
Principles of Database Systems
CSE 544

Lecture #5
Views, Relational Query Languages

1 CSE544 - Spring, 2013

Announcements

•  Homework 1 due next Monday

•  Next reading assignment due next
Wednesday

•  Lecture on Thursday, May 2nd:
– Moved to 9am-10:30am, CSE 403

CSE544 - Spring, 2013 2

Applications of Views

What applications does the paper describe?

3 CSE544 - Spring, 2013

Applications of Views
What applications does the paper describe?

•  Query optimization

– E.g. Indexes

•  Physical and logical data independence
– E.g. de-normalization, data partitioning

•  Semantic caching

•  Data integration

4 CSE544 - Spring, 2013

Denormalization

•  Scenario: we have a relational schema that is
in BCNF (recall: this means only
the key implies any other attribute(s))

•  But we often need to join these two relations,
so we compute their join

CSE544 - Spring, 2013 5

Purchase(pid, customer, product, store)
Product(pname, price)

Denormalization

•  This table is not in BCNF (why not?)
•  But that’s OK, the application still sees the

original two relations. How?

CSE544 - Spring, 2013 6

CREATE Table CustomerPurchase AS
 SELECT x.pid, x.customer, x.store, y.pname, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(pid, customer, product, store) – a view…
Product(pname, price) – a view…

Data Integration Terminology

Local DB1 Local DBk …

Integrated Data

Local DB1 Local DBk …

Integrated Data

Global as View

V V1 Vk

Local as View

Which one needs query expansion,
which one needs query answering using views ?

CSE544 - Spring, 2013 7

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

Can you rewrite this query in terms of the views?

[Duschka&Genesereth’97]

q(x,y) :- edge(x,z1), black(z1),
 edge(z1,z2),edge(z2,z3)
 black(z3), edge(z3,y)

x y

x y

x y

NOTE:
 means “any color”
 means “black” CSE544 - Spring, 2013 8

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

Can you rewrite this query in terms of the views?

[Duschka&Genesereth’97]

q(x,y) :- edge(x,z1), black(z1),
 edge(z1,z2),edge(z2,z3)
 black(z3), edge(z3,y)

x y

x y

x y

q(x,y) :- v2(x,z1),v1(z1,z2),v2(z2,z3),v1(z3,y)
Answer:

CSE544 - Spring, 2013 9

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

What about this query?

[Duschka&Genesereth’97]

x y

x y

x y

CSE544 - Spring, 2013 10

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

What about this query?

[Duschka&Genesereth’97]

q(x,y) :- black(x),edge(x,z1), black(z1),
 edge(z1,z2),black(z2),edge(z2,z3)
 black(z3), edge(z3,y),black(y)

x y

x y

x y

CSE544 - Spring, 2013 11

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

Can we rewrite this query?

[Duschka&Genesereth’97]

q(x,y) :- edge(x,z1),edge(z1,z2),
 edge(z2,z3), edge(z3,y)

x y

x y

x y

CSE544 - Spring, 2013 12

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

Can we rewrite this query?

[Duschka&Genesereth’97]

q(x,y) :- edge(x,z1),edge(z1,z2),
 edge(z2,z3), edge(z3,y)

x y

x y

x y

No! but you can retrieve all certain answers: x y

x y

x y

. 13

Query Rewriting Using Views

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Suppose you only have these two views:

Can we rewrite this query?

[Duschka&Genesereth’97]

q(x,y) :- edge(x,z1),edge(z1,z2),
 edge(z2,z3), edge(z3,y)

x y

x y

x y

q(x,y) :- v1(x,z1),v2(z1,z2),v1(z2,z3),v2(z3,y)
q(x,y) :- v2(x,z1),v1(z1,z2),v2(z2,z3),v1(z3,y)
q(x,y) :- v2(x,z1),v1(z1,z2),v1(z2,z3),v2(z3,y)
. . . .

