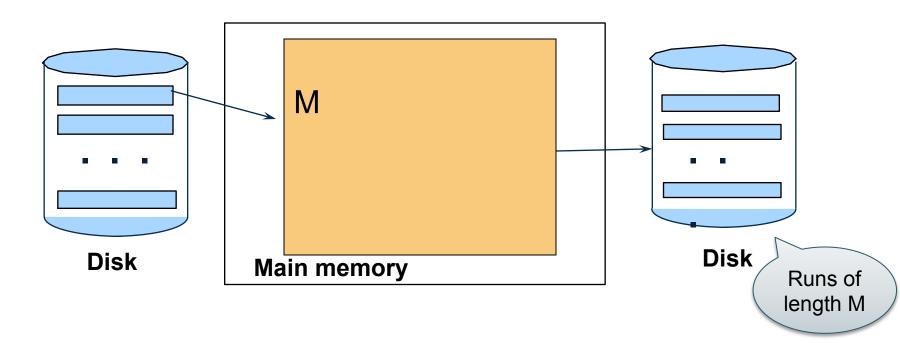
External Sorting

 Problem: sort a file R of size B(R) with memory M

- Concrete:
 - Size of R is 100TB = 10¹⁴
 - Size of M is 1GB = 10^9
 - Page size is 10KB = 10⁴

External Merge-Sort: Step 1

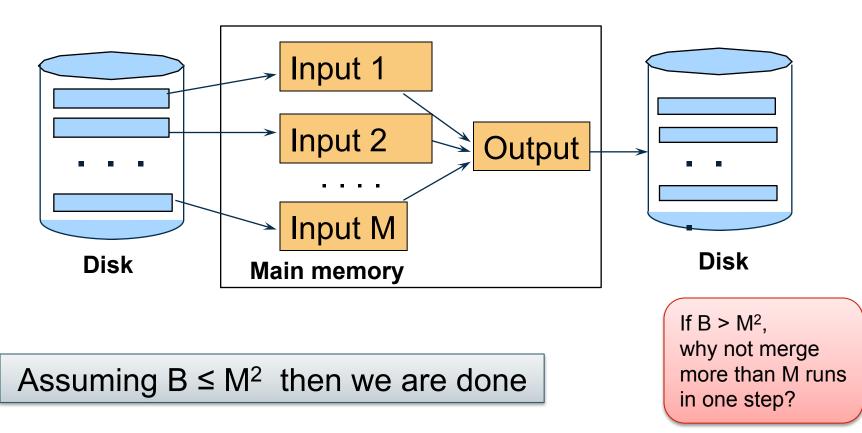
• Phase one: load M bytes in memory, sort



Can increase to length 2M using "replacement selection" (How?)

External Merge-Sort: Step 2

- Merge M 1 runs into a new run
- Result: runs of length M (M 1) \approx M²



Cost of External Merge Sort

 Read+write+read = 3B(R) (we don't count the final write)

• Assumption: B(R) <= M²

Application: Merge-Join

Join R ⋈ S

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

