
1

CSE544: Principles of
Database Systems

Lectures 6
Database Architecture
Storage and Indexes

Announcements

•  Project
–  Choose a topic. Set limited goals!
–  Sign up (doodle) to meet with me next Wednesday

•  Homework 1
–  Due on Monday

•  Paper review
–  Due next Wednesday

Where We Are

•  Part 1: The relational data model

•  Part 2: Database Systems

•  Part 3: Database Theory

•  Part 4: Miscellaneous
CSE544 - Spring, 2013 3

Outline

•  Storage and Indexes
– Book: Ch. 8-11, and 20

CSE544 - Spring, 2013 4

5

The Mechanics of Disk
Mechanical characteristics:
•  Rotation speed (5400RPM)
•  Number of platters (1-30)
•  Number of tracks (<=10000)
•  Number of bytes/track(105)

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
 disk block
Once in memory:
 page
Typically: 4k or 8k or 16k

6

Disk Access Characteristics
•  Disk latency

–  Time between when command is issued and when data is in
memory

–  Equals = seek time + rotational latency
•  Seek time = time for the head to reach cylinder

–  10ms – 40ms
•  Rotational latency = time for the sector to rotate

•  Rotation time = 10ms
•  Average latency = 10ms/2

•  Transfer time = typically 40MB/s

Basic factoid: disks always read/write an entire block at a time

7

RAID
Several disks that work in parallel
•  Redundancy: use parity to recover from disk failure
•  Speed: read from several disks at once

Various configurations (called levels):
•  RAID 1 = mirror
•  RAID 4 = n disks + 1 parity disk
•  RAID 5 = n+1 disks, assign parity blocks round robin
•  RAID 6 = “Hamming codes”

8

Buffer Management in a
DBMS

•  Data must be in RAM for DBMS to operate on it!
•  Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

9

Buffer Manager

Needs to decide on page replacement policy

•  LRU
•  Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the
DBMS to assume that the
needed data is in main memory.

10

Arranging Pages on Disk
A disk is organized into blocks (a.k.a. pages)
•  blocks on same track, followed by
•  blocks on same cylinder, followed by
•  blocks on adjacent cylinder

A file should (ideally) consists of sequential blocks on
disk, to minimize seek and rotational delay.

For a sequential scan, pre-fetching several pages at a
time is a big win!

CSE544 - Spring, 2013

11

Issues

•  Managing free blocks

•  File Organization

•  Represent the records inside the blocks

•  Represent attributes inside the records
CSE544 - Spring, 2013

12

Managing Free Blocks

•  Linked list of free blocks

•  Or bit map

CSE544 - Spring, 2013

13

File Organization

Header
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Linked list of pages:
Data
page

Data
page

Full pages

Pages with some free space

14

File Organization

Data
page

Data
page

Data
page

Better: directory of pages

Directory

Header

15

Page Formats
Issues to consider
•  1 page = fixed size (e.g. 8KB)
•  Records:

– Fixed length
– Variable length

•  Record id = RID
– Typically RID = (PageID, SlotNumber)

Why do we need RID’s in a relational DBMS ?

16

Page Formats
Fixed-length records: packed representation

Rec 1 Rec 2 Rec N

Free space N

Problems ?

One page

17

Page Formats

Free
space

Slot directory

Variable-length records

18

Record Formats: Fixed Length

•  Information about field types same for all records
in a file; stored in system catalogs.

•  Finding i’th field requires scan of record.
•  Note the importance of schema information!

Base address (B)

L1 L2 L3 L4

pid name descr maker

Address = B+L1+L2

Product(pid, name, descr, maker)

19

Record Header

L1 L2 L3 L4

To schema
length

timestamp (e.g. for MVCC)

Need the header because:
•  The schema may change

for a while new+old may coexist
•  Records from different relations may coexist

header

pid name descr maker

20

Variable Length Records

L1 L2 L3 L4

Other header information

length

Place the fixed fields first: F1
Then the variable length fields: F2, F3, F4
Null values take 2 bytes only
Sometimes they take 0 bytes (when at the end)

header pid name descr maker

21

BLOB

•  Binary large objects
•  Supported by modern database systems
•  E.g. images, sounds, etc.
•  Storage: attempt to cluster blocks together

CLOB = character large object
•  Supports only restricted operations

File Organizations

•  Heap (random order) files: Suitable when typical
access is a file scan retrieving all records.

