
Principles of Database Systems
CSE 544

Lecture #1
Introduction and SQL

1 CSE544 - Spring, 2013

Staff

•  Instructor: Dan Suciu
– CSE 662, suciu@cs.washington.edu
– Office hour: Wednesdays, 1:30-2:20, CSE 662

•  TA:
– Kevin Kar Wai Lai,kevinlai@cs.washington.edu
– Office hour: Tuesday, 1:30-2:20, CSE 218

CSE544 - Spring, 2013 2

Class Format
•  Lectures Tuesday-Thursday, 12-1:30pm

•  4 Homework Assignments

•  Reading assignments

•  A mini-research project

3 CSE544 - Spring, 2013

Announcements

This week is special
•  First lecture on Monday
•  No lectures on:

– Tuesday, April 2
– Thursday, April 4

CSE544 - Spring, 2013 4

Textbook and Papers
•  Official Textbook:

–  Database Management Systems. 3rd Ed., by
Ramakrishnan and Gehrke. McGraw-Hill.

–  Book available on the Kindle too
–  Use it to read background material
–  You may borrow it, no need to buy

•  Other Books
–  Foundations of Databases, by Abiteboul, Hull,

Vianu
–  Finite Model Theory, by Libkin

5 CSE544 - Spring, 2013

Textbook and Papers

•  Nine papers to read and review
– Mix of old seminal papers and new papers
– Papers available online on class website
– Most papers available on Kindle
– Some papers come from the “red book” [no

need to get it]

•  Plus a couple of optional readings

6 CSE544 - Spring, 2013

Resources

•  Web page:
http://www.cs.washington.edu/education/courses/
cse544/13sp/
–  Lectures
–  Reading assignments
–  Homework assignments
–  Projects

•  Mailing list:
– Announcements, group discussions

7 CSE544 - Spring, 2013

Content of the Class
•  Relational Data Model

– SQL, Data Models, Relational calculus,
Constraints+Views,

•  Systems
– Storage, query execution, query optimization,

database statistics, parallel databases
•  Theory

– Query complexity, query containment, datalog,
bounded tree-width

•  Miscellaneous
– Transactions, provenance, data privacy

CSE544 - Spring, 2013 8

Evaluation
•  Assignments 50%:

– Four assignments: programming + theory

•  Project 30%: Groups of 1-3
– Small research or engineering. Start thinking now!

•  Paper reviews, class participation 20%:
–  Individual
– Due by the evening before the lecture
– Reading questions are posted on class website

CSE544 - Spring, 2013 9

Assignments 50%

•  HW1: Data Analysis Pipeline programming
•  HW2: Database Systems programming
•  HW3: Parallel Data Analytics programming
•  HW4: Database Theory theory

10 CSE544 - Spring, 2013
We will accept late assignments with valid excuse

Assignments 50%

•  HW1: Data Analysis Pipeline – posted!
– Design schema: E/R diagram, tables
–  Install postres, import the DBLP data
– Transform DBLP data to your schema – SQL
– Do data analysis – SQL, SQL, SQL, …
– Draw graphs – Excel

•  Due: Monday, April 22, 11:59pm

11 CSE544 - Spring, 2013

Project 30%
•  Teams: 1-3 students

•  Topics: choose one of:
–  A list of mini-research topics (see Website, check updates)
–  Come up with your own (related to your own research)

•  Deliverables (see Website for dates)
–  M1: teams April 12
–  M2: project proposal April 26
–  M3: major milestone May 17
–  M4: presentation on Friday June 07, CSE 405
–  M5: final report June 07

•  Amount of work may vary widely between groups

CSE544 - Spring, 2013 12

Paper Reviews and Class
Participation 20%

•  Reviews: 1/2 page in length
–  Summary of the main points of the paper
–  Critical discussion of the paper

•  Review questions
–  For some papers, we will post reading questions to help you figure out what to focus

on when reading the paper
–  Please address these questions in your reviews

•  Discussions
–  Ask questions, raise issues, think critically
–  Learn to express your opinion
–  Respect other people’s opinions

•  Grading: credit/no-credit
–  You can skip one review without penalty
–  MUST submit review BEFORE lecture
–  Individual assignments (but feel free to discuss paper with others)

CSE544 - Spring, 2013 13

Goals of the Class
This is a CSE graduate level class !
•  Using databases in research:

–  Data analysis pipeline
–  Expert use of database systems (Postgres) and of

novel data analysis tools (MapReduce)
•  Some (limited) exposure to database internals
•  Using database concepts in research:

