
Principles of Database Systems
CSE 544

Lecture #4

Views and Constraints

CSE544 - Spring, 2013 1

Reading Material

•  Views:
– Query answering using views, by Halevy (due

on Monday)
– Book: 3.6

•  Constraints:
– Book 3.2, 3.3, 5.8

CSE544 - Spring, 2013 2

Views
•  A view in SQL =

– A table computed from other tables, s.t.,
whenever the base tables are updated, the view
is updated too

•  More generally:
– A view is derived data that keeps track of

changes in the original data
•  Compare:

– A function computes a value from other values,
but does not keep track of changes to the inputs

CSE544 - Spring, 2013 3

A Simple View

CSE544 - Spring, 2013 4

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

This is like a new table
StorePrice(store,price)

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Create a view that returns for each store
the prices of products purchased at that store

We Use a View Like Any Table
•  A "high end" store is a store that sell some products over

1000.
•  For each customer, return all the high end stores that

they visit.

CSE544 - Spring, 2013

SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
 AND v.price > 1000

5

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Types of Views
•  Virtual views

– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

•  Materialized views
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data (must recompute or update)
–  Indexes are materialized views

CSE544 - Spring, 2013 6

Query Modification

CSE544 - Spring, 2013 7

For each customer, find all the high end stores that they visit.

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
 AND v.price > 1000

Query Modification

CSE544 - Spring, 2013 8

For each customer, find all the high end stores that they visit.

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Modified query:
SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
 AND v.price > 1000

SELECT DISTINCT u.customer, u.store
FROM Purchase u,
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE u.store = v.store
 AND v.price > 1000

Query Modification

CSE544 - Spring, 2013 9

For each customer, find all the high end stores that they visit.

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT u.customer, u.store
FROM Purchase u,
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE u.store = v.store
 AND v.price > 1000

Modified query:

SELECT DISTINCT u.customer, u.store
FROM Purchase u, Purchase x, Product y
WHERE u.store = x.store
 AND y.price > 1000
 AND x.product = y.pname

Modified and unnested query:

Notice that
Purchase
occurs twice.
Why?

Further Virtual View Optimization

CSE544 - Spring, 2013 10

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

SELECT DISTINCT v.store
FROM StorePrice v
WHERE v.store like ‘%ACME%’

Further Virtual View Optimization

CSE544 - Spring, 2013 11

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

CREATE VIEW StorePrice AS
 SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

SELECT DISTINCT v.store
FROM StorePrice v
WHERE v.store like ‘%ACME%’

SELECT DISTINCT v.store
FROM
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE v.store like ‘%ACME%’

Modified query:

Further Virtual View Optimization

CSE544 - Spring, 2013 12

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT v.store
FROM
 (SELECT DISTINCT x.store, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) v
WHERE v.store like ‘%ACME%’

Modified query:

Modified and unnested query:

We can further optimize! How? SELECT DISTINCT x.store
FROM Purchase x, Product y
WHERE x.product = y.pname
 AND x.store like ‘%ACME%’

Further Virtual View Optimization

CSE544 - Spring, 2013 13

Retrieve all stores whose name contains ACME

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

SELECT DISTINCT x.store
FROM Purchase x
WHERE x.store like ‘%ACME%’

Final Query
Modified and unnested query:

Assuming Product.pname is a key
and Purchase.product is a foreign key SELECT DISTINCT x.store

FROM Purchase x, Product y
WHERE x.product = y.pname
 AND x.store like ‘%ACME%’

14

Example: Finding Witnesses

CSE544 - Spring, 2013

For each country, find its most expensive product(s)

Product (pname, price, category, manufacturer)
Company (cname, country)

Example: Finding Witnesses

SELECT x.country, max(y.price)
FROM Company x, Product y
WHERE x.cname = y.manufacturer
GROUP BY x.country

Finding the maximum price is easy…

But we need the witnesses, i.e. the products with max price

For each country, find its most expensive product(s)

Product (pname, price, category, manufacturer)
Company (cname, country)

CSE544 - Spring, 2013 15

Example: Finding Witnesses
To find witnesses, create a view with the maximum price

CREATE TEMPORARY VIEW CountryMaxPrice AS
 SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country

Product (pname, price, category, manufacturer)
Company (cname, country)

Is this virtual
or materialized?

