
Evaluation of Open Source Data Cleaning Tools: Open Refine and

Data Wrangler

Per Larsson
plarsson@cs.washington.edu

June 7, 2013

Abstract

This project aims to compare several tools for
cleaning and importing data. Open Refine and
Data Wrangler are evaluated and compared. In
conclusion non of them are mature tools yet.
Open Refine is not suitable for large data sets
but it works better for Data Wrangler.

1 Introduction

Today a lot of useful data is stored in differ-
ent ad-hoc formats. Examples include scientific
data, web server logs and network traffic logs.
This data is often interesting to run queries on
or use together with analysis tools but their for-
mat poses a challenge. One often wish that the
data was given in some other format or stored in
a relational database such as PostgreSQL. An-
other challenge is that this kind of data can be
high volume.

There exists a number of computer programs
which can read ad-hoc data and rewrite it into a
more convenient format which is more clean and
easily parsable.

This report tries to evaluate some of the open
source tools (presented in the following subsec-

tions) that exists for this purpose. Since the
data analyst often can be a domain expert rather
than a programmer these tools must be reason-
able user friendly for a non-programmer. Are
these tools sufficient? Are they easy to use? Are
they practical for very large data sets?

Open Refine describes itself as ”Open Refine is
a power tool for working with messy data, clean-
ing it up, transforming it from one format into
another, extending it with web services, and link-
ing it to databases like Freebase.”. It is open
source, written in Java and available to down-
load for free from the website[3].

Data Wrangler is a tool similar to Open Refine
developed at Stanford in Javascript an Python.

2 Method

The goal of the method is to answer the following
question: How effective is the tool in taking data
from it’s original ad-hoc format into a format
that is importable into a relational database?,
this practically means that the tools will read the
data and transform it into a comma-separated-
values-file (.csv) which is importable into most
RDBMS:es like PostgreSQL. This includes evalu-
ating tool data reading, tool usage and tool data

1

CPU 64-bit Intel, 2 cores, 3 GHz

RAM Memory 4GB

Web Browser Google Chrome

Figure 1: Test computer set up

Figure 3: Format of
/var/log/pm-powersave.log

export. A normal standard PC will be used to
perform the tests (see figure 2).

The tools are tested one after another and a
short summary was written for each step. Each
step is tested with three different real-life data
sets with varying attributes.

2.1 Data sets

Billion Triples Challenge 2010 Dataset (BTC)
[2] contains 3.2bn lines of N-Quads (figure 2.1),
approximately 27GB, spread out over 317 files.
This dataset will effectively test the maximum
size that the tools are capable of handling.

As mentioned in the introduction a com-
mon application for data cleaning tools is log
files. Two common Linux log files will be
used for evaluation; /var/log/kern.log (figure
2) and /var/log/pm-powersave.log (figure 3).

Smaller than the BTC they have more challeng-
ing formats.

3 Results

3.1 Open Refine

3.1.1 Data import

Open Refine can be run on the local computer
but it is also easy to run it on a remote server
since it starts a web server and the user access
it through a web user interface.

When importing data the user must select
which data file he or she wishes to process and
upload it to the server, whether it runs locally or
not. This means that even though the data file is
already on the local computer, it has to be copied
over to the server. A new Refine ”project” is
then created from the data.

Refine does not work very well with
big data. When tested with files of
4100MB and 2100MB the server simply throws
a java.lang.OutOfMemoryError error which
gives a hint that the amount of working mem-
ory might be an issue. Files of 512MB (about
2482653 BTC triples) works better and it takes
48 seconds to upload the file and create the
project and it is then ready to be edited. How-
ever, a simple split operation splitting the rows
where there’s a space (approximately at 4-5
places per row) takes over 15 minutes to per-
form. Since the user is supposed to work with
the data in real time this is unacceptable.

Importing /var/log/kern.log (13373 lines),
which is smaller, works better. Open Refine
automatically suggests creating several columns
depending on repeted patterns. For example it
suggests splitting the lines between the date, the
computer hostname (per-ThinkPad-X230) and

2

Figure 2: Format of /var/log/kern.log

Figure 4: Format of Billion Triples Challenge 2010 (URLs have been shortened at the dots).
As one can see the data is inconsistently bad formatted with two ∧∧ instead of a space at some
points.

the actual values into their own columns.

