
CSE 544
Data Models

Lecture #3

CSE544 - Spring, 2013 1

Announcements

•  Project
– Form groups by Friday
– Start thinking about a topic (see new additions

to the topic list)
•  Next paper review: due on Monday
•  Homework 1: due the following Monday
•  Makeup lecture:

– Tomorrow (Friday), 11am, CSE 403

2

CSE544 - Spring, 2013

Data Models

•  M. Stonebraker and J. Hellerstein. What
Goes Around Comes Around. In
"Readings in Database Systems" (aka the
Red Book). 4th ed.

3

“Data Model”

•  Apps need to model real-world data
–  Typically includes entities and relationships between

them
–  Entities: e.g. tudents, courses, products, clients
–  Relationships: e.g. course registrations, product

purchases

•  Data model enables a user to define the data using
high-level constructs without worrying about many
low-level details of how data will be stored on disk

CSE544 - Spring, 2013 4

CSE544 - Spring, 2013

Levels of Abstraction

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

schema seen
by apps

5

Classical picture.
Remember it !

CSE544 - Spring, 2013

Outline
•  Different types of data

•  Early data models
–  IMS
– CODASYL

•  Relational model

•  Other data models: E/R Diagrams, XML

6

CSE544 - Spring, 2013

Different Types of Data

•  Structured data
– What is this ? Examples ?

•  Semistructured data
– What is this ?
– Examples ?

•  Unstructured data
– What is this ? Examples ?

7

CSE544 - Spring, 2013

Different Types of Data

•  Structured data
–  All data conforms to a schema. Ex: business data

•  Semistructured data
–  Some structure in the data but implicit and irregular
–  Ex: resume, ads

•  Unstructured data
–  No structure in data. Ex: text, sound, video, images

•  Our focus: structured data & relational DBMSs

8

CSE544 - Spring, 2013

Early Proposal 1: IMS

•  What is it ?

9

CSE544 - Spring, 2013

Early Proposal 1: IMS

•  Hierarchical data model

•  Record
–  Type: collection of named fields with data types (+)
–  Instance: must match type definition (+)
–  Each instance must have a key (+)
–  Record types must be arranged in a tree (-)

•  IMS database is collection of instances of record
types organized in a tree

10

CSE544 - Spring, 2013

 IMS Example

•  See Figure 2 in paper “What goes around
comes around”

11

CSE544 - Spring, 2013

Data Manipulation Language: DL/1

•  How does a programmer retrieve data in IMS ?

12

CSE544 - Spring, 2013

Data Manipulation Language: DL/1

•  Each record has a hierarchical sequence key (HSK)
–  Records are totally ordered: depth-first and left-to-right

•  HSK defines semantics of commands:
–  get_next
–  get_next_within_parent

•  DL/1 is a record-at-a-time language
–  Programmer constructs an algorithm for solving the query
–  Programmer must worry about query optimization

13

CSE544 - Spring, 2013

Data storage

•  How is the data physically stored in IMS ?

14

CSE544 - Spring, 2013

Data storage
•  Root records

–  Stored sequentially (sorted on key)
–  Indexed in a B-tree using the key of the record
–  Hashed using the key of the record

•  Dependent records
–  Physically sequential
–  Various forms of pointers

•  Selected organizations restrict DL/1 commands
–  No updates allowed with sequential organization
–  No “get-next” for hashed organization

15

CSE544 - Spring, 2013

Data Independence

•  What is it ?

16

CSE544 - Spring, 2013

Data Independence
•  Physical data independence: Applications are insulated

from changes in physical storage details

•  Logical data independence: Applications are insulated
from changes to logical structure of the data

•  Why are these properties important?
–  Reduce program maintenance as
–  Logical database design changes over time
–  Physical database design tuned for performance

17

CSE544 - Spring, 2013

IMS Limitations
•  Tree-structured data model

–  Redundant data, existence depends on parent, artificial structure

•  Record-at-a-time user interface
–  User must specify algorithm to access data

•  Very limited physical independence
–  Phys. organization limits possible operations
–  Application programs break if organization changes

•  Provides some logical independence
–  DL/1 program runs on logical database
–  Difficult to achieve good logical data independence with a tree model

18

CSE544 - Spring, 2013

Early Proposal 2: CODASYL

• What is it ?