–  Algorithms/techniques for massive data processing/
analysis (sequential and/or parallel)

–  Theory of query complexity, datalog
•  Exposure to database research:

–  Query processing, provenance, privacy, theory…

CSE544 - Spring, 2013 14

Background

You should have heard about most of:
•  E/R diagrams
•  Normal forms (1st, 3rd)
•  SQL
•  Relational Algebra
•  Indexes, search trees
•  Search in a binary tree

•  Query optimization (e.g.
join reordering)

•  Transactions
•  PTIME, NP, LOGSPACE
•  Logic: ∧,∨,∀,∃,¬,∈
•  Reachability in a graph

CSE544 - Spring, 2013 15

We will cover these topics in class, but assume some background

Agenda for Today

•  Brief overview of a traditional database
systems

•  SQL

CSE544 - Spring, 2013 16

Databases

What is a database ?

Give examples of databases

17 CSE544 - Spring, 2013

Databases

What is a database ?
•  A collection of files storing related data

Give examples of databases
•  Accounts database; payroll database;

UW’s students database; Amazon’s
products database; airline reservation
database

18 CSE544 - Spring, 2013

Database Management System

What is a DBMS ?

Give examples of DBMS

CSE544 - Spring, 2013 19

Database Management System
What is a DBMS ?
•  A big C program written by someone else that

allows us to manage efficiently a large
database and allows it to persist over long
periods of time

Give examples of DBMS
•  DB2 (IBM), SQL Server (MS), Oracle,

Sybase
•  MySQL, Postgres, …

CSE544 - Spring, 2013 20

Market Shares

From 2006 Gartner report:

•  IBM: 21% market with $3.2BN in sales

•  Oracle: 47% market with $7.1BN in sales

•  Microsoft: 17% market with $2.6BN in sales

21 CSE544 - Spring, 2013

An Example

The Internet Movie Database
http://www.imdb.com

•  Entities:
Actors (1.5M), Movies (1.8M), Directors

•  Relationships:
who played where, who directed what, …

22 CSE544 - Spring, 2013

Note
•  In other classes at UW (344, 444, 544p):

– We use IMDB/sqlite and SQL Server for extensive
practice of SQL

•  In 544:
– We will use DBLP/postgres, which is more hands-

on and more research’y
•  If you want to practice more SQL:

–  Let me know and I will arrange for you to have
access to the IMDB database and/or to SQL
Server.

CSE544 - Spring, 2013 23

Tables

24 CSE544 - Spring, 2013

Actor: Casts:

Movie:

id fName lName gender

195428 Tom Hanks M
645947 Amy Hanks F

. . .

id Name year

337166 Toy Story 1995

.

pid mid

195428 337166
. . .

SQL

25

SELECT *
FROM Actor

CSE544 - Spring, 2013

SELECT count(*)
FROM Actor

SELECT *
FROM Actor
WHERE lName = ‘Hanks’

SELECT *
FROM Actor
LIMIT 50

SQL

26

SELECT *
FROM Actor x, Casts y, Movie z
WHERE x.lname='Hanks'
 and x.id = y.pid
 and y.mid=z.id
 and z.year=1995

This query has selections and joins

CSE544 - Spring, 2013

1.8M actors, 11M casts, 1.5M movies;
How can it be so fast ?

27

How Can We Evaluate the Query ?

Actor: Casts: Movie:
id fName lName gender

. . . Hanks

. . .

id Name year

. . . 1995

. . .

pid mid

. . .

. . .

Plan 1: [in class]

Plan 2: [in class]

CSE544 - Spring, 2013

1.8M actors 11M casts 1.5M movies

28

Evaluating Tom Hanks





Actor Casts Movie

σlName=‘Hanks’ σyear=1995





Actor Casts Movie

σlName=‘Hanks’ σyear=1995

CSE544 - Spring, 2013

Classical query optimizations:
•  Pushing selections down
•  Join reorder

Classical query execution
•  Index-based selection
•  Hash-join
•  Merge-join
•  Index-join

Classical statistics
•  Table cardinalities
•  # distinct values
•  histograms

Terminology for Query Workloads

•  OLTP (OnLine-Transaction-Processing)
– Many updates: transactions are critical
– Many “point queries”: access record by key
– Commercial applications

•  Decision-Support
– Many aggregate/group-by queries.
– Sometimes called data warehouse
– Data analytics

CSE544 - Spring, 2013 29

Physical Data Independence
Physical data independence:
•  Applications are isolated from changes to the physical

organization:
–  Adding or dropping an index
–  (Actor,Movie*)* v.s.

