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Staff 

•  Instructor:  Dan Suciu 
– CSE 662, suciu@cs.washington.edu 
– Office hour:  Wednesdays, 1:30-2:20, CSE 662 

•  TA:  
– Kevin Kar Wai Lai,kevinlai@cs.washington.edu  
– Office hour: Tuesday, 1:30-2:20, CSE 218 
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Class Format 
•  Lectures Tuesday-Thursday, 12-1:30pm 

•  4 Homework  Assignments 

•  Reading assignments 

•  A mini-research project 
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Announcements 

This week is special 
•  First lecture on Monday 
•  No lectures on: 

– Tuesday, April 2 
– Thursday, April 4 
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Textbook and Papers 
•  Official Textbook: 

–  Database Management Systems. 3rd Ed., by 
Ramakrishnan and Gehrke. McGraw-Hill.  

–  Book available on the Kindle too 
–  Use it to read background material 
–  You may borrow it, no need to buy 

•  Other Books 
–  Foundations of Databases, by Abiteboul, Hull, 

Vianu 
–  Finite Model Theory, by Libkin 
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Textbook and Papers 

•  Nine papers to read and review 
– Mix of old seminal papers and new papers 
– Papers available online on class website 
– Most papers available on Kindle 
– Some papers come from the “red book” [no 

need to get it] 

•  Plus a couple of optional readings 
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Resources 

•  Web page: 
http://www.cs.washington.edu/education/courses/
cse544/13sp/  
–  Lectures 
–  Reading assignments 
–  Homework assignments 
–  Projects 

•  Mailing list: 
– Announcements, group discussions 
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Content of the Class 
•  Relational Data Model 

– SQL, Data Models, Relational calculus, 
Constraints+Views, 

•  Systems 
– Storage, query execution, query optimization, 

database statistics, parallel databases 
•  Theory 

– Query complexity, query containment, datalog, 
bounded tree-width 

•  Miscellaneous 
– Transactions, provenance, data privacy 
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Evaluation 
•  Assignments 50%: 

– Four assignments: programming + theory 

•  Project 30%: Groups of 1-3 
– Small research or engineering. Start thinking now! 

•  Paper reviews, class participation 20%: 
–  Individual 
– Due by the evening before the lecture 
– Reading questions are posted on class website 
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Assignments 50%  

•  HW1: Data Analysis Pipeline  programming 
•  HW2: Database Systems   programming 
•  HW3: Parallel Data Analytics  programming 
•  HW4: Database Theory    theory 
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Assignments 50%  

•  HW1: Data Analysis Pipeline – posted! 
– Design schema: E/R diagram, tables 
–  Install postres, import the DBLP data 
– Transform DBLP data to your schema – SQL 
– Do data analysis – SQL, SQL, SQL, … 
– Draw graphs – Excel 

•  Due:      Monday, April 22, 11:59pm 
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Project 30% 
•  Teams: 1-3 students 

•  Topics: choose one of: 
–  A list of mini-research topics (see Website, check updates) 
–  Come up with your own (related to your own research) 

•  Deliverables (see Website for dates) 
–  M1: teams       April 12 
–  M2: project proposal    April 26 
–  M3: major milestone    May 17 
–  M4: presentation on Friday  June 07, CSE 405 
–  M5: final report      June 07 

•  Amount of work may vary widely between groups 
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Paper Reviews and Class 
Participation 20% 

•  Reviews: 1/2 page in length 
–  Summary of the main points of the paper  
–  Critical discussion of the paper 

•  Review questions 
–  For some papers, we will post reading questions to help you figure out what to focus 

on when reading the paper 
–  Please address these questions in your reviews 

•  Discussions 
–  Ask questions, raise issues, think critically 
–  Learn to express your opinion 
–  Respect other people’s opinions 

•  Grading: credit/no-credit 
–  You can skip one review without penalty 
–  MUST submit review BEFORE lecture 
–  Individual assignments (but feel free to discuss paper with others) 
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Goals of the Class 
This is a CSE graduate level class ! 
•  Using databases in research: 

–  Data analysis pipeline 
–  Expert use of database systems (Postgres) and of 

novel data analysis tools (MapReduce) 
•  Some (limited) exposure to database internals 
•  Using database concepts in research: 

–  Algorithms/techniques for massive data processing/
analysis (sequential and/or parallel) 

–  Theory of query complexity, datalog 
•  Exposure to database research:  

–  Query processing, provenance, privacy, theory… 
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Background 

You should have heard about most of: 
•  E/R diagrams 
•  Normal forms (1st, 3rd) 
•  SQL 
•  Relational Algebra 
•  Indexes, search trees 
•  Search in a binary tree 

•  Query optimization (e.g. 
join reordering) 

•  Transactions 
•  PTIME, NP, LOGSPACE 
•  Logic: ∧,∨,∀,∃,¬,∈ 
•  Reachability in a graph 
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We will cover these topics in class, but assume some background 



Agenda for Today 

•  Brief overview of a traditional database 
systems 

•  SQL 
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Databases 

What is a database ? 

