Lecture 18

Data Provenance

Announcement

Project presentations:

- Tuesday, May 29, 8-1:30pm
- Presentation: 15'
- Presentation order on the Website
- Two Awards!
- Best Project: Diploma + Amazon Gift Certificate
- Best Presentation: Diploma + Amazon Gift Certificate
- Voting instructions to be sent by email

Next lecture:

- Friday, 5/25, 10:30am, CSE403

Project Presentations Guidelines

What to include:

- A description of the problem: why is it important, why is it non-trivial
- An overview of prior approaches, and related work
- Your approach
- Your results (theoretical, empirical, experimental)
- A brief discussion on the significance of the results (do they work? do they solve the problem you set out to do ? do they improve over existing work ?)
- Conclusions

Rule of thumb: 1 slide / minute, then subtract slack You have $15 \rightarrow 12$ slides.

Outline

Sources:

- Karnouvarakis et al., Provenance Semirings, PODS 2007
- Cheney, Chiticariu,Tan, Provenance in Databases: Why, How, and Where, 2007
- Tannen, Tutorial on Provenance in EDBT 2010

Data Provenance

Cheney, Chiticariu,Tan, Provenance in Databases: Why, How, and Where, 2007

- Provenance information describes the origins and the history of data in its life cycle. Such information (also called lineage) is important to many data management tasks.

Data Provenance

- Provenance inside the DBMS
- Will discuss today
- Provenance outside of the DBMS
- Much more messy; there is a standard, OPM (Open Provenance Model)

Provenance Annotations

- Some query produces an output table $T(A, B, C)$
- We store it over some period of time
- Later we ask: "where did

A	B	C
a1	b1	c1
a2	b1	c1
a2	b2	c2
a2	b2	c3

provenance1
provenance2
provenance3
provenance4 this tuple come from?"

- The "provenance annotation" answers this.

Provenance Annotations

- Start by annotating each tuple in the original database with a unique identifier; can be the Tuple Id (TID)

A	B
a1	b1
a2	b1
a2	b2

- Next, compute the provenance expression inductively, based on the query plan

Join Operator

Projection Operator

Union Operator

Selection Operator

$\sigma_{A=a 1}$	
A	B
a1	b1
a1	b2
a2	b1
a2	b2
a2	b3

A	B
a1	b1
a1	b2

We could simply remove the tuples filtered out. But it's better to keep them around (we'll see why). What is their annotation?

Selection Operator

A	B
a1	b1
a1	b2
a2	b1
a2	b2
a2	b3

We could simply remove the tuples filtered out. But it's better to keep them around (we'll see why). What is their annotation?

Complex Example

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

$\mathrm{R}=$

A	B	C
a	b	c
d	b	e
f	g	e

A	C	
a	c	$(X \cdot X+X \cdot X) \cdot 0=2 \cdot X^{2}$
a	e	$X \cdot Y \cdot 1=X \cdot Y$
d	c	$Y \cdot X \cdot 0=0$
d	e	$(Y \cdot Y+Y \cdot Z+Y \cdot Y) \cdot 1=2 \cdot Y^{2}+Y \cdot Z$
f	e	$(Z \cdot Z+Z \cdot Y+Z \cdot Z) \cdot 1=2 \cdot Z^{2}+Y \cdot Z$

Discuss in class what these annotations mean

K-Relations

Definition. A K-relation is a relation where each tuple is annotated with an element from the set K .

What we have described so far is an extension of the positive operations of the relational algebra to K-relations

We assumed that K has the operators +,

Identities on Provenance Expressions

The problem:

- We have defined the provenance expressions for query plans P
- Given a query Q, we want the provenance of its answers to be the same, no matter what plan we use: P1, P2, ...
- What we need: if $\mathrm{P} 1=\mathrm{P} 2$, then the provenance expressions for P1 = the provenance expressions for P2

Identities on Provenance Expressions

Definition. A structure $(\mathrm{K},+, \cdot, 0,1)$ is called a commutative semiring if: 1. $(K,+, 0)$ is a commutative monoid:
a. + is associative: $(x+y)+z=x+(y+z)$
b. + is commutative: $x+y=y+x$
c. 0 is the identity for $+: x+0=0+x=x$
2. ($K, \cdot, 1$) is a commutative monoid:
a. ... (similar identities)
3. \cdot distributes over + : $x \cdot(y+z)=x \cdot y+x \cdot z$
4. For all $x, x \cdot 0=0 \cdot x=0$

Identities on provenance Expressions

Definition. A structure ($K,+, \cdot, 0,1$) is called a commutative semiring if:

1. $(\mathrm{K},+, 0)$ is a commutative monoid:
a. + is associative: $(x+y)+z=x+(y+z)$
b. + is commutative: $x+y=y+x$
c. 0 is the identity for $+: x+0=0+x=x$
2. ($K, \cdot, 1$) is a commutative monoid:
a. ... (similar identities)
3. distributes over $+: x \cdot(y+z)=x \cdot y+x \cdot z$
4. For all $x, x \cdot 0=0 \cdot x=0$

Theorem. The standard identities of the Bag algebra hold for K-relations iff ($K,+, \cdot, 0,1$) is a commutative semiring.

