Principles of Database Systems
CSE 544

Lecture #5
Views, Relational Query Languages

CSE544 - Spring, 2013

Announcements

« Homework 1 due next Monday

* Next reading assignment due next
Wednesday

 Lecture on Thursday, May 2"
— Moved to 9am-10:30am, CSE 403

CSE544 - Spring, 2013

Applications of Views

What applications does the paper describe?

Applications of Views

What applications does the paper describe?

* Query optimization
— E.g. Indexes

* Physical and logical data independence
— E.g. de-normalization, data partitioning

« Semantic caching

» Data integration

Denormalization

* Scenario: we have a relational schema that is
in BCNF (recall: this means only
the key implies any other attribute(s))

Purchase(pid, customer, product, store)
Product(pname, price)

« But we often need to join these two relations,
SO we compute their join

CSES544 - Spring, 2013 5

Denormalization

CREATE Table CustomerPurchase AS

SELECT x.pid, x.customer, x.store, y.pname, y.price
FROM Purchase x, Product y

WHERE x.product = y.pname

* This table is not in BCNF (why not?)

« But that’'s OK, the application still sees the
original two relations. How?

Purchase(pid, customer, product, store) — a view...
Product(pname, price) —aview...

CSES544 - Spring, 2013 6

Data Integration Terminology

Local DB, | ... | Local DB, | | LocalDB, | ... | Local DB,

D

[Integrated Data} [Integrated Data}

[Global as View} [Local as View}

Which one needs query expansion,
which one needs query answering using views ?

[Duschka&Genesereth’97]
Query Rewriting Using Views

Suppose you only have these two views:

v1(x,y) :- black(x), edge(x,y) m
v2(x,y) :- edge(x,y), black(y) m

Can you rewrite this query in terms of the views?

q(x,y) :- edge(x,z1), black(z1),
edge(z1,z2),edge(z2,z3)
black(z3), edge(z3,y)

NOTE:

Q means “any color”
O

means “black” .

CSE544 - Spring, 2013

[Duschka&Genesereth’97]
Query Rewriting Using Views

Suppose you only have these two views:

v1(x,y) :- black(x), edge(x,y) m
v2(x,y) :- edge(x,y), black(y) m

Can you rewrite this query in terms of the views?

q(x,y) :- edge(x,z1), black(z1),
edge(z1,z2),edge(z2,z3)
black(z3), edge(z3,y)

Answer:

qa(x,y) :- v2(x,z1),v1(z1,z2),v2(z2,z3),v1(z3,y)

CSE544 - Spring, 2013 9

[Duschka&Genesereth’97]
Query Rewriting Using Views

Suppose you only have these two views:

v1(x,y) :- black(x), edge(x,y) (\@
v2(x,y) :- edge(x,y), black(y) m

What about this query?

CSE544 - Spring, 2013 10

[Duschka&Genesereth’97]
Query Rewriting Using Views

Suppose you only have these two views:

v1(x,y) :- black(x), edge(x,y) (\@
v2(x,y) :- edge(x,y), black(y) m

What about this query?

q(x,y) :- black(x),edge(x,z1), black(z1),
edge(z1,z2),black(z2),edge(z2,z3)
black(z3), edge(z3,y),black(y)

CSE544 - Spring, 2013 11

[Duschka&Genesereth’97]
Query Rewriting Using Views

Suppose you only have these two views:

v1(x,y) :- black(x), edge(x,y) m
v2(x,y) :- edge(x,y), black(y) m

Can we rewrite this query?

q(x,y) :- edge(x,z1),edge(z1,z2), m

edge(z2,z3), edge(z3,y)

CSE544 - Spring, 2013 12

[Duschka&Genesereth’97]
Query Rewriting Using Views

Suppose you only have these two views:

v1(x,y) :- black(x), edge(x,y) (\@
v2(x,y) :- edge(x,y), black(y) m

Can we rewrite this query?

q(x,y) :- edge(x,z1),edge(z1,z2), m

edge(z2,z3), edge(z3,y)

No! but you can retrieve all certain answers:

