Principles of Database Systems
CSE 544

Lecture #1
Introduction and SQL

CSE544 - Spring, 2013

Staff

e |nstructor: Dan Suciu

— CSE 662, suciu@cs.washington.edu
— Office hour: Wednesdays, 1:30-2:20, CSE 662

e TA:
— Kevin Kar Wai Lai,kevinlai@cs.washington.edu

— Office hour: Tuesday, 1:30-2:20, CSE 218

CSE544 - Spring, 2013 2

Class Format

Lectures Tuesday-Thursday, 12-1:30pm
4 Homework Assignments
Reading assignments

A mini-research project

Announcements

This week Is special
 First lecture on Monday

* No lectures on:
— Tuesday, April 2
— Thursday, April 4

Textbook and Papers

o Official Textbook:

— Database Management Systems. 3" Ed., by
Ramakrishnan and Gehrke. McGraw-Hiill.

— Book available on the Kindle too o \!"”“\
— Use it to read background material s
— You may borrow it, no need to buy /‘gil}
* Other Books g)
— Foundations of Databases, by Abiteboul, Hull, v
Vianu
— Finite Model Theory, by Libkin T

Finite Model Theory

CSE544 - Spring, 2013

Textbook and Papers

* Nine papers to read and review
— Mix of old seminal papers and new papers
— Papers available online on class website
— Most papers available on Kindle

— Some papers come from the “red book” [no
need to get it]

* Plus a couple of optional readings

CSE544 - Spring, 2013

Resources

* Web page:
http://www.cs.washington.edu/education/courses/
cse544/13sp/

— Lectures

— Reading assignments

— Homework assignments
— Projects

* Mailing list:

— Announcements, group discussions

CSE544 - Spring, 2013 7

Content of the Class

Relational Data Model

— SQL, Data Models, Relational calculus,
Constraints+Views,

Systems

— Storage, query execution, query optimization,
database statistics, parallel databases

Theory

— Query complexity, query containment, datalog,
bounded tree-width

Miscellaneous
— Transactions, provenance, data privacy

Evaluation

» Assignments 50%:
— Four assignments: programming + theory

* Project 30%: Groups of 1-3
— Small research or engineering. Start thinking now!

* Paper reviews, class participation 20%:
— Individual
— Due by the evening before the lecture
— Reading questions are posted on class website

Assignments 50%

HW1: Data Analysis Pipeline programming
HW2: Database Systems programming
HWa3: Parallel Data Analytics programming
HW4: Database Theory theory

We will accept late assignments with valid excuse

Assignments 50%

« HW1: Data Analysis Pipeline — posted!
— Design schema: E/R diagram, tables
— Install postres, import the DBLP data
— Transform DBLP data to your schema — SQL
— Do data analysis — SQL, SQL, SQL, ...
— Draw graphs — Excel

 Due: Monday, April 22, 11:59pm

Teams: 1-3 students

Project 30%

Topics: choose one of:

— Alist of mini-research topics (see Website, check updates)
— Come up with your own (related to your own research)

Deliverables (see Website for dates)

M1: teams April 12
M2: project proposal April 26
M3: major milestone May 17

M4: presentation on Friday June 07, CSE 405

M5: final report

June 07

Amount of work may vary widely between groups

CSE544 - Spring, 2013 12

Paper Reviews and Class
Participation 20%

Reviews: 1/2 page in length
— Summary of the main points of the paper
— Critical discussion of the paper

Review questions

— For some papers, we will post reading questions to help you figure out what to focus
on when reading the paper

— Please address these questions in your reviews

Discussions
— Ask questions, raise issues, think critically
— Learn to express your opinion
— Respect other people’s opinions

Grading: credit/no-credit
— You can skip one review without penalty
— MUST submit review BEFORE lecture
— Individual assignments (but feel free to discuss paper with others)

Goals of the Class

This is a CSE graduate level class !
* Using databases in research:
— Data analysis pipeline

— Expert use of database systems (Postgres) and of
novel data analysis tools (I\/IapReduce?

« Some (limited) exposure to database internals

* Using database concepts in research:

— Algorithms/techniques for massive data processing/
analysis (sequential and/or parallel)

— Theory of query complexity, datalog

« EXxposure to database research:
— Query processing, provenance, privacy, theory...