CSE544 - Spring, 2013 16

Example: Finding Witnesses

SELECT u.country, v.pname, v.price
FROM Company u, Product v, CountryMaxPrice AS p
WHERE u.country = p.country and v.price = p.mprice

To find witnesses, create a view with the maximum price

Product (pname, price, category, manufacturer)
Company (cname, country)

Is this virtual
or materialized?

Next, use it to find the product that matches that price

CREATE TEMPORARY VIEW CountryMaxPrice AS
 SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country

CSE544 - Spring, 2013 17

18

Example: Finding Witnesses

SELECT u.country, v.pname, v.price
FROM Company u, Product v,
 (SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country) AS p
WHERE u.country = p.country and v.price = p.mprice

For one-time use, use temporary view, or:

CSE544 - Spring, 2013

WITH CountryMaxPrice AS
 (SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country)
SELECT u.country, v.pname, v.price
FROM Company u, Product v, CountryMaxPrice p
WHERE u.country = p.country and v.price = p.mprice

Or:

Product (pname, price, category, manufacturer)
Company (cname, country)

Example: Finding Witnesses

SELECT u.country, v.pname, v.price
FROM Company u, Product v, CountryMaxPrice p
WHERE u.country = p.country and v.price = p.mprice

If the view is reused, and performance is an issue, then:

CREATE TABLE CountryMaxPrice AS
 SELECT x.country, max(y.price) as mprice
 FROM Company x, Product y
 WHERE x.cname = y.manufacturer
 GROUP BY x.country

You can also create indexes on CountryMaxPrice

Product (pname, price, category, manufacturer)
Company (cname, country)

CSE544 - Spring, 2013 19

Indexes

20

REALLY important to speed up query processing time.

SELECT *
FROM Person
WHERE name = 'Smith’

CREATE INDEX myindex05 ON Person(name)

Person (pid, name, age, city)

May take too long to scan the entire Person table

Now, when we rerun the query it will be much faster
CSE544 - Spring, 2013

B+ Tree Index

CSE544 - Spring, 2013 21

Adam Betty Charles …. Smith ….

We will discuss them in detail in a later lecture.

Creating Indexes

22

Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55
 AND city = 'Seattle'

SELECT *
FROM Person
WHERE city = 'Seattle'

CREATE INDEX doubleindex ON Person (age, city)

SELECT *
FROM Person
WHERE age = 55

For which of the queries below is this index helpful?

Person(pid, name, age, city)

CSE544 - Spring, 2013

Creating Indexes

23

Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55
 AND city = 'Seattle'

SELECT *
FROM Person
WHERE city = 'Seattle'

CREATE INDEX doubleindex ON Person (age, city)

SELECT *
FROM Person
WHERE age = 55

For which of the queries below is this index helpful?

Person(pid, name, age, city)

YES YES NO
CSE544 - Spring, 2013

CREATE INDEX W
 ON Person(age)
CREATE INDEX P
 ON Person(city)

Indexes are Materialized Views

Person(pid, name, age, city)

If W and P are “views”, what is their schema?
Which query defines them?

CSE544 - Spring, 2013 24

CREATE INDEX W
 ON Person(age)
CREATE INDEX P
 ON Person(city)

Indexes are Materialized Views

CREATE VIEW W AS
 SELECT age, pid
 FROM Person y
CREATE VIEW P AS
 SELECT city, pid
 FROM Person y

Indexes as LAV:

Person(pid, name, age, city)

Each index is a relation:
 (index value, record id)
Some DBMS make very advanced use…

CSE544 - Spring, 2013 25

CREATE INDEX W
 ON Person(age)
CREATE INDEX P
 ON Person(city)

Indexes are Materialized Views

SELECT age, city
FROM Person
WHERE age > 22
 and city LIKE ‘S%’

