
Principles of Database Systems
CSE 544

Lecture #2
SQL – The Complete Story

1 CSE544 - Spring, 2013

Announcements
•  Paper assignment

–  Review was due last night
–  Discussion on Thursday

•  We need to schedule a makeup lecture
–  Doodle: http://doodle.com/avg2rngq8zkwdek9
–  Please submit preferences by Wednesday night

•  Find partners (0 or more) for the project
–  Project groups due by Friday, 4/12 (email)
–  You don’t need to choose a project yet; more suggestions will continue

to be posted

•  Start working on Homework 1 now!
–  Due Monday, 4/22/2013

CSE544 - Spring, 2013 2

Outline
•  Today: crash course in SQL DML

–  Data Manipulation Language
–  SELECT-FROM-WHERE-GROUPBY
–  Also: NULLs, nested queries, lots of tricks
–  Study independently: INSERT/DELETE/MODIFY

•  Study independently SQL DDL
–  Data Definition Language
–  CREATE TABLE, DROP TABLE, CREATE INDEX,

CLUSTER, ALTER TABLE, …
–  E.g. google for the postgres manual, or type this in psql:

\h create  
\h create table  
\h cluster  
…"

•  Practice the examples on the slides by running them on postgres
•  Study independently whatever we don’t have time to cover today

CSE544 - Spring, 2013 3

4

Selections in SQL

SELECT *
FROM Product
WHERE category=‘Gadgets’

CSE544 - Spring, 2013

SELECT *
FROM Product
WHERE category > ‘Gadgets’

SELECT *
FROM Product
WHERE category LIKE ‘Ga%’

SELECT *
FROM Product
WHERE category LIKE ‘%dg%’

Product (PName, price, category, manufacturer)

5

Projections (and Selections) in SQL

SELECT pname
FROM Product
WHERE category=‘Gadgets’

CSE544 - Spring, 2013

SELECT category
FROM Product

Product (PName, price, category, manufacturer)

SELECT DISTINCT category
FROM Product

Need DISTINCT
(why?)

6

“DISTINCT”, “ORDER BY”, “LIMIT”

SELECT DISTINCT category
FROM Product

CSE544 - Spring, 2013

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname
LIMIT 20

Keys and Foreign Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Key

Foreign
key

8

Joins

SELECT x.PName, x.Price
FROM Product x, Company y
WHERE x.Manufacturer=y.CName
 AND y.Country=‘Japan’
 AND x.Price <= 200

CSE544 - Spring, 2013

Find all products under $200 manufactured in Japan;

Product (PName, Price, Category, Manufacturer)
Company (CName, stockPrice, Country)

9

Semantics of SQL Queries
SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer ∪ {(a1,…,ak)}
return Answer

CSE544 - Spring, 2013

Subqueries

•  A subquery or a nested query is another
SQL query nested inside a larger query

•  A subquery may occur in:
SELECT
FROM
WHERE

Avoid writing nested queries when possible;
keep in mind that sometimes it’s impossible

 Examples at the end of the lecture

Examples on following slides

Running Example

CSE544 - Spring, 2013 11

Run this in postgres, then try the examples on
the following slides.

create table company(cname text primary key, city text);"
create table product(pname text primary key, price int, company text references company);"
"
insert into company values('abc', 'seattle');"
insert into company values('cde', 'seattle');"
insert into company values('fgh', 'portland');"
insert into company values('klm', 'portland');"
"
insert into product values('p1', 10, 'abc');"
insert into product values('p2', 200, 'abc');"
insert into product values('p3', 10, 'cde');"
insert into product values('p4', 20, 'cde');"
"
insert into product values('p5', 10, 'fgh');"
insert into product values('p6', 200, 'fgh');"
insert into product values('p7', 10, 'klm');"
insert into product values('p8', 220, 'klm');"

Product (pname, price, company)
Company(cname, city)

Existential Quantifiers

CSE544 - Spring, 2013 12

Find cities that have a company
 that manufacture some product with price < 100

Product (pname, price, company)
Company(cname, city)

Existential Quantifiers

CSE544 - Spring, 2013 13

Existential quantifiers are easy! J

Find cities that have a company
 that manufacture some product with price < 100

Product (pname, price, company)
Company(cname, city)

SELECT DISTINCT c.city
FROM Company c, Product p
WHERE c.cname = p.company
 and p.price < 100

