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Announcements 

•  Project 
–  I started to email feedback, will continue today 
– Milestone due this coming Sunday 
– You are working hard on the project this week! 

•  Reading assignments 
– None this week 
– Optional reading: two books 
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Brief Review of Datalog 
•  Discuss the naïve and 

semi-naïve algorithm 

•  Discuss semantics: 
– Minimal model 
–  Least fix point 
– Proof theoretic 

•  Adding negation: discuss 
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T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), T(z,y) 



Crash Review of Complexity 
Classes 

In class: define and discuss these complexity 
classes 
•  AC0 

•  L  = a.k.a. LOGSPACE 
•  NL= a.k.a. NLOGSPACE 
•  NC 
•  P = a.k.a. PTIME 
•  NP 
•  PSPACE 
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Crash Review of Complexity 
Classes 
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All computable problems 

PSPACE 

PTIME 

NCk … 
NL 

L 
AC0 



Crash Review of Complexity 
Classes 

There is one problem that was proven to be outside of AC0  
•  Which one? 
Other classes have not been separated, but have complete problems 
•  What is a complete problem in L? 

•  What is a complete problem in NL? 

•  What is a complete problem in NC? 

•  What is a complete problem in P? 

•  What is a complete problem in NP? 

•  What is a complete problem in PSPACE? 
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Crash Review of Complexity 
Classes 

There is one problem that was proven to be outside of AC0  
•  Which one? Parity 
Other classes have not been separated, but have complete problems 
•  Complete problem in L: Deterministic reachability.  Given a directed, 

deterministic* graph, two nodes a,b, check if b is reachable from a 

•  Complete problem in NL: Reachability.  Given a directed graph and 
two nodes a,b, check if b is reachable from a 

•  Complete problem in NC: N/A (it would be complete for some NCk) 

•  Complete problems in P: same problem with many names. 
Alternating Graph Reachability, Circuit Value Problem, Win-Move 
game, Non-emptyness of a CFG (in class) 

•  Complete problem in NP: you know these… 
•  Complete problem in PSPACE: Qantified Boolean Expressions 
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Crash Review of Complexity 
Classes 

Rules of thumb for dealing with complexity classes 
 
•  Step 1: determine if you can solve your problem “in 

that class”. 

•  Step 2: if not, then check if your problem “looks 
like” (more precisely: is reducible from) the complete 
problem for the next class 

Of special interest are problems that are PTIME-
complete.  Theory tells us that these are not efficiently 
parallelizable! 
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The Query Complexity Problem 

•  The answer depends on the query language: 
– Relational calculus, relational algebra 
– Datalog, in various flavors 

•  Query language design tradeoff 
– High complexity à can express rich queries 
–  Low complexity à can be implemented efficiently 
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Given a query Q and a database D, 
what is the complexity of computing Q(D)? 



Vardi, The Complexity of Relational 
Query Languages, STOC 1982 

Query Q, database D 

•  Data complexity:  
fix Q, complexity = f(D) 

•  Query complexity:  
fix D, complexity = f(Q) 

•  Combined complexity: 
complexity = f(D,Q) 

Moshe Vardi 
2008 ACM SIGMOD 

Codd Innovation Award 
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Example 
Q(x)  =  ∃y.R(x,y) ∧ (∀z.S(y,z) à ∃u.R(z,u)) 

a b 

a c 

b f 

b g 

a f 

c b 

a c 

a a 

b a 

b b 

g b 

f a 

R = S = 

Give an algorithm for computing Q on any input D. 
Express its complexity as a function of* n = |ADom(D)| 

* Active Domain = all constants in D.  ADom(D) = {a,b,c,…} 

Database D:  
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Example 
Q(x)  =  ∃y.R(x,y) ∧ (∀z.S(y,z) à ∃u.R(z,u)) 

for x in ADom do 
   goody = false 
   for y in ADom do 
      if (x,y)∈R then 
           goodz = true 
           for z in ADom do 
                if (y,z) ∈ S then 
                     goodu = false 
                     for u in Adom do 
                         if (z,u) ∈ R then goodu = true 
                     endfor 
                     if not goodu then goodz = false 
            endfor 
            if goodz then goody = true 
    endfor 
    if goody then output x 
endfor 