@{W%
JEddH %

[Duschka&Genesereth’97]
Query Rewriting Using Views

Suppose you only have these two views:

v1(x,y) :- black(x), edge(x,y) (\@
v2(x,y) :- edge(x,y), black(y) m

Can we rewrite this query?

q(x,y) :- edge(x,z1),edge(z1,z2), m
dHdH e

edge(z2,z3), edge(z3,y)
Maximally contained rewriting is:
q(x,y) - v1(x,z1),v2(z1,z2),v1(z2,z3),v2(z3,y) { % { % { % { %
q(x,y) :- v2(x,z1),v1(z1,z2),v2(z2,z3),v1(z3,y)
ax.y) - v2(x,21)v1(z1,22).v1(22,23) v2(z3.y) W\b

Purchase(buyer, seller, product, store)
Person(pname, city)

Query Rewriting Using Views

H hi CREATE VIEW SeattleView AS
ave this SELECT vy.buyer, y.seller, y.product, y.store
materialized FROM Person x, Purchase y
View: WHERE x.city = ‘Seattle’
AND x.pname = y.buyer

Goal: rewrite this query [Sg| ECT y.buyer, y.seller
in terms of the view FROM Person x, Purchase y
WHERE x.city = ‘Seattle’

AND x.pname = y.buyer
AND vy.product="gizmo’

CSE544 - Spring, 2013 15

Purchase(buyer, seller, product, store)
Person(pname, city)

Query Rewriting Using Views

SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

SELECT vy.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’

AND x.pname = y.buyer
AND vy.product="gizmo’

CSES544 - Spring, 2013

16

Purchase(buyer, seller, product, store)
Person(pname, city)

Query Rewriting Using Views

CREATE VIEW DifferentView AS
SELECT vy.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y, Product z
WHERE x.city = ‘Seattle” AND
X.pname = y.buyer AND
y.product = z.pname AND
z.price <100

SELECT vy.buyer, y.seller “Maximally
FROM Person x, Purchase y = contained
WHERE x.city = ‘Seattle’ AND rewriting”

X.pname = y.buyer AND

y.product="gizmo’ SELECT buyer, seller
FROM DifferentView
WHERE product= ‘gizmo’

Summary

V
View inlining, or query DB View
modification Q
W Answer
. ” Voo
Query answering/rewriting DB View
using views q @
Answer
Updat
Updating views @ V
lew

Incremental view update Update @
View

Relational Query Languages

1. Relational Algebra

2. Recursion-free datalog with negation
— This is the core of SQL, cleaned up

3. Relational Calculus

These three formalisms express the same class of queries

Actor(id, fname, Iname)

Casts(pid, mid)
' Running Example

Movie(id, name, year

Find all actors who acted both in 1910 and in 1940:

Q: SELECT DISTINCT a.fname, a.lname
FROM Actor a, Casts ¢1, Movie m1, Casts ¢c2, Movie m2
WHERE a.id =c1.pid AND c1.mid = m1.id
AND a.id = c2.pid AND c2.mid = m2.id
AND m1.year = 1910 AND m2.year = 1940;

CSEb544 - Spring, 2013 20

Actor(id, fname, Iname)

Casts(pid, mid)
rerete ey Two Perspectives
 Named Perspective:
Actor(id, fname, Iname)
Casts(pid,mid)
Movie(id,name,year)
 Unnamed Perspective:
Actor = arity 3
Casts = arity 2
Movie = arity 3

CSES544 - Spring, 2013

21

1. Relational Algebra

Used internally by RDBMs to execute
qgueries

The Basic Five operators:
Union: U

Difference: -

Selection: ¢

Projection: I1

Join: X

Renaming: p (for named perspective)

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, year)

1. Relational Algebra (Details)

« Selection: returns tuples that satisfy condition
— Named perspective: Oyear = 1910'(MoOViE)
— Unnamed perspective: O3 - 910 (MoOVie)

* Projection: returns only some attributes
— Named perspective: IT {1 ame iname(ACtOT)
— Unnamed perspective: IT , 5(Actor)

 Join: joins two tables on a condition
— Named perspective: Casts X 4=y Movie
— Unnamed perspective: Casts X ,_, Movie