3.1.2 Tool usage

First manipulation of the BTC dataset (figure
2.1 was attempted. In order for the tool to be
interactive and not too slow between the oper-
ations a much smaller subset taking only 16MB
(81585 lines) was used. Refine originally gives us
the whole line in a single column. This column
can be splut into several using a regular expres-
sion. In this case [\’’]{1}\s{1}[\’’<]{1} was
used. The rows in figure 2.1 have a bad for-
mat, different from most of the other rows in the
dataset. The carets instead of a space is a special
case that must be manually detected. In most
cases the given regular expression works and only
leaves a < at the beginning of the first column
and > . at the end of the last column. These
are easy to remove with 2 more operations.

Refine manages to do a good job with
kern.log. The lines are split after the first 15
characters to separate the date in it’s own col-
umn. A new split is performed at [and]. Re-
maining data is split using the regular expression
(/:[^$])|(/s{2}), that is, split either where
there are two spaces in a row (indentation) or
a comma that is not the last character. See fig-
ure .

Next Refine was tested with
pm-powersave.log. Refine does not han-
dle data where the record data is stored over
several lines. There’s no way to create rows
from a single column.

3.1.3 Data export

To export the data we simply click ”Export”,
select the .csv file format (importable by Post-
greSQL) and download it to our local disk.

3

Figure 5: Screenshot of Open Refine processing kern.log

3.2 Data Wrangler

3.2.1 Data import

Data Wrangler can work with data in two ways.
For configuration one can simply paste the data
into it’s web interface. If one has more data that
practical to paste into a text box then one can ex-
port the operations as python code and process
arbitrary amounts of data. There are therefor
no size limitations to the data being processed.

3.2.2 Tool usage

As mentioned above one can chose to use the web
interface directly on the data or use the web in-
terface to export a python script describing the
operations performed and then run it on several
files. The web interface is using Javascript and
therefor has some performance issues and only
supports 1000 rows but one can use it to config-
ure Data Wrangler on a subset of the data and

then apply the configuration on the whole data
set. There are also some issues, like the web in-
terface interprets the tagged links in the BTC
data to be HTML tags and thus does not show
them. Therefor they need to be searched for and
replaced by for example TAGLEFT and TAGRIGHT.

3.2.3 Data export

Data Wrangler has a button where one can
choose to export the data in .csv.

4 Conclusion

Open Refine is not suitable for processing large
data sets. It is built using a server-client archi-
tecture which does allow you to run the program
on a powerfull server machine but becomes in-
practical when the server runs on the client ma-
chine since we need to copy the file. Files of size

4

Figure 6: Screenshot of Data Wrangler processing a subset of BTC

5

512MB or smaller could be processed on the test
machine but the waiting times for this file size
made it impractical for trial and error use. The
amount of data that can be processses is proba-
bly limited by the amount of working memory.

Data Wrangler is more promising, although
still in beta phase. Since you can export the
operations to Python code you can process large
data sets. It is also much smarter since it sug-
gests operations when the user for example high-
lights text, making life easier for users that don’t
know regular expressions.

5 Related work

There’s been some research in investigating what
is called data cleaning and quality tools. Re-
search papers that I have read on the topic has
been focusing on the issue where data from sev-
eral sources, with different formats, needs to be
combined in a single database and thus data
needs to be cleaned from inconsistency and bad
formatting. [6] provides a good overview of some
approaches and problems related to data clean-
ing. Data cleaning in this paper is described as
”... detecting and removing errors and inconsis-
tencies from data in order to improve the quality
of data”, which is not quite the same as the aim
of my project.

I have not found any papers that tries to do
the same thing as me.

References

[1] PADS. http://www.padsproj.org/. Re-
trieved 5/16 2013.

[2] Billion Triples Challenge 2010. http://cass-
mt.pnnl.gov/btc2010/ Retrieved 5/16 2013.

[3] Open Refine.
http://code.google.com/p/google-refine/.
Retrieved 5/16 2013.

[4] Data Wrangler.
http://vis.stanford.edu/wrangler/. Re-
trieved 5/16 2013.

[5] Kandel, Sean, et al. ”Wrangler: Interac-
tive visual specification of data transforma-
tion scripts.” PART 5——–Proceedings of
the 2011 annual conference on Human fac-
tors in computing systems. ACM, 2011.

[6] Rahm, Erhard, and Hong Hai Do. ”Data
cleaning: Problems and current approaches.”
IEEE Data Engineering Bulletin 23.4 (2000):
3-13.

6