Complexity = O(n4) 

PTIME 

Number of 
variables 



Conventions 

•  The complexity is usually defined for a 
decision problem 
– Hence, we will study only the complexity of 

Boolean queries 

•  The complexity usually assumes some 
encoding of the input 
– Hence we will encode the database instances 

using a binary represenation 
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Boolean Queries 
Definition A Boolean Query is a query that 
returns either true or false 

Q(x,y)  =  ∃z.R(x,z) ∧ S(z,y) 

Boolean queries: Non-boolean queries 
Q  =  ∃z.R(‘a’,z) ∧ S(z,’b’) 

SELECT DISTINCT R.x, S.y 
FROM R, S 
WHERE R.z = S.z 

SELECT DISTINCT ‘yes’ 
FROM R, S 
WHERE R.x=‘a’ and R.y = S.y and S.y=‘b’ 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z),R(z,y) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z),R(z,y) 
Answer() :- T(‘a’,’b’) 

Q(x)=∃y.R(x,y)∧(∀z.S(y,z)à∃u.R(z,u)) Q=∃y.R(‘a’,y)∧(∀z.S(y,z)à∃u.R(z,u)) 



Database Encoding  

Encode D = (D, R1
D, …, Rk

D) as follows: 
•  Let n = |ADom(D)| 
•  If Ri has arity k, then encode it as a string 

of nk bits:  
– 0 means element (a1,…, ak) ∉  Ri

D 
– 1 means element (a1,…, ak) ∈ Ri

D 

a b 

a c 

b b 

b c 

c a 

0 1 1 

0 1 1 

1 0 0 
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The Data Complexity 

Fix any Boolean query Q in the query 
language.  Determine the complexity of the 
following problem: 

•  Given an input database instance D = (D, 
R1

D, …, Rk
D), check if Q(D) = true. 

•  This is also known as the Model Checking 
Problem: check if D is a model for Q. 



The Data Complexity 
Will discuss next: 

•  Relational queries 

•  Datalog and stratified datalog¬ 

•  Datalog¬ with inflationary fixpoint 

•  Datalog¬ with partial fixpoint 
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Question in Class 
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All computable problems 

PSPACE 

PTIME 

NCk … 
NL 

L 
AC0 

What is the data complexity 
of Relational Queries? 

Q  =  ∃z.R(‘a’,z) ∧ S(z,’b’) 
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Example 

Q  =  ∃z.R(‘a’,z) ∧ S(z,’b’) Prove that Q is in AC0 

R: a b c 
a 0 1 … 
b 
c 

S: a b c 
a 0 0 1 
b … 
c 
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Example 

Q  =  ∃z.R(‘a’,z) ∧ S(z,’b’) 

Example circuit for n = 3 (i.e. ADom={a,b,c}) 

R: a b c 
a 0 1 … 
b 
c 

S: a b c 
a 0 0 1 
b … 
c 

OR has n inputs 

Each AND has 
2 inputs 

Circuit  
depth = 2 

Prove that Q is in AC0 
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Another Example 

Practice at home: 
Show that Q is in AC0 by showing how 
to construct a circuit for computing Q. 
What is the depth? 
What fanouts have your OR and AND gates ? 

Q=∃y.R(‘a’,y)∧(∀z.S(y,z)à∃u.R(z,u)) 



Relational Queries 

CSE544 - Spring, 2012                 22 

All computable problems 

PSPACE 

PTIME 

NCk … 
NL 

L 
AC0 

Theorem.  All relational queries are in AC0 



Question in Class 
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All computable problems 

PSPACE 

PTIME 

NCk … 
NL 

L 
AC0 

What is the data complexity 
of datalog Queries? 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z),R(z,y) 
Answer() :- T(‘a’,’b’) 



Datalog 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z),R(z,y) 
Answer() :- T(‘a1’,’b6’) 

Datalog is not in AC0 

Recall that “parity” is not in AC0 
We will reduce “parity” to the reachability problem 

a1 a2 a4 a3 a5 

Given input (x1, x2, x3, x4, x5) = (0,1,1,0,1) construct the graph: 

b1 b2 b4 b3 b5 

a6 

b6 

The # of 1’s is odd 
iff Answer is true 



Datalog 
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Theorem. Datalog is in PTIME. 