Actor(id, fname, Iname)
Casts(pid, mid)

e . Relational Algebra

Q: SELECT DISTINCT a.fname, a.lname
FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
WHERE a.id = ¢1.pid AND c1.mid = m1.id
AND a.id = c2.pid AND c2.mid = m2.id
AND m1.year = 1910 AND m2.year = 1940;

I_Ifname,lname
[Named perspective} Note how we

Oyear1=11910’ and year2=1940’ renamed year
to year1, year2

/ M ig=pid

X id=pid
\
X mid=id X mid=id
\ \
P year1=year P year2=year
Actor Casts Movie Casts Movie

Actor(id, fname, Iname)
Casts(pid, mid)

e . Relational Algebra

Q: SELECT DISTINCT a.fname, a.lname
FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
WHERE a.id = ¢1.pid AND c1.mid = m1.id
AND a.id = c2.pid AND c2.mid = m2.id
AND m1.year = 1910 AND m2.year = 1940;

I_|2,3

[Unnamed perspective}

8 =1910" and 13="1940’

X 1=1
\
/IXI 2=1\ /N 2=1 \
Actor Casts Movie Casts Movie

2. Datalog

Very friendly notation for queries
Designed for recursive queries in the 80s

Today it's used everywhere: commercial
implementations (LogicBlox), networking
(Overlog), programming languages, ...

In class
— recursion-free datalog with negation (next)
— recursive datalog, (in the “Theory” part)

CSES544 - Spring, 2013

26

2. Datalog

How to try out datalog quickly:

 Download DLV from
http://www.dbai.tuwien.ac.at/proj/div/

« Run DLV on this file:

parent(william, john).
parent(john, james).
parent(james, bill).
parent(sue, bill).
parent(james, carol).
parent(sue, carol).

male(john).
male(james).
female(sue).
male(bill).
female(carol).

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

father(X, Y) :- parent(X, Y), male(X).

mother(X, Y) :- parent(X, Y), female(X).

brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X =Y.
sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X =Y.

Actor(id, fname, Iname)
Casts(pld mid)

2.’ Datalog: Facts and Rules

Facts = tuples in the database Rules = queries

Actor(344759,'Douglas’, ‘Fowley’).

Q1(y) :- Movie(x,y,z), z='1940’.

Casts(344759, 29851).

Casts(355713, 29000).

Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Find Movies made in 1940

Actor(id, fname, Iname)
Casts(pld mid)

2.’ Datalog: Facts and Rules

Facts = tuples in the database

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Rules = queries

Q1(y) -

Movie(x,y,z), z='1940’.

Movie(7909, ‘A Night in Armour’, 1910).

Q2(f, I) :-

Actor(z,f,l), Casts(z,x),
Movie(x,y,"1940°).

Find Actors who acted in Movies made in 1940

Actor(id, fname, Iname)
Casts(pld mid)

2.’ Datalog: Facts and Rules

Facts = tuples in the database

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Rules = queries

Q1(y) -

Movie(x,y,z), z='1940’.

Movie(7909, ‘A Night in Armour’, 1910).

Q2(f, I) :-

Actor(z,f,l), Casts(z,x),
Movie(x,y,"1940°).

Q3(f,!) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

Actor(id, fname, Iname)
Casts(pld mid)

2.’ Datalog: Facts and Rules

Facts = tuples in the database

Actor(344759,'Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).

Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Rules = queries

Q1(y) -

Movie(x,y,z), z='1940’.

Movie(7909, ‘A Night in Armour’, 1910).

Q2(f, I) :-

Actor(z,f,l), Casts(z,x),
Movie(x,y,"1940°).

Q3(f,!) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

Actor(id, fname, Iname)

= Datalog: Terminology

Movie(id, name,

head body
/\ N
- N
atom atom atom

A e

Q2(f,) :- Actor(z,f,l) Casts(z X I\/Iowe (X Y, '"1940).

f, = head variables
X,y,Zz = existential variables

CSES544 - Spring, 2013

32

Actor(id, fname, Iname)

Casts(pid, mid)
2. Datalog program

Movie(id, name, year)

Find all actors with Bacon number £ 2

BO(x) :- Actor(x,'Kevin', 'Bacon’')

B1(x) - Actor(x,f,l), Casts(x,z), Casts(y,z), BO(y)
B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)