CSE544 - Spring, 2013

14

Background

You should have heard about most of:

 E/R diagrams * Query optimization (e.qg.
- Normal forms (1st, 3r) join reordering)

. SQL « Transactions

- Relational Algebra « PTIME, NP, LOGSPACE
+ Indexes, search trees * Logic: A, V,Vv, 3,7, &€
« Search in a binary tree * Reachability in a graph

We will cover these topics in class, but assume some background

Agenda for Today

* Brief overview of a traditional database
systems

« SQL

Databases

What is a database ?

Give examples of databases

CSE544 - Spring, 2013

17

Databases

What is a database ?
A collection of files storing related data

Give examples of databases

* Accounts database; payroll database;
UW'’s students database; Amazon’s

products database; airline reservation
database

Database Management System

What is a DBMS ?

Give examples of DBMS

Database Management System

What is a DBMS ?

» A big C program written by someone else that
allows us to manage efficiently a large
database and allows it to persist over long
periods of time

Give examples of DBMS

- DB2 (IBM), SQL Server (MS), Oracle,
Sybase

« MySQL, Postgres, ...

Market Shares

From 2006 Gartner report:

e IBM: 21% market with $3.2BN in sales
e Oracle: 47% market with $7.1BN in sales

« Microsoft: 17% market with $2.6BN in sales

An Example

The Internet Movie Database
http://www.imdb.com

* Entities:
Actors (1.5M), Movies (1.8M), Directors

* Relationships:
who played where, who directed what, ...

Note

* |In other classes at UW (344, 444, 544p):

— We use IMDB/sqlite and SQL Server for extensive
practice of SQL

* In 544:

— We will use DBLP/postgres, which is more hands-
on and more research’y

* |If you want to practice more SQL.:

— Let me know and | will arrange for you to have
access to the IMDB database and/or to SQL
Server.

CSE544 - Spring, 2013 23

Tables

Actor: Casts:
id fName |IName gender pid mid
195428 | Tom |Hanks |M 195428 337166

645947 |Amy |Hanks |F

Movie:

id Name year

337166 | Toy Story |1995

SQL

SELECT *
FROM Actor
j SELECT count(*)
SELECT * FROM Actor
FROM Actor
LIMIT 50 SELECT *

FROM Actor
WHERE IName = ‘Hanks’

CSE544 - Spring, 2013 25

SQL

SELECT *
FROM Actor x, Casts y, Movie z
WHERE x.Iname="Hanks'

and x.id = y.pid

and y.mid=z.id

and z.year=1995

This query has selections and joins

1.8M actors, 11M casts, 1.5M movies:
How can it b,% so fast ?

How Can We Evaluate the Query ?

Actor: Casts: Movie:
id |fName |IName |gender pid mid id Name |year
Hanks 1995
1.8M actors 11M casts 1.5M movies
Plan1:[Iinclass]

Plan2:[inclass |

Evaluating Tom Hanks

Classical query execution Classical query optimizations: Classical statistics

* Index-based selection « Pushing selections down « Table cardinalities

« Hash-join « Join reorder « # distinct values

« Merge-join - histograms

* Index-join \ / \
OlName="Hanks’ year-1995 OlName="Hanks’ year-1995

Actor Casts Movie Actor Casts Movie

Terminology for Query Workloads

* OLTP (OnLine-Transaction-Processing)
— Many updates: transactions are critical
— Many “point queries”: access record by key
— Commercial applications

* Decision-Support
— Many aggregate/group-by queries.
— Sometimes called data warehouse
— Data analytics

CSE544 - Spring, 2013

29

Physical Data Independence

Physical data independence:

« Applications are isolated from changes to the physical
organization:

— Adding or dropping an index

—_ ACtO.r,MOVie** V.S. Al | M1 [M2 | M3 | A2 | M4 [M5 | A3 | M6 M7 | ..
I\/Iowe,Actor** V.S. M |A1 [A2 | M2 [A3 | A4 [M3 | A5 [A6 | A7

(Movie*, Casts™, Actor”)

A1 A2 C1 Cc2 M1 M2

Translating WHAT to HOW:

« SQL = WHAT we want = declarative

« Relational algebra = HOW to get it = algorithm
« RDBMS are about translating WHAT to HOW

