
1 

CSE544: Principles of Database 
Systems 

Query Execution 

CSE544 - Spring, 2013       



Announcements 

•  Homework 2 is posted, due May 6 
–  SimpleDB 
–  Understand existing code PLUS write more code 
–  Start early!! 

•  Review 3 (Selectivity estimation): due April 24 
•  Project meetings: tomorrow, April 24 
•  Project M2 (Proposal) due April 26 

–  Please try to choose your project by Wednesday 
–  Proposal: define clear, limited goals! Don’t try too much 

2 



Outline 

•  Relational Algebra: Ch. 4.2 

•  Query Evaluation: Ch. 12-14 

CSE544 - Spring, 2013       3 



Steps of the Query Processor 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 



SQL  = WHAT 

SELECT DISTINCT x.name, z.name 
FROM Product x, Purchase y, Customer z 
WHERE x.pid = y.pid and y.cid = y.cid and 
                x.price > 100 and z.city = ‘Seattle’ 

It’s clear WHAT we want, unclear HOW to get it 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Relational Algebra = HOW 

Product Purchase 

pid=pid 

price>100 and city=‘Seattle’ 

x.name,z.name 

δ	


cid=cid 

Customer 

Π	


σ	


T1(pid,name,price,pid,cid,store) 

T2( . . . .) 

T4(name,name) 

Final answer 

T3(. . . ) 

Temporary tables 
T1, T2, . . . 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Extended Algebra Operators 

•  Union ∪,  
•  Difference -  
•  Selection  σ	

•  Projection Π	

•  Join ⨝ 
•  Rename ρ	

•  Duplicate elimination δ	

•  Grouping and aggregation γ	

•  Sorting τ	


       Relational 
       Algebra 

       Extended 
       Relational 
       Algebra 



Relational Algebra: 
Sets v.s. Bags Semantics 

•  Sets: {a,b,c}, {a,d,e,f}, { }, . . . 
•  Bags: {a, a, b, c}, {b, b, b, b, b}, . . . 

Relational Algebra has two semantics: 
•  Set semantics 
•  Bag semantics 

CSE544 - Spring, 2013 8 



Union and Difference 

What do they mean over bags ? 

R1 ∪ R2 
R1 – R2 

CSE544 - Spring, 2013 9 



What about Intersection ? 

•  Derived operator using minus 

•  Derived using join (will explain later) 

R1 ∩ R2 = R1 – (R1 – R2) 

R1 ∩ R2 = R1 ⨝ R2 

CSE544 - Spring, 2013 10 What is the meaning of ∩ under bag semantics? 



Projection 
•  Eliminates columns 

•  Example: 
–    Π SSN, Name (Employee) 
–    Answer(SSN, Name) 

Semantics differs over set or over bags 

Π A1,…,An (R) 



Π Name,Salary(Employee) 

SSN Name Salary 
1234545 John 20000 
5423341 John 60000 
4352342 John 20000 

Name Salary 
John 20000 
John 60000 
John 20000 

Employee 

Name Salary 
John 20000 

John 60000 

Bag semantics Set semantics 

Which is more efficient? 



Natural Join 

•  Meaning:  R1⨝ R2 = ΠA(σ(R1 × R2))  

•  Where: 
– σ checks equality of all common attributes 
– ΠA eliminates the duplicate attributes 

R1 ⨝ R2 

CSE544 - Spring, 2013 13 



Natural Join 
A B 
X Y 
X Z 
Y Z 
Z V 

B C 
Z U 
V W 
Z V 

A B C 
X Z U 
X Z V 
Y Z U 
Y Z V 
Z V W 

R S 

R ⨝ S = 
ΠABC(σR.B=S.B(R × S))  

CSE544 - Spring, 2013 14 



Natural Join 

•  Given schemas R(A, B, C, D), S(A, C, E), 
what is the schema of R ⨝ S ? 

•  Given R(A, B, C),  S(D, E), what is R ⨝  S  ? 

•  Given R(A, B),  S(A, B),  what is  R ⨝ S  ? 