•  Sorted Files Best if records must be retrieved in
some order, or only a `range’ of records is needed.

•  Indexes Data structures to organize records via trees
or hashing.
–  Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields
–  Updates are much faster than in sorted files.

22

Index

•  A (possibly separate) file, that allows
fast access to records in the data file

•  The index contains (key, value) pairs:
– The key = an attribute value
– The value = one of:

•  pointer to the record secondary index
•  or the record itself primary index

23 CSE544 - Spring, 2013 Note: “key” (aka “search key”) again means something else

24

Index Classification
•  Clustered/unclustered

–  Clustered = records close in index are close in data
–  Unclustered = records close in index may be far in data

•  Primary/secondary
–  Meaning 1:

•  Primary = is over attributes that include the primary key
•  Secondary = otherwise

–  Meaning 2: means the same as clustered/unclustered
•  Organization B+ tree or Hash table

25

Clustered Index

•  File is sorted on the index attribute
•  Only one per table

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

26

Unclustered Index

•  Several per table

10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

Clustered vs. Unclustered
Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

27 CSE544 - Spring, 2013

CSE544 - Spring, 2013

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

H2 age

h2(age) = 00

h2(age) = 01

Another example of
clustered/primary index

Another example
of unclustered/secondary index

Good for point queries but not range queries

28

29

Alternatives for Data Entry k*
in Index

Three alternatives for k*:

•  Data record with key value k

•  <k, rid of data record with key = k>

•  <k, list of rids of data records with key = k>

30

Alternatives 1, 2, 3

10

10

20

20

20

30

30

30

10

20

30

…

10 ssn age …

10 ssn age …

20 ssn age …

20 ssn age …

20 ssn age …

30 ssn age …

30 ssn age …

30 ssn age …

31

B+ Trees

•  Search trees

•  Idea in B Trees

–  Make 1 node = 1 block
–  Keep tree balanced in height

•  Idea in B+ Trees
–  Make leaves into a linked list: facilitates range

queries
CSE544 - Spring, 2013

32

•  Parameter d = the degree
•  Each node has >= d and <= 2d keys (except

root)

•  Each leaf has >=d and <= 2d keys:

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

37

Using a B+ Tree

•  Exact key values:
– Start at the root
– Proceed down, to the leaf

•  Range queries:
– As above
– Then sequential traversal

SELECT name
FROM People
WHERE age = 25

SELECT name
FROM People
WHERE 20 <= age
 and age <= 30

CSE544 - Spring, 2013

Index on People(age)

Which queries can use this
index ?

CSE544 - Spring, 2013 38

SELECT *
FROM People
WHERE name = ‘Smith’
 and zipcode = 12345

Index on People(name, zipcode)

SELECT *
FROM People
WHERE name = ‘Smith’

SELECT *
FROM People
WHERE zipcode = 12345

39

Insertion in a B+ Tree
Insert (K, P)
•  Find leaf where K belongs, insert
•  If no overflow (2d keys or less), halt
•  If overflow (2d+1 keys), split node, insert in parent:

•  If leaf, keep K3 too in right node
•  When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
 K3

parent

40

Insertion in a B+ Tree

80

20 60

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

41

Insertion in a B+ Tree

80

20 60

10 15 18 20 30 40 50 60 65 80 85 90 19

After insertion

100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

42

Insertion in a B+ Tree

80

20 60

10 15 18 20 30 40 50 60 65 80 85 90 19

Now insert 25

100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

43

Insertion in a B+ Tree

80

20 60

20 25 30 40 50

10 15 18 20 25 30 40 60 65 80 85 90 19

After insertion

50

100 120 140

10 15 18 19 60 65 80 85 90

44

Insertion in a B+ Tree

80

20 60

10 15 18 20 25 30 40 60 65 80 85 90 19

But now have to split !