Maximally contained rewriting is: x y

x y

x y

. 14

Query Rewriting Using Views

15

Purchase(buyer, seller, product, store)
Person(pname, city)

CREATE VIEW SeattleView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y
 WHERE x.city = ‘Seattle’
 AND x.pname = y.buyer

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’
 AND x.pname = y.buyer
 AND y.product=‘gizmo’

Goal: rewrite this query
in terms of the view

Have this
materialized
view:

CSE544 - Spring, 2013

Query Rewriting Using Views

CSE544 - Spring, 2013 16

SELECT buyer, seller
FROM SeattleView
WHERE product= ‘gizmo’

Purchase(buyer, seller, product, store)
Person(pname, city)

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’
 AND x.pname = y.buyer
 AND y.product=‘gizmo’

Query Rewriting Using Views

17

CREATE VIEW DifferentView AS
 SELECT y.buyer, y.seller, y.product, y.store
 FROM Person x, Purchase y, Product z
 WHERE x.city = ‘Seattle’ AND
 x.pname = y.buyer AND
 y.product = z.pname AND
 z.price < 100

SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = ‘Seattle’ AND
 x.pname = y.buyer AND
 y.product=‘gizmo’ SELECT buyer, seller

FROM DifferentView
WHERE product= ‘gizmo’

“Maximally
contained
rewriting”

Purchase(buyer, seller, product, store)
Person(pname, city)

Summary
•  View inlining, or query

modification

•  Query answering/rewriting
using views

•  Updating views

•  Incremental view update

DB View

Answer

V

Q

DB View

Answer

V

Q

DB View
V

Update ??

DB View
V

Update ??

CSE544 - Spring, 2013 18

??

??

Relational Query Languages

1.  Relational Algebra

2.  Recursion-free datalog with negation
–  This is the core of SQL, cleaned up

3.  Relational Calculus

These three formalisms express the same class of queries

Running Example

CSE544 - Spring, 2013 20

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

Find all actors who acted both in 1910 and in 1940:

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Two Perspectives

•  Named Perspective:
 Actor(id, fname, lname)
 Casts(pid,mid)
 Movie(id,name,year)

•  Unnamed Perspective:
 Actor = arity 3
 Casts = arity 2
 Movie = arity 3

CSE544 - Spring, 2013 21

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

1. Relational Algebra
Used internally by RDBMs to execute

queries

The Basic Five operators:
•  Union: ∪
•  Difference: -
•  Selection: σ
•  Projection: Π
•  Join: ⨝

Renaming: ρ (for named perspective)
CSE544 - Spring, 2013 22

1. Relational Algebra (Details)
•  Selection: returns tuples that satisfy condition

–  Named perspective: σyear = ‘1910’(Movie)
–  Unnamed perspective: σ3 = ‘1910’ (Movie)

•  Projection: returns only some attributes
–  Named perspective: Π fname,lname(Actor)
–  Unnamed perspective: Π 2,3(Actor)

•  Join: joins two tables on a condition
–  Named perspective: Casts ⨝ mid=id Movie
–  Unnamed perspective: Casts ⨝ 2=1 Movie

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

CSE544 - Spring, 2013 23

1. Relational Algebra
Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

⨝ mid=id

σyear1=‘1910’ and year2=‘1940’

⨝ id=pid

⨝ mid=id

Casts Movie Casts Movie Actor

⨝ id=pid

Πfname,lname

ρ year2=year ρ year1=year

Note how we
renamed year
to year1, year2

Named perspective

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

1. Relational Algebra

⨝ 2=1

σ8 =‘1910’ and 13=‘1940’

⨝ 1=1

⨝ 2=1

Casts Movie Casts Movie Actor

⨝ 1=1

Π2,3

Unnamed perspective

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog

•  Very friendly notation for queries
•  Designed for recursive queries in the 80s
•  Today it’s used everywhere: commercial

implementations (LogicBlox), networking
(Overlog), programming languages, …

•  In class
–  recursion-free datalog with negation (next)
–  recursive datalog, (in the “Theory” part)

CSE544 - Spring, 2013 26

2. Datalog

How to try out datalog quickly:
•  Download DLV from

http://www.dbai.tuwien.ac.at/proj/dlv/
•  Run DLV on this file:

parent(william, john).
parent(john, james).
parent(james, bill).
parent(sue, bill).
parent(james, carol).
parent(sue, carol).

male(john).
male(james).
female(sue).
male(bill).
female(carol).

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(X, Y), female(X).
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y.
sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X != Y.