Q4(x) :- BO(x)

Q4(x) :- B1(x)

Q4(x) :- B2(x)

Note: Q4 is the union of B1 and B2

CSES544 - Spring, 2013

Actor(id, fname, Iname)
Casts(pid, mid)
Movie(id, name, 23r

Datalog with negation

Find all actors with Bacon number = 2

BO(x) :-
B1(x) :-
Q6(x) :- Actor(x,f,1), not B1(x), not BO(x)

Actor(x,'Kevin', 'Bacon')
Actor(x,f,l), Casts(x,z), Casts(y,z), BO(y)

CSES544 - Spring, 2013

34

Actor(id, fname, Iname)
Casts(pid, mid)

Movie(id, name,Ye2. Safe DataIOg RUIGS

Here are unsafe datalog rules. What's “unsafe” about them ?

U1(x,y) :- Movie(x,z,1994), y>1910

U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is safe if every variable appears
In some positive relational atom

CSES544 - Spring, 2013 35

2. Datalog v.s. SQL

* Non-recursive datalog with negation is a
cleaned-up, core of SQL

* You should be able to translate easily
between non-recursive datalog with
negation and SQL

CSES544 - Spring, 2013

36

Relational Calculus

 Aka predicate calculus or first order logic

+ TRC = Tuple RC

— See book

« DRC = Domain RC = unnamed perspective
— We study only this one

CSE 344 - Winter 2013

37

Relational Calculus

Relational predicate P is a formula given by this grammar:
P:=atom|PAP|PV P|P=P|not(P)| VX.P | IxP

Query Q:
Q(x1, ..., xk) = P

38

Actor(id, fname, Iname)

Casts(pid, mid)
Relational Calculus

Movie(id, name, year)

Relational predicate P is a formula given by this grammar:
P:=atom|PAP|PV P|P=P|not(P)| VX.P | IxP

Query Q:
Q(x1, ..., xk) = P

Example: find the first/last names of actors who acted in 1940
Q(f,1) = 3x. Jy. Iz. (Actor(z,f,1) ACasts(z,x) AMovie(x,y,1940))

39

Actor(id, fname, Iname)

Casts(pid, mid)
Relational Calculus

Movie(id, name, year)

Relational predicate P is a formula given by this grammar:
P:=atom|PAP|PV P|P=P|not(P)| VX.P | IxP

Query Q:
Q(x1, ..., xk) = P

Example: find the first/last names of actors who acted in 1940
Q(f,1) = 3x. Jy. Iz. (Actor(z,f,1) ACasts(z,x) AMovie(x,y,1940))

What does this query return ?
Q(f,1) = 3z. (Actor(z,f,I) A V x.(Casts(z,x) = Jy.Movie(x,y,1940)))

40

Likes(drinker, beer)
Frequents(drinker, bar)

Serves(bar, beerlmporta nt Observathn

Find all bars that serve all beers that Fred likes

A(x) = Vy. Likes("Fred", y) => Serves(x,y)

« Note: P ==>Q (read P implies Q) is the same as (not P) OR Q
In this query: If Fred likes a beer the bar must serve it (P ==> Q)
In other words: Either Fred does not like the beer (not P) OR the
bar serves that beer (Q).

A(x) = Vy. not(Likes("Fred", y)) OR Serves(x,y)

CSE 344 - Winter 2013

41

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) M ore Exa m p I es

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) M ore Exa m p I es

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) M ore Exa m p I es

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) M ore Exa m p I es

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) ALikes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) M ore Exa m p I es

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) A Likes(x.2)) |

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) M ore Exa m p I es

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) A Likes(x.2)) |

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = dy. Frequents(x, y) AVz.(Serves(y,z) = Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) M ore Exa m p I es

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) A Likes(x.2)) |

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = dy. Frequents(x, y)AVz.(Serves(y,z) = Likes(x,z)) ‘

Find drinkers that frequent only bars that serves only beer they fike.

Likes(drinker, beer)
Frequents(drinker, bar

)
Serves(bar, beer) M ore Exa m p I es

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) A Likes(x.2)) |

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = dy. Frequents(x, y)AVz.(Serves(y,z) = Likes(x,z)) ‘

Find drinkers that frequent only bars that serves only beer they fike.