50

100 120 140

20 25 30 40 50 10 15 18 19 60 65 80 85 90

45

Insertion in a B+ Tree

80

20 30 60

10 15 18 19 20 25

10 15 18 20 25 30 40 60 65 80 85 90 19

After the split

50

30 40 50

100 120 140

60 65 80 85 90

46

Deletion from a B+ Tree

80

20 30 60

10 15 18 20 25 30 40 60 65 80 85 90 19

Delete 30

50

100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

47

Deletion from a B+ Tree

80

20 30 60

10 15 18 20 25 40 60 65 80 85 90 19

After deleting 30

50

40 50

May change to
40, or not

100 120 140

10 15 18 19 20 25 60 65 80 85 90

48

Deletion from a B+ Tree

80

20 30 60

10 15 18 20 25 40 60 65 80 85 90 19

Now delete 25

50

100 120 140

40 50 10 15 18 19 20 25 60 65 80 85 90

49

Deletion from a B+ Tree

80

20 30 60

20

10 15 18 20 40 60 65 80 85 90 19

After deleting 25
Need to rebalance
Rotate

50

100 120 140

40 50 10 15 18 19 60 65 80 85 90

50

Deletion from a B+ Tree

80

19 30 60

10 15 18 20 40 60 65 80 85 90 19

Now delete 40

50

100 120 140

19 20 40 50 10 15 18 60 65 80 85 90

51

Deletion from a B+ Tree

80

19 30 60

10 15 18 20 60 65 80 85 90 19

After deleting 40
Rotation not possible
Need to merge nodes

50

100 120 140

19 20 50 10 15 18 60 65 80 85 90

52

Deletion from a B+ Tree

80

19 60

19 20 50

10 15 18 20 60 65 80 85 90 19

Final tree

50

100 120 140

10 15 18 60 65 80 85 90

53

B+ Tree Design

•  How large d ?
•  Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 byes

•  2d x 4 + (2d+1) x 8 <= 4096
•  d = 170

CSE544 - Spring, 2013

B+ Trees in Practice

•  Typical order: 100. Typical fill-factor: 67%
–  average fanout = 133

•  Typical capacities
–  Height 4: 1334 = 312,900,700 records
–  Height 3: 1333 = 2,352,637 records

•  Can often hold top levels in buffer pool
–  Level 1 = 1 page = 8 Kbytes
–  Level 2 = 133 pages = 1 Mbyte
–  Level 3 = 17,689 pages = 133 Mbytes

54 CSE544 - Spring, 2013

Practical Aspects of B+ Trees

Key compression:
•  Each node keeps only the from parent

keys
•  Jonathan, John, Johnsen, Johnson … à

– Parent: Jo
– Child: nathan, hn, hnsen, hnson, …

CSE544 - Spring, 2013 55

Practical Aspects of B+ Trees

Bulk insertion
•  When a new index is created there are

two options:
– Start from empty tree, insert each key one-

by-one
– Do bulk insertion – what does that mean ?

CSE544 - Spring, 2013 56

Practical Aspects of B+ Trees

Concurrency control
•  The root of the tree is a “hot spot”

– Leads to lock contention during insert/
delete

•  Solution: do proactive split during insert,
or proactive merge during delete
–  Insert/delete now require only one

traversal, from the root to a leaf
– Use the “tree locking” protocol 57

58

Summary on B+ Trees

•  Default index structure on most DBMS
•  Very effective at answering ‘point’

queries:
 productName = ‘gizmo’

•  Effective for range queries:
 50 < price AND price < 100

•  Less effective for multirange:
 50 < price < 100 AND 2 < quant < 20

CSE544 - Spring, 2013

Indexes in Postgres

59

CREATE INDEX V1_N ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX VVV ON V(M, N)

CLUSTER V USING V2 Makes V2 clustered

Index Selection Problem 1

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

Which indexes should we create?

Index Selection Problem 1

61

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

CSE544 - Spring, 2013 A: V(N) and V(P) (hash tables or B-trees)

Index Selection Problem 2

62

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE544 - Spring, 2013 Which indexes should we create?

Index Selection Problem 2

63

V(M, N, P);

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

SELECT *
FROM V
WHERE N>? and N<?

CSE544 - Spring, 2013 A: definitely V(N) (must B-tree); unsure about V(P)

Index Selection Problem 3

64

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE544 - Spring, 2013 Which indexes should we create?

Index Selection Problem 3

65

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: V(N, P)

Index Selection Problem 4

66

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

CSE544 - Spring, 2013 Which indexes should we create?

Index Selection Problem 4

67

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

CSE544 - Spring, 2013 A: V(N) secondary, V(P) primary index