SELECT x.age, y.city
FROM W x, P y
WHERE x.age > 22
 and y.city LIKE ‘S%
 and x.pid = y.pid

CREATE VIEW W AS
 SELECT age, pid
 FROM Person y
CREATE VIEW P AS
 SELECT city, pid
 FROM Person y

Indexes as LAV:

“Covering indexes”:
When the query uses
only the indexes

Person(pid, name, age, city)

CSE544 - Spring, 2013 26

Constraints

CSE544 - Spring, 2013 27

Constraints

•  A constraint = a property that we’d like our
database to hold

•  Enforce it by taking some actions:
– Forbid an update
– Or perform compensating updates

•  Two approaches:
– Declarative integrity constraints
– Triggers

CSE544 - Spring, 2013 28

Integrity Constraints in SQL

•  Keys, foreign keys
•  Attribute-level constraints
•  Tuple-level constraints
•  Global constraints: assertions

The more complex the constraint, the harder
it is to check and to enforce

CSE544 - Spring, 2013 29

simple

complex

Keys

OR:

CSE544 - Spring, 2013 30

CREATE TABLE Product (
 name CHAR(30) PRIMARY KEY,
 price INT)

CREATE TABLE Product (
 name CHAR(30),
 price INT,

PRIMARY KEY (name))

Keys with Multiple Attributes

31

CREATE TABLE Product (
 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (name, category))

name category price
Gizmo Gadget 10

Camera Photo 20
Gizmo Photo 30
Gizmo Gadget 40

Other Keys

CREATE TABLE Product (
 productID CHAR(10),

 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (productID),
 UNIQUE (name, category))

CSE544 - Spring, 2013 32

There is at most one PRIMARY KEY;
there can be many UNIQUE

Foreign Key Constraints

CREATE TABLE Purchase (
 buyer CHAR(30),
 seller CHAR(30),
 prodName CHAR(30) REFERENCES Product,
 store VARCHAR(30))

CSE544 - Spring, 2013 33

Foreign key

Purchase(buyer, seller, product, store)
Product(name, price)

CSE544 - Spring, 2013 34

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

Foreign Key Constraints

CSE544 - Spring, 2013 35

Purchase(buyer, seller, product, category, store)
Product(name, category, price)

CREATE TABLE Purchase(
 buyer VARCHAR(50),
 seller VARCHAR(50),
 prodName CHAR(20),
 category VAVRCHAR(20),
 store VARCHAR(30),
 FOREIGN KEY (prodName, category)
 REFERENCES Product);

What happens during updates ?

Types of updates:
•  In Purchase: insert/update
•  In Product: delete/update

36

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE544 - Spring, 2013

What happens during updates ?

•  SQL has three policies for maintaining
referential integrity:

•  Reject violating modifications (default)
•  Cascade: after a delete/update do a

delete/update
•  Set-null set foreign-key field to NULL

CSE544 - Spring, 2013 37

Constraints on Attributes and
Tuples

CSE544 - Spring, 2013 38

CREATE TABLE Purchase (. . .
 store VARCHAR(30) NOT NULL, . . .)

CREATE TABLE Product (. . .
 price INT CHECK (price >0 and price < 999))

Attribute level constraints:

Tuple level constraints:

. . . CHECK (price * quantity < 10000) . . .

CSE544 - Spring, 2013 39

CREATE TABLE Purchase (
 prodName CHAR(30)
 CHECK (prodName IN

 SELECT Product.name
 FROM Product),
 date DATETIME NOT NULL)

What
is the difference from

Foreign-Key ?

General Assertions

CSE544 - Spring, 2013 40

CREATE ASSERTION myAssert CHECK
 NOT EXISTS(

 SELECT Product.name
 FROM Product, Purchase
 WHERE Product.name = Purchase.prodName
 GROUP BY Product.name
 HAVING count(*) > 200)

Comments on Constraints

•  Can give them names, and alter later

•  We need to understand exactly when they
are checked

•  We need to understand exactly what
actions are taken if they fail

CSE544 - Spring, 2013 41