CSE544 - Spring, 2013 15 



Theta Join 

•  A join that involves a predicate 

•  Here θ can be any condition 
– Example band join: R ⨝R.A-5<S.B ∧ S.B<R.A+5 S  

R1 ⨝θ R2   =  σ θ (R1 × R2) 

CSE544 - Spring, 2013 16 



Eq-join 

•  A theta join where θ is an equality 

•  This is by far the most used variant of 
join in practice 

R1 ⨝A=B R2   =  σA=B (R1 × R2) 

CSE544 - Spring, 2013 17 



Semijoin 

•  Where A1, …, An are the attributes of R 

R ⋉C S returns tuples in R that join with some tuple in S 
•  Duplicates in R are preserved 
•  Duplicates in S don’t matter 

R ⋉C S  = Π A1,…,An (R ⨝C S) 

Semijoin is important; we will return to it 



Anti-Semi-Join 

•  Notation: R ⊳ S 
– Warning: not a standard notation 

•  Meaning: all tuples in R that do NOT 
have a matching tuple in S 

CSE544 - Spring, 2013       19 



Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 



Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 
− 

ΠB 

R(A,B) S(B) 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 



Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 
− 

ΠB 

R(A,B) S(B) 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

Plan= 



Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 
− 

ΠB 

R(A,B) S(B) 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

Plan= 

− 

ΠB 

R(A,B) S(B) R(A,B) 

⋉	


Semi-join 



Set Difference v.s. 
Anti-semijoin 

SELECT DISTINCT R.B  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

R(A,B) 
S(B) 

Plan= 
− 

ΠB 

R(A,B) S(B) 

SELECT DISTINCT *  
FROM R 
WHERE not exists  (SELECT * 

  FROM S 
  WHERE R.B=S.B) 

Plan= 

R(A,B) S(B) 

⊳ 
Anti-semi-join 

− 

ΠB 

R(A,B) S(B) R(A,B) 

⋉	


Semi-join 



Operators on Bags 
•  Duplicate elimination δ(R) = 

•  Grouping γA,sum(B) (R) =  
 

•  Sorting τA,B (R)	


SELECT DISTINCT *  
FROM R 

SELECT  A,sum(B) 
FROM R 
GROUP BY A 

SELECT  * 
FROM R 
ORDER BY A 



Complex RA Expressions 

 
     Customer x        Purchase y             Customer z           Product u 

 σname=fred  σname=gizmo 

Π pid Π cid 

y.cid=z.cid 

y.pid=u.pid 

x.cid=z.cid 

γ u.name, count(*) Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 

SELECT u.name, count(*) 
FROM Customer x, Purchase y,  
            Customer z, Product u 
WHERE z.name=‘fred’  
     and u.name=‘gizmo’ 
     and y.cid = z.cid 
     and y.pid = u.pid  
     and x.cid=z.cid 
GROUP BY u.name 



Query Evaluation 

CSE544 - Spring, 2013 27 



Physical Operators 

Each of the logical operators may have one or 
more implementations = physical operators 

 
Will discuss several basic physical operators, 

with a focus on join 

CSE544 - Spring, 2013 28 



Question in Class 
Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) 

Propose three physical operators for the join, assuming the 
tables are in main memory: 

 
1.    
2.    
3.    

CSE544 - Spring, 2013 29 

Purchase(pid, cid, store) 
Customer(cid, name, city) 



Question in Class 
Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) 
 
Propose three physical operators for the join, assuming the 

tables are in main memory: 
 
1.  Nested Loop Join 
2.  Merge join 
3.  Hash join 

CSE544 - Spring, 2013 30 

Purchase(pid, cid, store) 
Customer(cid, name, city) 



1. Nested Loop Join 
for x in Purchase do { 
   for  y in Customer do { 
        if (x.cid == y.cid) output(x,y); 
   } 
}  

Purchase = outer relation 
Customer = inner relation 
Note: sometimes  
terminology is switched 

Discuss the possible use 
of an index Cusomer(cid) 

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store) 
Customer(cid, name, city) 



Hash Tables 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Separate chaining: 

h(x) = x mod 10 

A (naïve) hash function: 

503 103 

76 666 

48 

503 

Duplicates OK 
WHY ?? 

Operations on a hash table: 

find(103) = ?? 
insert(488) = ?? 



2. “Classic Hash Join” 

for y in Customer do  insert(y); 
 
for x in Purchase do { 
   y = find(x.cid); 
    if (y != NULL)  { output(x,y); } 
} 

Build 
phase 

Probe  
phase 

What changes if the join attribute is not a key in the inner relation? 

Purchase = outer relation 
Customer = inner relation 

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store) 
Customer(cid, name, city) 

⨝cid=cid 	


Purchase	
 Customer	




3.  Merge Join (main memory) 
Purchase1= sort(Purchase, cid); 
Customer1=sort(Customer, cid) 
x=Purchase1.get_next(); y=Customer1.get_next(); 
 
While (x!=NULL and y!=NULL) { 
    case: 
       x.cid < y.cid:    x = Purchase1.get_next( ); 
       x.cid > y.cid:    y = Customer1.get_next(); 
       x.cid == y.cid { output(x,y); 
                                   y = Purchase1.get_next(); 
                                  } 
} 

Why ??? 