Universal Quantifiers

CSE544 - Spring, 2013 14

Universal quantifiers are hard ! L

Find cities that have a company
 such that all its products have price < 100

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

CSE544 - Spring, 2013 15

Relational Calculus (a.k.a. First Order Logic) – next week

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100)

Product (pname, price, company)
Company(cname, city)

Find cities that have a company
 such that all its products have price < 100

Universal Quantifiers
De Morgan’s Laws:

¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
¬∀x. P(x) = ∃x. ¬ P(x)
¬∃x. P(x) = ∀x. ¬ P(x)

Product (pname, price, company)
Company(cname, city)

¬(A à B) = A ∧ ¬B

Universal Quantifiers

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100)

De Morgan’s Laws:
¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
¬∀x. P(x) = ∃x. ¬ P(x)
¬∃x. P(x) = ∀x. ¬ P(x)

q(y) = ∃x. Company(x,y) ∧¬(∃z∃p. Product(z,p,x) ∧ p ≥ 100)

¬(A à B) = A ∧ ¬B

=

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100)

De Morgan’s Laws:
¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
¬∀x. P(x) = ∃x. ¬ P(x)
¬∃x. P(x) = ∀x. ¬ P(x)

q(y) = ∃x. Company(x,y) ∧¬(∃z∃p. Product(z,p,x) ∧ p ≥ 100)

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x)

=

=

Product (pname, price, company)
Company(cname, city)

¬(A à B) = A ∧ ¬B

Universal Quantifiers: NOT IN

CSE544 - Spring, 2013 19

SELECT DISTINCT c.city
FROM Company c
WHERE c.cname NOT IN (SELECT p.company
 FROM Product p
 WHERE p.price >= 100)

Product (pname, price, company)
Company(cname, city)

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x)

Universal Quantifiers: NOT EXISTS

SELECT DISTINCT c.city
FROM Company c
WHERE NOT EXISTS (SELECT p.company
 FROM Product p
 WHERE c.cname = p.company AND p.price >= 100)

Correlated
subquery!

Product (pname, price, company)
Company(cname, city)

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x)

Universal Quantifiers: ALL

CSE544 - Spring, 2013 21

SELECT DISTINCT c.city
FROM Company c
WHERE 100 > ALL (SELECT p.price
 FROM Product p
 WHERE p.company = c.cname)

Product (pname, price, company)
Company(cname, city)

22

Question for Database Fans
and their Friends

•  Can we unnest this query ?

Find cities that have a company
 such that all its products have price < 100

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any existing tuples

Product (pname, price, cid)
Company(cid, cname, city)

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any existing tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

Product (pname, price, cid)
Company(cid, cname, city)

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c003

Camera 149.99 c001

iPad 499.99 c001

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

Product Company
A B

149.99 Lodtz

19.99 Lyon

cid cname city

c001 Sunworks Bonn

c002 DB Inc. Lyon

c003 Builder Lodtz

A B

149.99 Lyon

19.99 Lyon

19.99 Bonn

149.99 Bonn

Is the mystery
query monotone?

Product Company

Q

Q

Monotone Queries

25

SELECT a1, a2, …, ak
FROM R1 as x1, R2 as x2, …, Rn as xn
WHERE Conditions

for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 output (a1,…,ak)

Theorem: If Q is a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

Proof. We use the nested loop semantics:
if we insert a tuple in a relation Ri,
then xi will take all the old values,
in addition to the new value.

Monotone Queries

26

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product (pname, price, cid)
Company(cid, cname, city)

Find cities that have a company
 such that all its products have price < 100

This query is not monotone:

Consequence: we cannot write it as a
SELECT-FROM-WHERE query without nested subqueries

NULLS in SQL
•  Whenever we don’t have a value, we can put a NULL

•  Can mean many things:
–  Value does not exists
–  Value exists but is unknown
–  Value not applicable
–  Etc.