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Find Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

CSE544 - Spring, 2013 28

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Find Actors who acted in Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

CSE544 - Spring, 2013 29

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

CSE544 - Spring, 2013 30

2. Datalog: Facts and Rules

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog: Terminology

CSE544 - Spring, 2013 32

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

body head

atom atom atom

f, l = head variables
x,y,z = existential variables

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog program

CSE544 - Spring, 2013 33

 B0(x) :- Actor(x,'Kevin', 'Bacon')
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
 B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)
 Q4(x) :- B0(x)
 Q4(x) :- B1(x)
 Q4(x) :- B2(x)

Find all actors with Bacon number ≤ 2

Note: Q4 is the union of B1 and B2

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog with negation

CSE544 - Spring, 2013 34

 B0(x) :- Actor(x,'Kevin', 'Bacon')
 B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
 Q6(x) :- Actor(x,f,l), not B1(x), not B0(x)

Find all actors with Bacon number ≥ 2

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Safe Datalog Rules

CSE544 - Spring, 2013 35

U1(x,y) :- Movie(x,z,1994), y>1910

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is safe if every variable appears
in some positive relational atom

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

2. Datalog v.s. SQL

•  Non-recursive datalog with negation is a
cleaned-up, core of SQL

•  You should be able to translate easily
between non-recursive datalog with
negation and SQL

CSE544 - Spring, 2013 36

Relational Calculus

•  Aka predicate calculus or first order logic

•  TRC = Tuple RC
–  See book

•  DRC = Domain RC = unnamed perspective
–  We study only this one

CSE 344 - Winter 2013 37

Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Relational predicate P is a formula given by this grammar:

Q(x1, …, xk) = P

Query Q:

38

Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Relational predicate P is a formula given by this grammar:

Q(x1, …, xk) = P

Query Q:

Q(f,l) = ∃x. ∃y. ∃z. (Actor(z,f,l) ∧Casts(z,x)∧Movie(x,y,1940))

Example: find the first/last names of actors who acted in 1940

39

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Relational predicate P is a formula given by this grammar:

Q(x1, …, xk) = P

Query Q:

Q(f,l) = ∃x. ∃y. ∃z. (Actor(z,f,l) ∧Casts(z,x)∧Movie(x,y,1940))

Example: find the first/last names of actors who acted in 1940

Q(f,l) = ∃z. (Actor(z,f,l) ∧∀x.(Casts(z,x) ⇒ ∃y.Movie(x,y,1940)))

What does this query return ?

40

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Important Observation

Find all bars that serve all beers that Fred likes

•  Note: P ==> Q (read P implies Q) is the same as (not P) OR Q
In this query: If Fred likes a beer the bar must serve it (P ==> Q)
In other words: Either Fred does not like the beer (not P) OR the
bar serves that beer (Q).

CSE 344 - Winter 2013 41

A(x) = ∀y. Likes("Fred", y) => Serves(x,y)

A(x) = ∀y. not(Likes("Fred", y)) OR Serves(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Average Joe

More Examples

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Average Joe

More Examples

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

More Examples

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

More Examples

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

More Examples

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

More Examples

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

Paranoid Paul

More Examples

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

Paranoid Paul

Domain Independent RC

•  As in datalog, one can write “unsafe” RC
queries; they are also called domain dependent

•  Lesson: make sure your RC queries are domain
independent

CSE 344 - Winter 2013 50

A(x) = not Likes("Fred", x)
A(x,y) = Likes("Fred", x) OR Serves("Bar", y)
A(x) = ∀y. Serves(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Relational Calculus

How to write a complex SQL query:
•  Write it in RC
•  Translate RC to datalog (see next)
•  Translate datalog to SQL

Take shortcuts when you know what you’re doing

CSE 344 - Winter 2013 51

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

CSE 344 - Winter 2013 52

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

CSE 344 - Winter 2013 53

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀x P(x) same as
¬∃x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

Step 2: Make all subqueries domain independent
Q(x) = ∃y. Likes(x, y) ∧ ¬∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

CSE 344 - Winter 2013 54

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀x P(x) same as
¬∃x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

From RC to Datalog¬ to SQL

Step 3: Create a datalog rule for each subexpression;
 (shortcut: only for “important” subexpressions)

Q(x) = ∃y. Likes(x, y) ∧¬ ∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

H(x,y)

CSE 344 - Winter 2013 55

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Likes L2, Serves S
 WHERE L2.drinker=L.drinker and L2.beer=L.beer
 and L2.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L2.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

56

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Serves S
 WHERE L.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y) Unsafe rule

CSE 344 - Winter 2013 57

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Summary of Translation

•  RC à recursion-free datalog w/ negation
– Subtle: as we saw; more details in the paper

•  Recursion-free datalog w/ negation à RA
•  RA à RC

Theorem: RA, non-recursive datalog w/ negation,
and RC, express exactly the same sets of queries:

RELATIONAL QUERIES
CSE544 - Spring, 2013 58