(Movie,Actor*)* v.s.
(Movie*, Casts*, Actor*)

Translating WHAT to HOW:
•  SQL = WHAT we want = declarative
•  Relational algebra = HOW to get it = algorithm
•  RDBMS are about translating WHAT to HOW

CSE544 - Spring, 2013 30

A1 M1 M2 M3 A2 M4 M5 A3 M6 M7 …

M1 A1 A2 M2 A3 A4 M3 A5 A6 A7 …

A1 A2 … M1 M2 … C1 C2 …

Transactions
•  Recovery + Concurrency control
•  ACID =

–  Atomicity (= recovery)
–  Consistency
–  Isolation (= concurrency control)
–  Durability

•  Transactions are critical in business apps, but less
important in data analytics and research in general
–  In 544 we discuss them only towards the end
–  In 344, 444, 544p we cover them early and extensively

31 CSE544 - Spring, 2013

Client/Server Architecture
•  One server: stores the database

–  called DBMS or RDBMS
–  Usually a beefed-up system:

•  Can be cluster of servers, or parallel DBMS
•  In 544 you will install the postgres server on your own computer

•  Many clients: run apps and connect to DBMS
–  Interactive: psql (postgres), Management Studio (SQL Server)
–  Java/C++/C#/… applications
–  Connection protocol: ODBC/JDBC

•  Exceptions exists; e.g. SQL Lite

CSE544 - Spring, 2013 32

SQL

•  Will discuss SQL rather quickly in 1.5
lectures

•  Resources for learning SQL:
– The slides in this lecture and in CSEP544
– The textbook
– Postgres: type \h or \?

•  Start working on HW1 !
CSE544 - Spring, 2013 33

34

SQL

•  Data Manipulation Language (DML)
– Querying: SELECT-FROM-WHERE
– Modifying: INSERT/DELETE/UPDATE

•  Data Definition Language (DDL)
– CREATE/ALTER/DROP
– Constraints: will discuss these in class

CSE544 - Spring, 2013

35

Tables in SQL

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Attribute names Table name

Tuples or rows

Key

CSE544 - Spring, 2013

36

Creating Tables, Importing Data
CREATE TABLE Product (
 pname varchar(10) primary key,
 price float,
 category char(20),
 manufacturer text
);

CSE544 - Spring, 2013

INSERT INTO Product VALUES (‘Gizmo’, 19.99, ‘Gadgets’,’GizmoWorks’);
INSERT INTO Product VALUES (‘Powergizmo’,29.99,’Gadgets’,’GizmoWorks’);
INSERT INTO Product VALUES (‘SingleTouch’,149.99,’Photography’,’Canon’);
INSERT INTO Product VALUES (‘MultiTouch’, 203.99,’Household’,’Hitachi’);

Better: bulk insert (but database specific!)

COPY Product FROM ‘/my/directory/datafile.txt’; -- postgres only!

37

Other Ways to Bulk Insert
CREATE TABLE Product (
 pname varchar(10) primary key,
 price float,
 category char(20),
 manufacturer text
);

CSE544 - Spring, 2013

INSERT into Product (
 SELECT …
 FROM …
 WHERE…
);

Quick method: create AND insert
CREATE TABLE Product AS
 SELECT …
 FROM …
 WHERE…

38

Data Types in SQL

•  Atomic types:
– Characters: CHAR(20), VARCHAR(50)
– Numbers: INT, BIGINT, SMALLINT, FLOAT
– Others: MONEY, DATETIME, …
– Note: an attribute cannot be another table!

•  Record (aka tuple)
– Has atomic attributes

•  Table (relation)
– A set of tuples

CSE544 - Spring, 2013 No nested tables! (Discussion next…)

Normal Forms
•  First Normal Form

–  All tables must be flat tables
–  Why?

•  Boyce Codd Normal Form
–  The only functional dependencies are from a key
–  What is a “functional dependency”?
–  Why?

•  Third Normal Form
–  The only functional dependencies are from keys, except …

[boring technical condition here]
–  Why?

CSE544 - Spring, 2013 39

Normal Forms
•  First Normal Form

–  All tables must be flat tables
–  Why? Physical data independence!