More precisely, fix any Boolean datalog program P. 
The problem: given D, check if P(D) = true is in PTIME 

Proof: … [discuss in class] 



Datalog 
Theorem. Datalog is in PTIME. 

More precisely, fix any Boolean datalog program P. 
The problem: given D, check if P(D) = true is in PTIME 

Proof: … [discuss in class] 

P1 = P2 = … = ∅ 
Loop 
       NewP1 = SPJU1; NewP2 = SPJU2;  … 
       if (NewP1 = P1 and NewP2 = P2 and …) 
              then break 
       P1 = NewP1; P2 = NewP2; … 
Endloop 

Each iteration of the naïve algorithm is in PTIME (in fact, in AC0) 

If an IDB Pi has arity k,  
then it will reach its fixpoint 
after at most nk iterations. 
Hence, it is in PTIME. 



Stratified and Inflationary Datalog¬  

Theorem. Stratified datalog¬ is in PTIME. 

Theorem. datalog¬ with inflationary semantics is in PTIME. 

Why? 

Why? 



Datalog 
Datalog can express the Circuit Value Problem 

Circuit value:  
Input = a rooted DAG; leaves labeled 0/, internal nodes labeled AND/OR/NOT, 
Output = check if the value of the root is 1 

Note: assume w.l.o.g. that the circuit is in Negation Normal Form, 
i.e. all negations are pushed to the leaves (where 0à1 and 1à0)  

Write datalog program over EDB: 

ROOT(x) 
AND(x,y1,y2) 
OR(x,y1,y2) 
ZERO(x) 
ONE(x) 

AND 

OR OR 

AND 

OR 

0 1 

Root 



Datalog 
Datalog can expression the Circuit Value Problem 

ROOT(x) 
AND(x,y1,y2) 
OR(x,y1,y2) 
ZERO(x) 
ONE(x) 

AND 

OR OR 

AND 

OR 

0 1 

Root 

IsOne(x) :- ONE(x) 
IsOne(x) :- OR(x,y1,y2),IsOne(y1) 
IsOne(x) :- OR(x,y1,y2),IsOne(y2) 
IsOne(x) :- AND(x,y1,y2),IsOne(y1),IsOne(y2) 
Answer() :- ROOT(x), IsOne(x) 

Discuss the 
“move-win” game 
in class. 



Datalog, stratified and inflationary 
datalog¬ 
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All computable problems 

PSPACE 

PTIME 

NCk … 
NL 

L 
AC0 

Theorem.  Datalog, stratified and inflationary datalog¬ 
are in PTIME  



NLogspace 
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Some datalog programs are in NL ( = Nlogspace) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z),R(z,y) 
Answer() :- T(‘a’,’b’) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z),T(z,y) 
Answer() :- T(‘a’,’b’) 

What about the following “same generation” query? 
Is it in NL, or is it PTIME complete? 

S(x,y) :- R(z,x),R(z,y) 
S(x,y) :- R(x1,x),R(y1,y),S(x1,y1) 
Answer() :- S(‘a’,’b’) 

Answer at home… 



Partial Fixpoint Datalog¬ 
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All computable problems 

PSPACE 

PTIME 

NCk … 
NL 

L 
AC0 

Theorem. Datalog¬ 
with partial fixpoint semantics is in PSPACE 



Descriptive Complexity 

•  In computational complexity one describes 
complexity classes in terms of a 
computational model 
– Turing Machine, circuit, etc 

•  In descriptive complexity one describes 
complexity classes in terms of the logic 
(“query language”) that captures that class 
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Descriptive Complexity 
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Partial fixpoint datalog¬ = PSPACE 

Inflationary datalog¬ = PTIME 

RC + Transitive Closure = NL 

RC = AC0 

Assume we have access to an order relation < 
(and to a BIT relation for AC0) 


