CSE 544: Principles of Database Systems

Semijoin Reductions
Theory Wrap-up
Announcements

• Makeup lectures:
 – Friday, May 18, 10:30-11:50, CSE 405
 – Friday, May 25, 10:30-11:50, CSE 405

• No lectures:
 – Monday and Wednesday (May 21 and 23)

• Updated time:
 – Wednesday, May 30, 9-10:30, CSE 405

• Paper reviews
 – May 25: provenance
 – May 30: privacy

• Project presentations:
 – Monday, May 28, 1:30-4:30 and
 – Tuesday, May 29, 8:30-12

• Homework 3:
 – Coming today…
 – Due Sunday, June 3 at midnight
Outline

• Semijoin reductions

• Theory wrapup
Law of Semijoins

Recall the definition of a semijoin:

- \(R \bowtie S = \Pi_{A_1,\ldots,A_n} (R \bowtie S) \)
- Where the schemas are:
 - Input: \(R(A_1,\ldots,A_n) \), \(S(B_1,\ldots,B_m) \)
 - Output: \(T(A_1,\ldots,A_n) \)
- The law of semijoins is:

\[
R \bowtie S = (R \bowtie S) \bowtie S
\]
Remark

• Prove that the following two non-recursive datalog queries are equivalent:

\[Q_1(x,y,z) = R(x,y), S(x,z) \quad R_1(x,y) = R(x,y), S(x,z) \]
\[Q_2(x,y,z) = R_1(x,y), S(x,z) \]
Remark

• Prove that the following two non-recursive datalog queries are equivalent:

\[Q_1(x,y,z) = R(x,y), S(x,z) \]
\[R_1(x,y) = R(x,y), S(x,z) \]
\[Q_2(x,y,z) = R_1(x,y), S(x,z) \]
\[Q_2(x,y,z) = R(x,y), S(x,u), S(x,z) \]
Laws with Semijoins

• Very important in parallel databases

• Often combined with Bloom Filters

• See pp. 747 in the textbook
Semijoin Reducer

- Given a query:

 \[Q = R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n \]

- A **semijoin reducer** for Q is

 \[
 \begin{align*}
 R_{i_1} &= R_{i_1} \bowtie R_{j_1} \\
 R_{i_2} &= R_{i_2} \bowtie R_{j_2} \\
 \vdots \\
 R_{i_p} &= R_{i_p} \bowtie R_{j_p}
 \end{align*}
 \]

 such that the query is equivalent to:

 \[Q = R_{k_1} \bowtie R_{k_2} \bowtie \ldots \bowtie R_{k_n} \]

- A **full reducer** is such that no dangling tuples remain
Example

• Example:

\[Q = R(A,B) \Join S(B,C) \]

• A semijoin reducer is:

\[R_1(A,B) = R(A,B) \Join S(B,C) \]

• The rewritten query is:

\[Q = R_1(A,B) \Join S(B,C) \]
Why Would We Do This?

- Reduce amount of communication

\[Q = \gamma_{A,B,\text{count}(*)} R(A,B,D) \bowtie_B \sigma_{C=\text{value}}(S(B,C)) \]

\[
\begin{array}{ccccccc}
R_1 & R_2 & \ldots & R_k & S_1 & S_2 & S_m \\
\end{array}
\]

How can we optimize this query in a distributed computation?
Why Would We Do This?

• Reduce amount of communication

\[Q = \gamma_{A,B,\text{count}(\cdot)} R(A,B,D) \bowtie_B \sigma_{C=\text{value}}(S(B,C)) \]

Broadcast
the Bloom Filter

Hash Join

\[R_1, S_1 \]
\[R_2, S_2 \]
\[\ldots \]
\[R_k \]
\[S_1 \]
\[S_2 \]
\[\ldots \]
\[S_m \]

\[R_1(A,B,D) = R(A,B,D) \bowtie_B \sigma_{C=\text{value}}(S(B,C)) \]

\[Q = \gamma_{A,B,\text{count}(\cdot)} R_1(A,B,D) \bowtie_B \sigma_{C=\text{value}}(S(B,C)) \]
Semijoin Reducer

• Example:

\[Q = R(A,B) \bowtie S(B,C) \]

• A semijoin reducer is:

\[R_1(A,B) = R(A,B) \bowtie S(B,C) \]

• The rewritten query is:

\[Q = R_1(A,B) \bowtie S(B,C) \]

Are there dangling tuples?
Semijoin Reducer

• Example:
 \[Q = R(A,B) \bowtie S(B,C) \]

• A full semijoin reducer is:
 \[R_1(A,B) = R(A,B) \bowtie S(B,C) \]
 \[S_1(B,C) = S(B,C) \bowtie R_1(A,B) \]

• The rewritten query is:
 \[Q :- R_1(A,B) \bowtie S_1(B,C) \]

No more dangling tuples
Semijoin Reducer

• More complex example:
 \[Q = R(A,B) \bowtie S(B,C) \bowtie T(C,D,E) \]

• What is a full reducer?
Semijoin Reducer

• More complex example:

\[Q = R(A,B) \bowtie S(B,C) \bowtie T(C,D,E) \]