•  The schema specifies for each attribute if can be null
(nullable attribute) or not

CSE544 - Spring, 2013 27

Null Values

Rules for computing with NULLs
•  If x is NULL then x+7 is still NULL
•  If x is 2 then x>5 is FALSE
•  If x is NULL then x>5 is UNKNOWN
•  If x is 10 then x>5 is TRUE

CSE544 - Spring, 2013 28

Person(name, age, height, weight)

INSERT INTO Person VALUES(‘Joe’,20,NULL,200)

height unknown

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

Null Values

•  C1 AND C2 = min(C1, C2)
•  C1 OR C2 = max(C1, C2)
•  NOT C1 = 1 – C1

Rule in SQL: result includes only tuples that yield TRUE

CSE544 - Spring, 2013 29

SELECT *
FROM Person
WHERE (age < 25) AND
 (height > 6 OR weight > 190)

E.g.
age=20
height=NULL
weight=200

Null Values

Unexpected behavior:

Some Persons not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

CSE544 - Spring, 2013 30

Null Values

Can test for NULL explicitly:
x IS NULL
x IS NOT NULL

Now all Person are included

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

CSE544 - Spring, 2013 31

Detour into DB Research
Imielinski&Libski, Incomplete Databases, 1986
•  Database = is in one of several states, or possible worlds

–  Number of possible worlds is exponential in size of db
•  Query semantics = return the certain answers

Very influential paper:
•  Incomplete DBs used in probabilistic databases, what-if

scenarios, data cleaning, data exchange

In SQL, NULLs are the simplest form of incomplete database:
•  Database = a NULL takes independently any possible value
•  Query semantics = not exactly certain answers (why?)

CSE544 - Spring, 2013 32

Outerjoins

SELECT x.name, y.store
FROM Product x JOIN Purchase y ON
 x.name = y.prodName

SELECT x.name, y.store
FROM Product x, Purchase y
WHERE x.name = y.prodName

Same as:

But Products that never sold will be lost

An “inner join”:

CSE544 - Spring, 2013 33

Product(name, category)
Purchase(prodName, store)

Outerjoins

 SELECT x.name, y.store
 FROM Product x LEFT OUTER JOIN Purchase y ON
 x.name = y.prodName

If we want the never-sold products, need a “left outer join”:

CSE544 - Spring, 2013 34

Product(name, category)
Purchase(prodName, store)

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

Product(name, category)
Purchase(prodName, store)

Outer Joins
•  Left outer join:

–  Include the left tuple even if there’s no match

•  Right outer join:
–  Include the right tuple even if there’s no match

•  Full outer join:
–  Include both left and right tuples even if there’s no

match

CSE544 - Spring, 2013 36

Aggregations

Five basic aggregate operations in SQL
•  count
•  sum
•  avg
•  max
•  min

CSE544 - Spring, 2013 37

COUNT applies to duplicates, unless otherwise stated:

SELECT count(product)
FROM Purchase
WHERE price>3.99

Same as count(*)

We probably want:
SELECT count(DISTINCT product)
FROM Purchase
WHERE price>3.99

Counting Duplicates

CSE544 - Spring, 2013 38

Except if some product is NULL

Purchase(product, price, quantity)

Grouping and Aggregation
Purchase(product, price, quantity)

SELECT product, sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

What is the answer?

Find total quantities for all sales over $1, by product.

CSE544 - Spring, 2013 39

product price quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: group attrs and aggregates.

CSE544 - Spring, 2013 40

1&2. FROM-WHERE-GROUPBY

CSE544 - Spring, 2013 41

SELECT product, sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

3. SELECT:
Each Group à One Answer

SELECT product, sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

42

Ordering Results

SELECT product, sum(quantity) as TotalSales
FROM purchase
GROUP BY product
ORDER BY TotalSales DESC
LIMIT 20

SELECT product, sum(quantity) as TotalSales
FROM purchase
GROUP BY product
ORDER BY sum(quantity) DESC
LIMIT 20

Equivalent, but not all systems accept both syntax forms

HAVING Clause

SELECT product, sum(quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING count(*) > 30

Same query as earlier, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

WHERE vs HAVING

•  WHERE condition: applied to individual rows
– Determine which rows contributed to the aggregate
– All attributes are allowed
– No aggregates functions allowed

•  HAVING condition: applied to the entire group
– Entire group is returned, or not al all
– Only group attributes allowed
– Aggregate functions allowed

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

 and on attributes a1,…,ak

Why ?