19

CSE544 - Spring, 2013

Early Proposal 2: CODASYL
•  Networked data model

•  Primitives are also record types with keys (+)
•  Network model is more flexible than hierarchy(+)

–  Ex: no existence dependence
•  Record types are organized into network (-)

–  A record can have multiple parents
–  Arcs between records are named
–  At least one entry point to the network

•  Record-at-a-time data manipulation language (-)

20

CSE544 - Spring, 2013

CODASYL Example
•  See Figure 5 in paper “What goes around comes around”

21

CSE544 - Spring, 2013

CODASYL Limitations
•  No physical data independence

–  Application programs break if organization changes

•  No logical data independence
–  Application programs break if organization changes

•  Very complex
•  Programs must “navigate the hyperspace”
•  Load and recover as one gigantic object

22

CSE544 - Spring, 2013

Relational Model Overview

•  Proposed by Ted Codd in 1970

•  Motivation: better logical and physical
data independence

23

Relational Model Overview

•  Defines logical schema only
– No physical schema

•  Set-at-a-time query language

24

CSE544 - Spring, 2013

Physical Independence
•  Definition: Applications are insulated from

changes in physical storage details

•  Early models (IMS and CODASYL): No

•  Relational model: Yes
– Yes through set-at-a-time language: algebra or

calculus
– No specification of what storage looks like
– Administrator can optimize physical layout

25

CSE544 - Spring, 2013

Logical Independence
•  Definition: Applications are insulated from

changes to logical structure of the data

•  Early models
–  IMS: some logical independence
– CODASYL: no logical independence

•  Relational model
– Yes through views

26

Great Debate
•  Pro relational

–  What where the arguments ?

•  Against relational
–  What where the arguments ?

•  How was it settled ?

CSE544 - Spring, 2013 27

Great Debate
•  Pro relational

–  CODASYL is too complex
–  CODASYL does not provide sufficient data independence
–  Record-at-a-time languages are too hard to optimize
–  Trees/networks not flexible enough to represent common cases

•  Against relational
–  COBOL programmers cannot understand relational languages
–  Impossible to represent the relational model efficiently
–  CODASYL can represent tables

•  Ultimately settled by the market place

CSE544 - Spring, 2013 28

Other Data Models
•  Entity-Relationship: 1970’s

–  Successful in logical database design (you’ll use it in hw1)
•  Extended Relational: 1980’s
•  Semantic: late 1970’s and 1980’s
•  Object-oriented: late 1980’s and early 1990’s

–  Address impedance mismatch: relational dbs çè OO
languages

–  Interesting but ultimately failed (several reasons, see
paper)

•  Object-relational: late 1980’s and early 1990’s
–  User-defined types, ops, functions, and access methods

•  Semi-structured: late 1990’s to the present

CSE544 - Spring, 2013 29

E/R Diagrams

Used today in conceptual design
•  Define the overall structure of the

database; describe the entity sets, the
attributes, and the relationships

30

 E/R Diagrams

Person

Company

Product

buys

makes

employs

name
category price

address name ssn

stockprice

name

Multiplicity of E/R Relations

•  one-one:

•  many-one

•  many-many

1
2
3

a
b
c
d

1
2
3

a
b
c
d

1
2
3

a
b
c
d

CSE544 - Spring, 2013 32

address name ssn

Person

buys

makes

employs

Company

Product

name category

stockprice

name

price

What does
this say ?

Product

name category

price

isa isa

Educational Product Software Product

Age Group platforms

Subclasses

Subclasses to Relations

Product

name category

price

isa isa

Educational Product Software Product

Age Group platforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Name Age
Group

Gizmo todler

Toy retired

Product

Sw.Product

Ed.Product

Other ways to convert are possible

Semistructured Data and XML

•  Two independent developments:
•  Academia:

– Wanted a flexible data model
– Schema first
– E.g., make it easy for data integration

•  W3C standards committee
– Created XML as an alternative to HTML to

define content rather than presentation

36

37

XML Syntax

<bibliography>
 <book> <title> Foundations… </title>
 <author> Abiteboul </author>
 <author> Hull </author>
 <author> Vianu </author>
 <publisher> Addison Wesley </publisher>
 <year> 1995 </year>
 </book>
 …

</bibliography>

38

XML Terminology

•  Tags: book, title, author, …
•  Start tag: <book>, end tag: </book>

•  Elements: <book>…</book>,<author>…</author>

•  Elements are nested

•  Empty element: <red></red> abbrv. <red/>

•  An XML document: single root element

Well formed XML document
•  Has matching tags
•  A short header
•  And a root element