Transactions

« Recovery + Concurrency control
 ACID =
— Atomicity (= recovery)

— Consistency
— Isolation (= concurrency control)

— Durability

* Transactions are critical in business apps, but less
Important in data analytics and research in general

— In 544 we discuss them only towards the end
— In 344, 444, 544p we cover them early and extensively

Client/Server Architecture

* One server: stores the database
— called DBMS or RDBMS

— Usually a beefed-up system:
» Can be cluster of servers, or parallel DBMS
* In 544 you will install the postgres server on your own computer

« Many clients: run apps and connect to DBMS
— Interactive: psql (postgres), Management Studio (SQL Server)
— Java/C++/C#/... applications
— Connection protocol: ODBC/JDBC

« Exceptions exists; e.g. SQL Lite

SQL

* Will discuss SQL rather quickly in 1.5
lectures

» Resources for learning SQL.:

— The slides In this lecture and in CSEP544
— The textbook

— Postgres: type \h or \?

 Start working on HW1 !

SQL

» Data Manipulation Language (DML)
— Querying: SELECT-FROM-WHERE
— Modifying: INSERT/DELETE/UPDATE

» Data Definition Language (DDL)
— CREATE/ALTER/DROP
— Constraints: will discuss these in class

Table name

Tables iIn S

Product Key

Attribute names

PName / Price Category | Manufacturer

Gizmo $19.99 Gadgets | GizmoWorks
Powergizmo $29.99 Gadgets | GizmoWorks
SingleTouch | $149.99 | Photography Canon
MuAItiTouch $203.99 Household Hitachi

Tuples or rows

Creating Tables, Importing Data

CREATE TABLE Product (
pname varchar(10) primary key,
price float,
category char(20),
manufacturer text

INSERT INTO Product VALUES
INSERT INTO Product VALUES
INSERT INTO Product VALUES
INSERT INTO Product VALUES

‘Gizmo’, 19.99, ‘Gadgets’,’GizmoWorks’);
‘Powergizmo’,29.99,’Gadgets’,’GizmoWorks’);
‘SingleTouch’,149.99,'Photography’,’Canon’);
‘MultiTouch’, 203.99,'Household’,’Hitachi’);

P P P~ P~

Better: bulk insert (but database specific!)

COPY Product FROM ‘/my/directory/datafile.txt’; -- postgres only!

Other Ways to Bulk Insert

CREATE TABLE Product (INSERT into Product (
pname varchar(10) primary key, SELECT ...
price float, FROM ...
category char(20),) WHERE...

manufacturer text

);

Quick method: create AND insert

CREATE TABLE Product AS
SELECT ...
FROM ...
WHERE...

Data Types in SQL

« Atomic types:

— Characters: CHAR(20), VARCHAR(50)
— Numbers: INT, BIGINT, SMALLINT, FLOAT

— Others: MONEY, DATETIME, ...

— Note: an attribute cannot be another table!

» Record (aka tuple)
— Has atomic attributes

» Table (relation)
— A set of tuples

No nested tables! (Discussion next...)

38

Normal Forms

 First Normal Form

— All tables must be flat tables
— Why?

 Boyce Codd Normal Form
— The only functional dependencies are from a key
— What is a “functional dependency”™?
— Why?

e Third Normal Form

— The only functional dependencies are from keys, except ...
[boring technical condition here]

— Why?

CSE544 - Spring, 2013 39

Normal Forms

 First Normal Form
— All tables must be flat tables
— Why? Physical data independence!

 Boyce Codd Normal Form
— The only functional dependencies are from a key
— What is a “functional dependency”™?
— Why? Avoid data anomalies (redundancy, update, delete)

e Third Normal Form

— The only functional dependencies are from keys, except ...
[boring technical condition here]

— Why? Because that’'s how we can recover all FD'’s.