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE544 - Spring, 2013 46

Semantics of SQL With Group-By

Evaluation steps:
1.  Evaluate FROM-WHERE using Nested Loop Semantics
2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)
4.  Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

CSE544 - Spring, 2013 47

Empty Groups Running Example

CSE544 - Spring, 2013 48

For the next slides, run this in postgres:

create table Purchase(pid int primary key, product text, price float, quantity int, month varchar(15));"
create table Product (pid int primary key, pname text, manufacturer text);"
"
insert into Purchase values(01,'bagel',1.99,20,'september');"
insert into Purchase values(02,'bagel',2.50,12,'december');"
insert into Purchase values(03,'banana',0.99,9,'september');"
insert into Purchase values(04,'banana',1.59,9,'february');"
insert into Purchase values(05,'gizmo',99.99,5,'february');"
insert into Purchase values(06,'gizmo',99.99,3,'march');"
insert into Purchase values(07,'gizmo',49.99,3,'april');"
insert into Purchase values(08,'gadget',89.99,3,'january');"
insert into Purchase values(09,'gadget',89.99,3,'february');"
insert into Purchase values(10,'gadget',49.99,3,'march');"
insert into Purchase values(11,'orange',null,5,'may');"
"
insert into product values(1,'bagel','Sunshine Co.');"
insert into product values(2,'banana','BusyHands');"
insert into product values(3,'gizmo','GizmoWorks');"
insert into product values(4,'gadget','BusyHands');"
insert into product values(5,'powerGizmo','PowerWorks');"

Empty Group Problem

CSE544 - Spring, 2013 49

SELECT x.manufacturer, count(*)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

Purchase(product, price, quantity)
Product(pname, manufacturer)

Query: for each manufacturer,
compute the total number of purchases
for its products

Problem: a group can never be empty!
In particular, count(*) is never 0

Solution 1: Outer Join

CSE544 - Spring, 2013 50

SELECT x.manufacturer, count(y.product)
FROM Product x LEFT OUTER JOIN Purchase y
ON x.pname = y.product
GROUP BY x.manufacturer

Purchase(product, price, quantity)
Product(pname, manufacturer)

Query: for each manufacturer,
compute the total number of purchases
for its products

Use a LEFT OUTER JOIN.
Make sure you count an attribute that may be NULL

Solution 2: Nested Query

CSE544 - Spring, 2013 51

SELECT DISTINCT x.manufacturer,
 (SELECT count(*)
 FROM Product z, Purchase y
 WHERE x.manufacturer = z.manufacturer
 and z.pname = y.product)
FROM Product x

Purchase(product, price, quantity)
Product(pname, manufacturer)

Query: for each manufacturer,
compute the total number of purchases
for its products

Use a subquery in the SELECT clause Notice second
use of Product.

Why?

Finding Witnesses

CSE544 - Spring, 2013 52

Query: for each manufacturer, find its most expensive product

Purchase(product, price, quantity)
Product(pname, manufacturer)

Finding the maximum price is easy:

Finding Witnesses

CSE544 - Spring, 2013 53

Query: for each manufacturer, find its most expensive product

Purchase(product, price, quantity)
Product(pname, manufacturer)

Finding the maximum price is easy:

SELECT x.manufacturer, max(y.price)
FROM Product x, Purchase y
WHERE x.pname = y.product
GROUP BY x.manufacturer

…but we need to find the product that sold at that price!

Finding Witnesses

CSE544 - Spring, 2013 54

Query: for each manufacturer, find its most expensive product

Purchase(product, price, quantity)
Product(pname, manufacturer)

Use a subquery in the FROM clause:

SELECT DISTINCT u.manufacturer, u.pname
FROM Product u, Purchase v,
 (SELECT x.manufacturer, max(y.price) as mprice
 FROM Product x, Purchase y
 WHERE x.pname = y.product
 GROUP BY x.manufacturer) z
WHERE u.pname = v.product
 and u.manufacturer = z.manufacturer
 and v.price = z.mprice

Finding Witnesses

CSE544 - Spring, 2013 55

Query: for each manufacturer, find its most expensive product

Purchase(product, price, quantity)
Product(pname, manufacturer)

Using WITH :

WITH Temp as (SELECT x.manufacturer, max(y.price) as mprice
 FROM Product x, Purchase y
 WHERE x.pname = y.product
 GROUP BY x.manufacturer)
SELECT DISTINCT u.manufacturer, u.pname
FROM Product u, Purchase v, Temp z
WHERE u.pname = v.product
 and u.manufacturer = z.manufacturer
 and v.price = z.mprice