Give examples of databases 
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Databases 

What is a database ? 
•  A collection of files storing related data 

Give examples of databases 
•  Accounts database; payroll database; 

UW’s students database; Amazon’s 
products database; airline reservation 
database 
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Database Management System 

What is a DBMS ? 

Give examples of DBMS 
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Database Management System 
What is a DBMS ? 
•  A big C program written by someone else that 

allows us to manage efficiently a large 
database and allows it to persist over long 
periods of time 

Give examples of DBMS 
•  DB2 (IBM), SQL Server (MS), Oracle, 

Sybase 
•  MySQL, Postgres, … 
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Market Shares 

From 2006 Gartner report: 
 
•  IBM: 21% market with $3.2BN in sales 

•  Oracle: 47% market with $7.1BN in sales 

•  Microsoft: 17% market with $2.6BN in sales 
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An Example 

The Internet Movie Database 
http://www.imdb.com 

•  Entities:  
Actors (1.5M), Movies (1.8M), Directors 

•  Relationships: 
who played where, who directed what, … 
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Note 
•  In other classes at UW (344, 444, 544p):  

– We use IMDB/sqlite and SQL Server for extensive 
practice of SQL 

•  In 544:  
– We will use DBLP/postgres, which is more hands-

on and more research’y 
•  If you want to practice more SQL: 

–  Let me  know and I will arrange for you to have 
access to the IMDB database and/or to SQL 
Server. 
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Tables 
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Actor: Casts: 

Movie: 

id fName lName gender 

195428 Tom Hanks M 
645947 Amy Hanks F 

. . . 

id Name year 

337166 Toy Story 1995 

. . . . . . . .. 

pid mid 

195428 337166 
. . . 



SQL 
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SELECT * 
FROM  Actor 
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SELECT count(*) 
FROM  Actor 

SELECT * 
FROM  Actor 
WHERE lName = ‘Hanks’ 

SELECT * 
FROM  Actor 
LIMIT 50 



SQL 
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SELECT * 
FROM  Actor x, Casts y, Movie z 
WHERE x.lname='Hanks' 
       and x.id = y.pid 
       and y.mid=z.id  
       and z.year=1995 

This query has selections and joins 
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1.8M actors, 11M casts,  1.5M movies; 
How can it be so fast ?  
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How Can We Evaluate the Query ? 

Actor: Casts: Movie: 
id fName lName gender 

. . . Hanks 

. . . 

id Name year 

. . . 1995 

. . . 

pid mid 

. . . 

. . . 

Plan 1:  . . . . [ in class ] 
 
Plan 2:  . . . . [ in class ] 
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1.8M actors   11M casts   1.5M movies 
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Evaluating Tom Hanks 





Actor Casts Movie 

σlName=‘Hanks’ σyear=1995 





Actor Casts Movie 

σlName=‘Hanks’ σyear=1995 
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Classical query optimizations: 
•  Pushing selections down 
•  Join reorder 

Classical query execution 
•  Index-based selection 
•  Hash-join 
•  Merge-join 
•  Index-join 

Classical statistics 
•  Table cardinalities 
•  # distinct values 
•  histograms 



Terminology for Query Workloads 

•  OLTP (OnLine-Transaction-Processing) 
– Many updates: transactions are critical 
– Many “point queries”: access record by key 
– Commercial applications 

•  Decision-Support 
– Many aggregate/group-by queries. 
– Sometimes called data warehouse 
– Data analytics 
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Physical Data Independence 
Physical data independence: 
•  Applications are isolated from changes to the physical 

organization: 
–  Adding or dropping an index  
–  (Actor,Movie*)*    v.s.   

(Movie,Actor*)*    v.s.   
(Movie*, Casts*, Actor*) 

 
Translating WHAT to HOW:  
•  SQL = WHAT we want = declarative 
•  Relational algebra = HOW to get it = algorithm 
•  RDBMS are about translating WHAT to HOW 
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A1 M1 M2 M3 A2 M4 M5 A3 M6 M7 … 

M1 A1 A2 M2 A3 A4 M3 A5 A6 A7 … 

A1 A2 … M1 M2 … C1 C2 … 



Transactions 
•  Recovery + Concurrency control 
•  ACID = 

–  Atomicity  ( = recovery) 
–  Consistency 
–  Isolation   ( = concurrency control) 
–  Durability 