• A full reducer is:

\[
\begin{align*}
S'(B,C) & := S(B,C) \bowtie R(A,B) \\
T'(C,D,E) & := T(C,D,E) \bowtie S(B,C) \\
S''(B,C) & := S'(B,C) \bowtie T'(C,D,E) \\
R'(A,B) & := R(A,B) \bowtie S''(B,C)
\end{align*}
\]

\[Q = R'(A,B) \bowtie S''(B,C) \bowtie T'(C,D,E) \]
Semijoin Reducer

- Example:

\[Q = R(A,B) \bowtie S(B,C) \bowtie T(A,C) \]

- Doesn’t have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is “acyclic”

Database Theory, by Abiteboul, Hull, Vianu
Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

View:
CREATE VIEW DepAvgSal As (SELECT E.did, Avg(E.Sal) AS avgsal FROM Emp E GROUP BY E.did)

Query:
SELECT E.eid, E.sal FROM Emp E, Dept D, DepAvgSal V WHERE E.did = D.did AND E.did = V.did AND E.age < 30 AND D.budget > 100k AND E.sal > V.avgsal

Goal: compute only the necessary part of the view
Example with Semijoins

In the context of the provided data model:

- **Emp** (eid, ename, sal, did)
- **Dept** (did, dname, budget)
- **DeptAvgSal** (did, avgsal) /* view */

The **New view** uses a reducer:

```sql
CREATE VIEW LimitedAvgSal As (
    SELECT E.did, Avg(E.Sal) AS avgsal
    FROM Emp E, Dept D
    WHERE E.did = D.did AND D.buget > 100k
    GROUP BY E.did)
```

New query:

```sql
SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did
    AND E.age < 30 AND D.budget > 100k
    AND E.sal > V.avgsal
```
Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)
Example with Semijoins

New query:

```sql
SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal
```
Theory Wrap-up

- Datalog
- Datalog\n
- Query complexity
- Query containment/equivalence
- Static optimizations (semijoin reductions)
Datalog

What is the motivation behind datalog?
What is the motivation behind datalog?

• SQL is declarative (great) but limited:
 – Can’t express transitive closure

• Need to extend the declarative paradigm beyond traditional database computations
 – Massive distributed computations
 – Programming on multicores

• Datalog adds recursion to declarative programming
Datalog Key Concepts

• What are the three equivalent semantics in datalog?

• What are the “standard” evaluation algorithms for datalog?
Datalog Key Concepts

• What are the three equivalent semantics in datalog?
 – Minimal model semantics
 – Least fixpoint semantics
 – Proof-theoretic semantics

• What are the “standard” evaluation algorithms for datalog?
 – Naïve algorithm
 – Semi-naïve algorithm
Datalog–

• Recursion and negation don’t mix!
 – Why?

• What are the three different semantics of Datalog–?
Datalog\(\neg\)

• Recursion and negation don’t mix!
 – Why?

• What are the three different semantics of Datalog\(\neg\)?
 – Stratified Datalog\(\neg\)
 – Inflationary fixpoint
 – Partial fixpoint

• Increasing expressive power (see HW3)
Query Complexity

What are these complexity classes? What do they mean from a practical point of view? Which query languages correspond to what class?
Query Complexity

What are these complexity classes?
What do they mean from a practical point of view?
Which query languages correspond to what class?

\(\text{RC} = \text{AC}^0 \)

\(\text{RC} + \text{Transitive Closure} = \text{NL} \)

\(\text{Inflationary datalog}^\neg = \text{PTIME} \)

\(\text{Partial fixpoint datalog}^\neg = \text{PSPACE} \)

\(\text{AC}^0 = \text{embarrassingly parallel} \)
\(\text{NL} = \text{some iteration required, theoretically parallel} \)
\(\text{PTIME} = \text{efficient, no longer parallel} \)
\(\text{PSPACE} = \text{potentially inefficient, needs careful programming (Dedalus)} \)
Query Containment/Equivalence

• Can we check whether two Java functions compute the same (mathematical) function?

• Can we check whether two conjunctive queries compute the same (mathematical) function?
Query Containment/Equivalence

• Can we check whether two Java functions compute the same (mathematical) function?
 – No: it is undecidable (by Rice’s theorem)

• Can we check whether two conjunctive queries compute the same (mathematical) function?
 – Yes: the problem is NP-complete
Query Containment/Equivalence

- What are the two equivalent criteria for checking query containment $q_1 \subseteq q_2$?
Query Containment/Equivalence

• What are the two equivalent criteria for checking query containment $q_1 \subseteq q_2$?
 – Check if q_2 returns the canonical tuple on the canonical database for q_1
 – Check if there exists a homomorphism $q_2 \rightarrow q_1$
Query Containment/Equivalence

- CQ – NP-complete
- Unions of CQ – NP-complete
- CQ$^<$ – Π^p_2 complete
- Relational Calculus – undecidable

- Trakhtentbrot’s theorem = implies that there is virtually nothing one can decide about the semantics of RC queries
Static Optimizations

• Semijoin reductions
 – Very important in Big Data processing
 – Often combined with Bloom filters (what are they?)

• Magic sets
 – These are semijoin reductions for datalog programs
 – In HW3 you will be asked to do manually a semijoin reduction