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store) 
Customer(cid, name, city) 



The Iterator Model 
Each operator implements this interface 

•  open() 

•  get_next() 

•  close() 

CSE544 - Spring, 2013 35 



Main Memory Nested Loop Join 
open( ) { 
   Purchase.open( ); 
   Customer.open( );  
   x = Purchase.get_next( );  
} 

get_next( ) { 
   repeat {  
      y= Customer.get_next( ); 
      if (y== NULL)  
         { Customer.close(); 
            x= Purchase.get_next( ); 
            if (x== NULL) return NULL; 
            Customer.open( ); 
            y= Customer.get_next( ); 
          } 
   until (x.cid == y.cid); 
   return (x,y) 
} 

close( ) { 
   Purchase.close( ); 
   Customer.close( );   
} 

ALL operators need to be implemented this way ! 

Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store) 
Customer(cid, name, city) 



Classic Hash Join 
What do these operators do for the classic Hash 
Join? 

•  open() 

•  get_next() 

•  close() 

CSE544 - Spring, 2013 37 

⨝cid=cid 	


Purchase	
 Customer	


Purchase(pid,cid,store) ⨝cid=cid Customer(cid, name, city) Purchase(pid, cid, store) 
Customer(cid, name, city) 



38 

Discussion in class 

⋈ 

⋈ T(C,D) 

R(A,B) S(B,C) 

CSE544 - Spring, 2013        

Every operator is a hash-join 
and implements the iterator model 

What happens: 
•  When we call open() at the top? 
•  When we call get_next() at the top? 



External Memory Algorithms 

•  Data is too large to fit in main memory 

•  Issue: disk access is 3-4 orders of 
magnitude slower than memory access 

•  Assumption: runtime dominated by # of 
disk I/O’s;  will ignore the main memory 
part of the runtime 



Cost Parameters 
The cost of an operation = total number of I/Os 
Cost parameters (used both in the book and by Shapiro): 

•  B(R) = number of blocks for relation R 
•  T(R) = number of tuples in relation R 
•  V(R, A) = number of distinct values of attribute A 
•  M = size of main memory buffer pool, in blocks 

Facts: (1) B(R) << T(R): 
 (2) When A is a key, V(R,A) = T(R) 
      When A is not a key, V(R,A) << T(R) 



Ad-hoc Convention 

•  The operator reads the data from disk 

•  The operator does not write the data 
back to disk (e.g.: pipelining) 

•  Thus: 

Any main memory join algorithms for R ⋈ S: Cost = B(R)+B(S)  



External Memory Join 
Algorithms 

•  Nested Loop Joins 

•  Merge Join 

•  Hash join: read paper, discuss next 
week 

CSE544 - Spring, 2013       42 



External Sorting 

•  Problem: sort a file R of size B(R) with 
memory M 

•  Concrete: 
– Size of R is 100TB = 1014 

– Size of M is 1GB = 109 

– Page size is 10KB = 104 

CSE544 - Spring, 2013 43 



External Merge-Sort: Step 1 

•  Phase one: load M bytes in memory, sort 

Disk Disk 

. . 

. 
. . . 

 
M 

Main memory Runs of 
length M 

Can increase to length 2M using “replacement selection” (How?) 



External Merge-Sort: Step 2 

•  Merge M – 1 runs into a new run 
•  Result: runs of length M (M – 1)≈ M2 
 

Disk Disk 

. . 

. 
. . . 

Input M 

Input 1 

Input 2 
. . . . 

Output 

Main memory 

Assuming B ≤ M2  then we are done 

If B > M2,  
why not merge  
more than M runs  
in one step? 



Cost of External Merge Sort 

• Read+write+read = 3B(R) 
(we don’t count the final write) 

• Assumption: B(R) <= M2 

CSE544 - Spring, 2013 46 



Application: Merge-Join 

Join R ⨝ S 
•  Step 1a: initial runs for R 
•  Step 1b: initial runs for S 
•  Step 2: merge and join 

CSE544 - Spring, 2013 47 



Merge-Join 

 

Main memory 
Disk Disk 

. . 

. 
. . . 

Input M 

Input 1 

Input 2 
. . . . 

Output 

M1  = B(R)/M runs for R 
M2  = B(S)/M runs for S 
Merge-join M1  + M2  runs;  
need M1  + M2 ≤ M, or B(R) + B(S) ≤ M2 