Your schema in HW1 should be in BCNF (easier than it sounds)

Simple Selection Queries in SQL

SELECT *
FROM Product
WHERE category="Gadgets’

SELECT *
FROM Product
WHERE category LIKE ‘Ga%’

SELECT *
FROM Product
WHERE category > ‘Gadgets’

SELECT *
FROM Product
WHERE category LIKE “%dg%’

“selection”

"‘DISTINCT", “"ORDER BY”, “"LIMIT”

SELECT DISTINCT category
FROM Product

SELECT pname, price, manufacturer
FROM Product

WHERE category="gizmo’ AND price > 50
ORDER BY price, pname

LIMIT 20

Keys and Foreign Keys

Company
_~~ CName StockPrice Country
K ey GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan
Product
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch | $149.99 | Photography Canon
MultiTouch $203.99 Household Hitachi

Foreign
key

Joins

Product (PName, Price, Category, Manufacturer)
Company (CName, stockPrice, Country)

Find all products under $200 manufactured in Japan;

SELECT x.PName, x.Price
FROM Product x, Company y
WHERE x.Manufacturer=y.CName
AND y.Country="Japan’
AND x.Price <= 200

CSE544 - Spring, 2013

44

Semantics of SQL Queries

SELECT a4, a,, ..., a,
FROM R;ASx,, R,AS Xx,, ..., R, AS X,
WHERE Conditions

Answer = {}
for x, in R, do
for x, in R, do

for x,in R, do
if Conditions
then Answer = Answer U {(a,,...,a,)}
return Answer

Subqueries

 Asubqueryis another SQL query nested inside
a larger query

 Also called nested queries

A subquery may occur in:
— SELECT
— FROM
— WHERE

Rule of thumb: avoid writing nested queries when possible;
keep in mind that sometimes it's impossible

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

Find cities that have a company
such that all its products have price < 100

Universal quantifiers are hard ! ®

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

Find cities that have a company
such that all its products have price < 100

Relational Calculus (a.k.a. First Order Logic) — next lecture

q(y)= I x. Company(x,y) A (Vz.Vp. Product(z,p,x) 2 p < 100)

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

De Morgan’s Laws:
"(AAB)=7AV B “(A=B)= AA B
“(AV B)="AA B

VX P(x) = 3x. 7 P(x)
73X P(x) = VX. 7 P(x)

g(y)= Ix. Company(x,y) A (Vz.Vp. Product(z,p,x) 2 p < 100)

q(y) = 3 x. Company(x,y) A~(3z3p. Product(z,p,x) A p = 100)

theOtherCompanies(x) = 3z 3 p. Product(z,p,x) A p= 100
g(y) = Ix. Company(x,y) A — theOtherCompanies(x)

Product (pname, price, company)

Company(cname C
Universal Quantifiers: NDf IN

theOtherCompanies(x) = 3z 3 p. Product(z,p,x) A p =100
g(y) = 3 x. Company(x,y) A - theOtherCompanies(x)

SELECT DISTINCT c.city
FROM Company c

WHERE c.cname NOT IN (SELECT p.company
FROM Product p
WHERE p.price >= 100)

Product (pname, price, company)
Compa cname city)

Universal Quantifiers: OT EXISTS

theOtherCompanies(x) = 3z 3 p. Product(z,p,x) A p =100
g(y) = 3 x. Company(x,y) A - theOtherCompanies(x)

SELECT DISTINCT c.city
FROM Company c
WHERE NOT EXISTS (SELECT p.company

WHERE c.cname = p.company AND p.price >= 100)

FROM Product p
Correlated
subquery!

Product (pname, price, company)
Company(cname C|tl)_

Universal Quantifiers: AL

SELECT DISTINCT c.city
FROM Company c

WHERE 100 > ALL (SELECT p.price
FROM Product p
WHERE p.company = c.cname)

CSE544 - Spring, 2013 52

A Taste of Theory

« Can we unnest the universal
quantifier query “?

—Can we write it as a simple
SELECT-FROM-WHERE query?

Monotone Queries
A query Q is if:

— Whenever we add tuples to one or more of the tables...
— ... the answer to the query cannot contain fewer tuples

Fact: all unnested queries are monotone
— Proof: using the “nested for loops” semantics

Fact: A query a universal quantifier is not monotone

Consequence: we cannot unnest a query with a universal
quantifier

Queries that must be nested

« Queries with universal quantifiers or with
negation

* The drinkers-bars-beers example next

* This is a famous example from textbook
on databases by Uliman

Rule of Thumb:

Non-monotone queries cannot be
unnested. In particular, queries with a
universal quantifier cannot be
unnested