Identities on Provenance Expressions

Discuss in class:

$$
q(x, y):=R(x, y), S(y, z), T(z, u)
$$

Given two plans, why are the annotations equal?

Applications

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

$\mathrm{R}=$		
A	B	C
a	b	c
d	b	e
f	g	e

A	C	
a	c	$2 \cdot{ }^{2}$
a	e	X•Y
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

Q: Suppose we delete the tuple ($\mathrm{d}, \mathrm{b}, \mathrm{e}$) from R . Which tuple(s) disappear from the result?

Applications

$\sigma_{C=e} \Pi_{A C}\left(\Pi_{A C}(R) \bowtie \Pi_{B C}(R) \cup \Pi_{A B}(R) \bowtie \Pi_{B C}(R)\right)=$

$\mathrm{R}=$		
A	B	C
a	b	c
d	b	e
f	g	e

A	C	
a	C	$2 \cdot{ }^{2}$
a	e	$X \cdot Y$
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

$=$| A | C | |
| :--- | :--- | :--- |
| a | c | $2 \cdot X^{2}$ |
| a | e | 0 |
| d | e | 0 |
| f | e | $2 \cdot Z^{2}$ |

Q: Suppose we delete the tuple ($\mathrm{d}, \mathrm{b}, \mathrm{e}$) from R.
A: Set $\mathrm{Y}=0$ Which tuple(s) disappear from the result?

Applications

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

$\mathrm{R}=$		
A	B	C
a	b	c
d	b	e
f	g	e

A	C	
a	c	$2 \cdot{ }^{2}$
a	e	X•Y
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

Q: Suppose each tuple in R occurs 3 times (bag semantics). How many times occurs each tuple in the answer?

Applications

$$
\sigma_{C=e} \Pi_{A C}\left(\Pi_{A C}(R) \bowtie \Pi_{B C}(R) \cup \Pi_{A B}(R) \bowtie \Pi_{B C}(R)\right)=
$$

$\mathrm{R}=$		
A	B	C
a	b	c
d	b	e
f	g	e

A	C	
a	c	$2 \cdot{ }^{2}$
a	e	X•Y
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

A	C
a	c
a	e
d	e
f	e

Q: Suppose each tuple in R occurs 3 times (bag semantics).
A. $\operatorname{Set} X=Y=Z=3$ How many times occurs each tuple in the answer?

Lineage

Lineage = set of contributing tuples

- Terminology alert: provenance and lineages are not used consistently in the literature
- The PODS'2007 paper calls this whyprovenance, Fig. 5; I will call it lineage

Lineage

$\sigma_{C=e} \Pi_{A C}\left(\Pi_{A C}(R) \bowtie \Pi_{B C}(R) \cup \Pi_{A B}(R) \bowtie \Pi_{B C}(R)\right)=$

$\mathrm{R}=$		
A	B	C
a	b	c
d	b	e
f	g	e

A	C	
a	c	$2 \cdot X^{2}$
a	e	$X \cdot Y$
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

A	C	
a	c	X
a	e	X, Y
d	e	Y, Z
f	e	Y, Z

Lineage $=$ traces only the set of input tuples that contributed to an output tuple
This is also a semi-ring! Which one?

Semirings for various models of provenance (1)
 $R=$
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">A</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">B</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">C</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">a</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">b</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">c</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">d</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">b</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">e</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">f</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">y</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">e</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">Z</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| A | B | C |
| :---: | :---: | :---: |
| a | b | c |
| d | b | e |
| f | y | e |
| Z | | |</table-markdown></div>
 Q =

Lineage [CuiWidomWiener 00 etc.]
Sets of contributing tuples
Semiring: $\left(\operatorname{Lin}(X), \cup, \cup^{*}, \varnothing, \varnothing^{*}\right)$

Semirings for various models of

 provenance (2)$$
\mathrm{R}=
$$

A	B	C
a	b	c
X	X	
f	e	Y
y	Z	

(Witness, Proof) why-provenance
[BunemanKhannaTan 01] \& [Buneman+ PODS08]
Sets of witnesses (w. =set of contributing tuples)