Well-Formed XML

CSE544 - Spring, 2013 39

<? xml version=“1.0” encoding=“utf-8” standalone=“yes” ?>
<SomeTag>

…
</SomeTag>

Parsing and processing XML Documents:
•  DOM = Document Object Model = main memory
•  SAX = Simple API for XML = event driven = we use it in HW1

40

More XML: Attributes

<book price = “55” currency = “USD”>
 <title> Foundations of Databases </title>
 <author> Abiteboul </author>
 …
 <year> 1995 </year>
</book>

CSE544 - Spring, 2013

41

Attributes v.s. Elements

<book price = “55” currency = “USD”>
 <title> Foundations of DBs </title>
 <author> Abiteboul </author>
 …
 <year> 1995 </year>
</book>

Attributes are alternative ways to represent data

<book>
 <title> Foundations of DBs </title>
 <author> Abiteboul </author>
 …
 <year> 1995 </year>
 <price> 55 </price>
 <currency> USD </currency>
</book>

CSE544 - Spring, 2013

42

Comparison

Elements Attributes

Ordered Unordered

May be repeated Must be unique

May be nested Must be atomic

CSE544 - Spring, 2013

43

XML Semantics: a Tree !
DOM = Document Object Model

<data>
 <person id=“o555” >
 <name> Mary </name>
 <address>
 <street>Maple</street>
 <no> 345 </no>
 <city> Seattle </city>
 </address>
 </person>
 <person>
 <name> John </name>
 <address>Thailand
 </address>
 <phone>23456</phone>
 </person>
</data>

data

Mary

person

person

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

id

o555

Element
node

Text
node

Attribute
node

Order matters !!!

44

XML Data

•  XML is self-describing
•  Schema elements become part of the data

– Relational schema: person(name,phone)
–  In XML <person>, <name>, <phone> are part

of the data, and are repeated many times
•  Consequence: XML is much more flexible
•  XML = semistructured data

CSE544 - Spring, 2013

45

Mapping Relational Data to XML Data

<person>
<row> <name>John</name>
 <phone> 3634</phone></row>
 <row> <name>Sue</name>
 <phone> 6343</phone></row>
 <row> <name>Dick</name>
 <phone> 6363</phone></row>

</person>

row row row

name name name phone phone phone

“John” 3634 “Sue” “Dick” 6343 6363

Person

XML: person

Name Phone
John 3634
Sue 6343
Dick 6363

The canonical mapping:

CSE544 - Spring, 2013

46

Mapping Relational Data to XML Data

<people>
 <person>
 <name> John </name>
 <phone> 3634 </phone>
 <order> <date> 2002 </date>
 <product> Gizmo </product>
 </order>
 <order> <date> 2004 </date>
 <product> Gadget </product>
 </order>
 </person>
 <person>
 <name> Sue </name>
 <phone> 6343 </phone>
 <order> <date> 2004 </date>
 <product> Gadget </product>
 </order>
 </person>
</people>

Person

Name Phone
John 3634
Sue 6343

Application specific mapping

Orders

PersonName Date Product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

XML

47

XML=Semi-structured Data (1/3)

•  Missing attributes:

•  Could represent in
a table with nulls

<person> <name> John</name>
 <phone>1234</phone>
 </person>

<person> <name>Joe</name>
</person>

no phone !

name phone
John 1234
Joe -

CSE544 - Spring, 2013

48

XML=Semi-structured Data (2/3)

•  Repeated attributes

•  Impossible in tables:

<person> <name> Mary</name>
 <phone>2345</phone>
 <phone>3456</phone>
</person>

name phone
Mary 2345 3456 ???

Two phones !

CSE544 - Spring, 2013

49

XML=Semi-structured Data (3/3)

•  Attributes with different types in different objects

•  Nested collections
•  Heterogeneous collections:

–  <db> contains both <book>s and <publisher>s

<person> <name> <first> John </first>
 <last> Smith </last>
 </name>
 <phone>1234</phone>
</person>

Structured
name !

CSE544 - Spring, 2013

CSE544 - Spring, 2013

Summary
•  Data independence is desirable

–  Both physical and logical
–  Early data models provided very limited data

independence
–  Relational model facilitates data independence

•  Set-at-a-time languages facilitate phys. indep. [more next
lecture]

•  Simple data models facilitate logical indep. [more next lecture]
•  Flat models are also simpler, more flexible
•  User should specify what they want not how to get it

–  Query optimizer does better job than human

•  New data model proposals must
–  Solve a “major pain” or provide significant performance

gains

50