Q(x) = Vy. Frequents(x, y)= Vz.(Serves(y,z) = Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)

senester FOMaAIN Independent RC

* As in datalog, one can write “unsafe” RC
queries; they are also called domain dependent

A(x) = not Likes("Fred", x)
A(x,y) = Likes("Fred", x) OR Serves("Bar", y)
A(x) = Vy. Serves(x,y)

* Lesson: make sure your RC queries are domain
iIndependent

CSE 344 - Winter 2013 50

Relational Calculus

How to write a complex SQL query:
 Write itin RC

* Translate RC to datalog (see next)
* Translate datalog to SQL

Take shortcuts when you know what you're doing

CSE 344 - Winter 2013 51

Likes(drinker, beer)
Frequentﬁjrlnker bar)

Serves(b

rom RC to Datalog™ to SQL

Query: Find drinkers that like some beer so much that

they frequent all bars that serve it

Q(x) =

dy. Likes(x, y)AVz.(Serves(z,y) = Frequents(x,z))

CSE 344 - Winter 2013

52

Likes(drinker, beer)
Frequentﬁjrlnker bar)

sevesthe p@M RC to Datalog™ to SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Q(x) = Jy. Likes(x, y)AVz.(Serves(z,y) = Frequents(x,z))

Vx P(x) same as
23dx 7P(x)

Step 1: Replace V with 3 using de Morgan’s Laws

\/_\
Q(X) = Hy LikeS(X, y)/\ -'Elz.(Serves(z,y) A\ ﬂFrequents(X,z»g ;(/_\IP—.VQQ) same as
~t 0

CSE 344 - Winter 2013 53

Likes(drinker, beer)
Frequentﬁjrlnker bar)

sevesthe p@M RC to Datalog™ to SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Q(x) = Jy. Likes(x, y)AVz.(Serves(z,y) = Frequents(x,z))

Vx P(x) same as
23dx 7P(x)

Step 1: Replace V with 3 using de Morgan’s Laws

\/_\
Q(x) = Jy. Likes(x, y) A ~3z.(Serves(z,y) A -'Frequents(x,z))g ;(;\PVQQ) same as
'//

Step 2: Make all subqueries domain independent
Q(x) = Ay. Likes(x, y) A ~3z.(Likes(x,y) A Serves(z,y) A "Frequents(x,z))

CSE 344 - Winter 2013 54

Likes(drinker, beer)
Frequentﬁjrlnker bar)

Serves(b

rom RC to Datalog™ to SQL

Q(x) =

dy. Likes(x, y) A~ 3z.(Likes(x,y) A Serves(z,y) A "Frequents(x,z))

N

J

v
H(X,y)

Step 3: Create a datalog rule for each subexpression;

(shortcut: only for “important” subexpressions)

H(x,y)
Q(x)

- Likes(x,y),Serves(z,y), not Frequents(x,z)
- Likes(x,y), not H(x,y)

CSE 344 - Winter 2013

55

Likes(drinker, beer)
Frequentﬁjrlnker bar)

sevesthe p@M RC to Datalog™ to SQL

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
(SELECT * FROM Likes L2, Serves S

WHERE L2.drinker=L.drinker and L2.beer=L.beer
and L2.beer=S.beer

and not exists (SELECT * FROM Frequents F
WHERE F.drinker=L2.drinker
and F.bar=S.bar))

56

Likes(drinker, beer)
Frequentﬁjrlnker bar)

sevesthe p@M RC to Datalog™ to SQL

H(x,y) :- Likes{xy)Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
(SELECT * FROM Serves S

WHERE L.beer=S.beer
and not exists (SELECT * FROM Frequents F

WHERE F.drinker=L.drinker
and F.bar=S.bar))

CSE 344 - Winter 2013 57

Summary of Translation

 RC - recursion-free datalog w/ negation
— Subtle: as we saw; more details in the paper

* Recursion-free datalog w/ negation 2> RA
« RA—> RC

Theorem: RA, non-recursive datalog w/ negation,
and RC, express exactly the same sets of queries:
RELATIONAL QUERIES