Semiring: $(W h y(X), \cup, \cup, \varnothing,\{\varnothing\})$

\section*{Semirings for various models of provenance (3)
 $R=$
 | A | B | C |
| :---: | :---: | :---: |
| a | b | c |
| d | b | e |
| f | g | e |
 Q =
 }

Minimal witness why-provenance
[BunemanKhannaTan 01]
Sets of minimal witnesses
Semiring: $(\operatorname{PosBool}(X), \Lambda, \vee, \tau, \perp)$

Semirings for various models of

 provenance (4)$$
R=
$$

A	B	C
a	b	c
d	b	e
f	y	e
Z		

Q =

Notation:
\{\} set
[] bag

\square

Trio lineage [Das Sarma+ 08]
Bags of sets of contributing tuples (of witnesses)
Semiring: (Trio $(X),+, \cdot, 0,1)$ (defined in [Green, ICDT 09])

Semirings for various models of

 provenance (5)$\mathrm{R}=$

A	B	C
a	b	c
X	X	
d	b	e
y	Y	
f	g	e
Z		

Q =

A	C
d	e
	$\{[\mathrm{Y}, \mathrm{Y}],[\mathrm{Y}, \mathrm{Z}]\}$

Notation:
\{\} set
[] bag
Polynomials with boolean coefficients [Green, ICDT 09]
($\mathrm{B}[X]$-provenance)
Sets of bags of contributing tuples
Semiring: $(B[X],+, \cdot, 0,1)$

Semirings for various models of

 provenance (6)$$
\mathrm{R}=
$$

A	B	C
a	b	c
d	b	e
f	g	e

$$
Q=
$$

Provenance polynomials [GKT, PODS 07] ($\mathrm{N}[\mathrm{X}]$-provenance)
Bags of bags of contributing tuples
Semiring: ($N[X],+, \cdot, 0,1$)

Application

Discretionary Access Control [LaPadula]

- Public $=P$
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

$$
\begin{aligned}
& \mathrm{R}= \\
& \begin{array}{|c|c|c|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\hline \mathrm{~d} & \mathrm{~b} & \mathrm{e} \\
\hline \mathrm{X}=\mathrm{C} \\
\mathrm{y} & \mathrm{Y}=\mathrm{P} \\
\mathrm{f} & \mathrm{~g} & \mathrm{e} \\
\mathrm{Z}=\mathrm{C}
\end{array}
\end{aligned}
$$

A	C	
a	c	$2 \cdot X^{2}=?$
a	e	$X \cdot Y=?$
d	e	$2 \cdot Y^{2}+Y \cdot Z=?$
f	e	$2 \cdot Z^{2}+Y \cdot Z=?$

Application

Discretionary Access Control [LaPadula]

- Public = P
- Confidential $=\mathrm{C}$
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

$$
\begin{aligned}
& \mathrm{R}= \\
& \begin{array}{|c|c|c|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\hline
\end{array} \\
& \hline \mathrm{~d}
\end{aligned} \mathrm{~b}
$$

A	C	
a	c	$2 \cdot X^{2}=C$
a	e	$X \cdot Y=C$
d	e	$2 \cdot Y^{2}+Y \cdot Z=C$
f	e	$2 \cdot Z^{2}+Y \cdot Z=T$

(A, min, max, 0, P), where $\mathrm{A}=\mathrm{P}<\mathrm{C}<\mathrm{S}<\mathrm{T}<0$

But are there useful commutative semirings?

$(\mathrm{B}, \wedge, \vee, \mathrm{T}, \perp)$	Set semantics
$(\mathbb{N},+, \cdot, 0,1)$	Bag semantics
$(\mathrm{P}(\Omega), \cup, \cap, \varnothing, \Omega)$	Probabilistic events [FuhrRölleke 97]
$($ BoolExp $(\mathrm{X}), \wedge, \vee, \mathrm{T}, \perp)$	Conditional tables (c-tables) [ImielinskiLipski 84]
$\left(\mathrm{R}_{+}^{\infty}, \min ,+, 1,0\right)$	Tropical semiring (cost/distrust score/confidence need)
$(\mathrm{A}$, min, max, $0, \mathrm{P})$ where $\mathrm{A}=\mathrm{P}<\mathrm{C}<\mathrm{S}<\mathrm{T}<0$	Access control levels [PODS8]

A provenance hierarchy

One semiring to rule them all... (apologies!)

A path downward from K_{1} to K_{2} indicates that there exists an onto (surjective) semiring homomorphism $h: K_{1} \rightarrow K_{2}$

Using homomorphisms to relate models

Homomorphism?
$h(x+y)=h(x)+h(y) \quad h(x y)=h(x) h(y) \quad h(0)=0 \quad h(1)=1$
Moreover, for these homomorphisms $h(x)=x$