•  Transactions are critical in business apps, but less 
important in data analytics and research in general 
–  In 544 we discuss them only towards the end 
–  In 344, 444, 544p we cover them early and extensively 
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Client/Server Architecture 
•  One server: stores the database 

–  called DBMS or RDBMS 
–  Usually a beefed-up system: 

•  Can be cluster of servers, or parallel DBMS 
•  In 544 you will install the postgres server on your own computer 

•  Many clients: run apps and connect to DBMS 
–  Interactive: psql (postgres), Management Studio (SQL Server) 
–  Java/C++/C#/… applications 
–  Connection protocol: ODBC/JDBC 

•  Exceptions exists; e.g. SQL Lite 
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SQL 

•  Will discuss SQL rather quickly in 1.5 
lectures 

•  Resources for learning SQL: 
– The slides in this lecture and in CSEP544 
– The textbook 
– Postgres: type \h or \? 

•  Start working on HW1 ! 
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SQL 

•  Data Manipulation Language (DML) 
– Querying: SELECT-FROM-WHERE 
– Modifying: INSERT/DELETE/UPDATE 

•  Data Definition Language (DDL) 
– CREATE/ALTER/DROP 
– Constraints: will discuss these in class 
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Tables in SQL 

PName Price Category Manufacturer 

Gizmo $19.99 Gadgets GizmoWorks 

Powergizmo $29.99 Gadgets GizmoWorks 

SingleTouch $149.99 Photography Canon 

MultiTouch $203.99 Household Hitachi 

Product 

Attribute names Table name 

Tuples or rows 

Key 
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Creating Tables, Importing Data 
CREATE TABLE Product ( 
   pname varchar(10) primary key, 
   price float, 
   category char(20), 
   manufacturer text 
); 
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INSERT INTO Product VALUES (‘Gizmo’, 19.99, ‘Gadgets’,’GizmoWorks’); 
INSERT INTO Product VALUES (‘Powergizmo’,29.99,’Gadgets’,’GizmoWorks’); 
INSERT INTO Product VALUES (‘SingleTouch’,149.99,’Photography’,’Canon’); 
INSERT INTO Product VALUES (‘MultiTouch’, 203.99,’Household’,’Hitachi’); 

Better: bulk insert  (but database specific!) 

COPY Product FROM ‘/my/directory/datafile.txt’;  -- postgres only! 
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Other Ways to Bulk Insert 
CREATE TABLE Product ( 
   pname varchar(10) primary key, 
   price float, 
   category char(20), 
   manufacturer text 
); 
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INSERT into Product ( 
      SELECT …  
      FROM …  
      WHERE… 
); 

Quick method: create AND insert 
CREATE TABLE Product AS 
      SELECT …  
      FROM …  
      WHERE… 
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Data Types in SQL 

•  Atomic types: 
– Characters: CHAR(20), VARCHAR(50) 
– Numbers: INT, BIGINT, SMALLINT, FLOAT 
– Others: MONEY, DATETIME, … 
– Note: an attribute cannot be another table! 

•  Record (aka tuple) 
– Has atomic attributes 

•  Table (relation) 
– A set of tuples 
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Normal Forms 
•  First Normal Form 

–  All tables must be flat tables 
–  Why? 

•  Boyce Codd Normal Form 
–  The only functional dependencies are from a key 
–  What is a “functional dependency”? 
–  Why? 

•  Third Normal Form 
–  The only functional dependencies are from keys, except …

[boring technical condition here] 
–  Why?  
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Normal Forms 
•  First Normal Form 

–  All tables must be flat tables 
–  Why? Physical data independence! 

•  Boyce Codd Normal Form 
–  The only functional dependencies are from a key 
–  What is a “functional dependency”? 
–  Why? Avoid data anomalies (redundancy, update, delete) 

•  Third Normal Form 
–  The only functional dependencies are from keys, except …

[boring technical condition here] 
–  Why? Because that’s how we can recover all FD’s. 
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Simple Selection Queries in SQL 

SELECT   * 
FROM      Product 
WHERE   category=‘Gadgets’ 

“selection” 
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SELECT   * 
FROM      Product 
WHERE   category > ‘Gadgets’ 

SELECT   * 
FROM      Product 
WHERE   category LIKE ‘Ga%’ 

SELECT  * 
FROM    Product 
WHERE category LIKE ‘%dg%’ 
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“DISTINCT”, “ORDER BY”, “LIMIT” 

SELECT   DISTINCT category 
FROM     Product 
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SELECT   pname, price, manufacturer 
FROM     Product 
WHERE   category=‘gizmo’ AND price > 50 
ORDER BY  price, pname 
LIMIT 20 