•  Boyce Codd Normal Form
–  The only functional dependencies are from a key
–  What is a “functional dependency”?
–  Why? Avoid data anomalies (redundancy, update, delete)

•  Third Normal Form
–  The only functional dependencies are from keys, except …

[boring technical condition here]
–  Why? Because that’s how we can recover all FD’s.

CSE544 - Spring, 2013 40 Your schema in HW1 should be in BCNF (easier than it sounds)

41

Simple Selection Queries in SQL

SELECT *
FROM Product
WHERE category=‘Gadgets’

“selection”
CSE544 - Spring, 2013

SELECT *
FROM Product
WHERE category > ‘Gadgets’

SELECT *
FROM Product
WHERE category LIKE ‘Ga%’

SELECT *
FROM Product
WHERE category LIKE ‘%dg%’

42

“DISTINCT”, “ORDER BY”, “LIMIT”

SELECT DISTINCT category
FROM Product

CSE544 - Spring, 2013

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname
LIMIT 20

Keys and Foreign Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Key

Foreign
key

44

Joins

SELECT x.PName, x.Price
FROM Product x, Company y
WHERE x.Manufacturer=y.CName
 AND y.Country=‘Japan’
 AND x.Price <= 200

CSE544 - Spring, 2013

Find all products under $200 manufactured in Japan;

Product (PName, Price, Category, Manufacturer)
Company (CName, stockPrice, Country)

45

Semantics of SQL Queries
SELECT a1, a2, …, ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions
 then Answer = Answer ∪ {(a1,…,ak)}
return Answer

CSE544 - Spring, 2013

Subqueries
•  A subquery is another SQL query nested inside

a larger query
•  Also called nested queries
•  A subquery may occur in:

–  SELECT
–  FROM
–  WHERE

CSE544 - Spring, 2013 46

Rule of thumb: avoid writing nested queries when possible;
keep in mind that sometimes it’s impossible

Universal Quantifiers

CSE544 - Spring, 2013 47

Universal quantifiers are hard ! L

Find cities that have a company
 such that all its products have price < 100

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers

CSE544 - Spring, 2013 48

Relational Calculus (a.k.a. First Order Logic) – next lecture

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100)

Product (pname, price, company)
Company(cname, city)

Find cities that have a company
 such that all its products have price < 100

Universal Quantifiers

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100)

De Morgan’s Laws:
¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
¬∀x. P(x) = ∃x. ¬ P(x)
¬∃x. P(x) = ∀x. ¬ P(x)

q(y) = ∃x. Company(x,y) ∧¬(∃z∃p. Product(z,p,x) ∧ p ≥ 100)

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x)

¬(A è B) = A ∧ ¬B

=

=

Product (pname, price, company)
Company(cname, city)

Universal Quantifiers: NOT IN

CSE544 - Spring, 2013 50

SELECT DISTINCT c.city
FROM Company c
WHERE c.cname NOT IN (SELECT p.company
 FROM Product p
 WHERE p.price >= 100)

Product (pname, price, company)
Company(cname, city)

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x)

Universal Quantifiers: NOT EXISTS

SELECT DISTINCT c.city
FROM Company c
WHERE NOT EXISTS (SELECT p.company
 FROM Product p
 WHERE c.cname = p.company AND p.price >= 100)

Correlated
subquery!

Product (pname, price, company)
Company(cname, city)

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x)

Universal Quantifiers: ALL

CSE544 - Spring, 2013 52

SELECT DISTINCT c.city
FROM Company c
WHERE 100 > ALL (SELECT p.price
 FROM Product p
 WHERE p.company = c.cname)

Product (pname, price, company)
Company(cname, city)

53

A Taste of Theory

• Can we unnest the universal
quantifier query ?
– Can we write it as a simple

SELECT-FROM-WHERE query?

CSE544 - Spring, 2013

54

Monotone Queries
•  A query Q is monotone if:

–  Whenever we add tuples to one or more of the tables…
–  … the answer to the query cannot contain fewer tuples

•  Fact: all unnested queries are monotone
–  Proof: using the “nested for loops” semantics

•  Fact: A query a universal quantifier is not monotone

•  Consequence: we cannot unnest a query with a universal
quantifier

CSE544 - Spring, 2013

55

Queries that must be nested

•  Queries with universal quantifiers or with
negation

•  The drinkers-bars-beers example next
•  This is a famous example from textbook

on databases by Ullman

CSE544 - Spring, 2013

Rule of Thumb:
Non-monotone queries cannot be
unnested. In particular, queries with a
universal quantifier cannot be
unnested