Keys and Foreign Keys 

PName Price Category Manufacturer 
Gizmo $19.99 Gadgets GizmoWorks 

Powergizmo $29.99 Gadgets GizmoWorks 
SingleTouch $149.99 Photography Canon 
MultiTouch $203.99 Household Hitachi 

Product 

Company 

CName StockPrice Country 

GizmoWorks 25 USA 

Canon 65 Japan 

Hitachi 15 Japan 

Key 

Foreign 
key 
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Joins 

  

SELECT   x.PName, x.Price 
FROM      Product x, Company y 
WHERE   x.Manufacturer=y.CName  
       AND  y.Country=‘Japan’ 
       AND  x.Price <= 200 
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Find all products under $200 manufactured in Japan; 

Product (PName,  Price, Category, Manufacturer) 
Company (CName, stockPrice, Country) 
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Semantics of SQL Queries 
SELECT a1, a2, …, ak 
FROM    R1 AS x1, R2 AS x2, …, Rn AS xn 
WHERE  Conditions 

Answer = {} 
for x1 in R1 do 
      for x2 in R2 do 
           ….. 
                for xn in Rn do 
                       if Conditions 
                             then Answer = Answer ∪ {(a1,…,ak)} 
return Answer 
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Subqueries 
•  A subquery is another SQL query nested inside 

a larger query 
•  Also called nested queries 
•  A subquery may occur in: 

–  SELECT 
–  FROM 
–  WHERE 
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Rule of thumb: avoid writing nested queries when possible;  
keep in mind that sometimes it’s impossible 



Universal Quantifiers 
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Universal quantifiers are hard !  L 

Find cities that have a company 
   such that all its products have price < 100 

Product ( pname,  price, company) 
Company( cname, city) 



Universal Quantifiers 
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Relational Calculus (a.k.a. First Order Logic) – next lecture 

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100) 

Product ( pname,  price, company) 
Company( cname, city) 

Find cities that have a company 
   such that all its products have price < 100 



Universal Quantifiers 

q(y)= ∃x. Company(x,y) ∧ (∀z.∀p. Product(z,p,x) à p < 100) 

De Morgan’s Laws: 
¬(A ∧ B) = ¬A ∨ ¬B 
¬(A ∨ B) = ¬A ∧ ¬B 
¬∀x. P(x) = ∃x. ¬ P(x) 
¬∃x. P(x) = ∀x. ¬ P(x) 

q(y) = ∃x. Company(x,y) ∧¬(∃z∃p. Product(z,p,x) ∧ p ≥ 100) 

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100 
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x) 

¬(A è B) =   A ∧ ¬B  

=  

=  

Product ( pname,  price, company) 
Company( cname, city) 



Universal Quantifiers: NOT IN 
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SELECT DISTINCT  c.city 
FROM     Company c 
WHERE  c.cname NOT IN (SELECT p.company 
                                            FROM Product p 
                                            WHERE p.price >= 100) 

Product ( pname,  price, company) 
Company( cname, city) 

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100 
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x) 



Universal Quantifiers: NOT EXISTS 

SELECT DISTINCT  c.city 
FROM     Company c 
WHERE  NOT EXISTS (SELECT p.company 
                                      FROM Product p 
                                      WHERE c.cname = p.company AND p.price >= 100) 

Correlated 
subquery! 

Product ( pname,  price, company) 
Company( cname, city) 

theOtherCompanies(x) = ∃z∃p. Product(z,p,x) ∧ p ≥ 100 
q(y) = ∃x. Company(x,y) ∧	
 ¬ theOtherCompanies(x) 



Universal Quantifiers: ALL 
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SELECT DISTINCT  c.city 
FROM     Company c 
WHERE 100 > ALL  (SELECT p.price 
                                    FROM Product p 
                                    WHERE p.company = c.cname) 

Product ( pname,  price, company) 
Company( cname, city) 
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A Taste of Theory 

• Can we unnest the universal 
quantifier query ? 
– Can we write it as a simple 

SELECT-FROM-WHERE query? 

CSE544 - Spring, 2013 



54 

Monotone Queries 
•  A query Q is monotone if: 

–  Whenever we add tuples to one or more of the tables… 
–  … the answer to the query cannot contain fewer tuples 

•  Fact:  all unnested queries are monotone  
–  Proof: using the “nested for loops” semantics 

•  Fact: A query a universal quantifier is not monotone 

•  Consequence: we cannot unnest a query with a universal 
quantifier 
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Queries that must be nested 

•  Queries with universal quantifiers or with 
negation 

•  The drinkers-bars-beers example next 
•  This is a famous example from textbook 

on databases by Ullman 
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Rule of Thumb: 
Non-monotone queries cannot be 
unnested.  In particular, queries with a 
universal quantifier cannot be 
unnested 


