CSE 544: Principles of Database Systems

Query Complexity

Announcements

- Project
 - I started to email feedback, will continue today
 - Milestone due this coming Sunday
 - You are working hard on the project this week!
- Reading assignments
 - None this week
 - Optional reading: two books

Brief Review of Datalog

- Discuss the naïve and semi-naïve algorithm
- Discuss semantics:
 - Minimal model
 - Least fix point
 - Proof theoretic
- Adding negation: discuss

$$T(x,y) := R(x,y)$$

 $T(x,y) := R(x,z), T(z,y)$

In class: define and discuss these complexity classes

- AC⁰
- L = a.k.a. LOGSPACE
- NL= a.k.a. NLOGSPACE
- NC
- P = a.k.a. PTIME
- NP
- PSPACE

There is one problem that was proven to be outside of AC⁰

• Which one?

Other classes have not been separated, but have *complete problems*

- What is a complete problem in L?
- What is a complete problem in NL?
- What is a complete problem in NC?
- What is a complete problem in P?
- What is a complete problem in NP?
- What is a complete problem in PSPACE?

There is one problem that was proven to be outside of AC⁰

• Which one? Parity

Other classes have not been separated, but have complete problems

- Complete problem in L: Deterministic reachability. Given a directed, deterministic* graph, two nodes a,b, check if b is reachable from a
- Complete problem in NL: Reachability. Given a directed graph and two nodes a,b, check if b is reachable from a
- Complete problem in NC: N/A (it would be complete for some NC^k)
- Complete problems in P: same problem with many names. Alternating Graph Reachability, Circuit Value Problem, Win-Move game, Non-emptyness of a CFG (in class)
- Complete problem in NP: you know these...
- Complete problem in PSPACE: Qantified Boolean Expressions

Rules of thumb for dealing with complexity classes

- Step 1: determine if you can solve your problem "in that class".
- Step 2: if not, then check if your problem "looks like" (more precisely: is reducible from) the complete problem for the next class

Of special interest are problems that are PTIMEcomplete. Theory tells us that these are *not efficiently parallelizable!*

The Query Complexity Problem

Given a query Q and a database D, what is the complexity of computing Q(D)?

- The answer depends on the query language:
 - Relational calculus, relational algebra
 - Datalog, in various flavors
- Query language design tradeoff
 - High complexity \rightarrow can express rich queries
 - Low complexity \rightarrow can be implemented efficiently

Vardi, *The Complexity of Relational Query Languages*, STOC 1982

Query Q, database D

- <u>Data complexity</u>: fix Q, complexity = f(D)
- <u>Query complexity</u>: fix D, complexity = f(Q)
- <u>Combined complexity</u>: complexity = f(D,Q)

Moshe Vardi 2008 ACM SIGMOD Codd Innovation Award

Give an algorithm for computing Q on any input **D**. Express its complexity as a function of n = |ADom(D)|

* Active Domain = all constants in D. ADom(D) = {a,b,c,...}

Example

Conventions

- The complexity is usually defined for a decision problem
 - Hence, we will study only the complexity of Boolean queries
- The complexity usually assumes some encoding of the input
 - Hence we will encode the database instances using a binary represenation

Boolean Queries

Definition A *Boolean Query* is a query that returns either true or false

Non-boolean queries

 $Q(x,y) = \exists z.R(x,z) \land S(z,y)$

SELECT DISTINCT R.x, S.y FROM R, S WHERE R.z = S.z

 $Q(x)=\exists y.R(x,y) \land (\forall z.S(y,z) \rightarrow \exists u.R(z,u))$

Boolean queries:

 $Q = \exists z.R(a',z) \land S(z,b')$

```
SELECT DISTINCT 'yes'
FROM R, S
WHERE R.x='a' and R.y = S.y and S.y='b'
```

 $Q=\exists y.R(a',y) \land (\forall z.S(y,z) \rightarrow \exists u.R(z,u))$

```
T(x,y) :- R(x,y)
T(x,y) :- T(x,z),R(z,y)
Answer() :- T('a','b')
```

Database Encoding

Encode **D** = (D, R_1^D , ..., R_k^D) as follows:

- Let n = |ADom(D)|
- If R_i has arity k, then encode it as a string of n^k bits:
 - -0 means element $(a_1, \ldots, a_k) \notin R_i^D$
 - 1 means element $(a_1, ..., a_k) \in R_i^D$

а	b
а	с
b	b
b	с
С	а

0	1	1
0	1	1
1	0	0

The Data Complexity

Fix any Boolean query Q in the query language. Determine the complexity of the following problem:

- Given an input database instance D = (D, R₁^D, ..., R_k^D), check if Q(D) = true.
- This is also known as the <u>Model Checking</u> <u>Problem</u>: check if **D** is a model for Q.

The Data Complexity

Will discuss next:

- Relational queries
- Datalog and stratified datalog[¬]
- Datalog[¬] with inflationary fixpoint
- Datalog[¬] with partial fixpoint

Question in Class

Example

$Q = \exists z.R(a',z) \land S(z,b')$

Prove that Q is in AC⁰

Another Example

 $Q=\exists y.R(a',y) \land (\forall z.S(y,z) \rightarrow \exists u.R(z,u))$

Practice at home: Show that Q is in AC⁰ by showing how to construct a circuit for computing Q. What is the depth? What fanouts have your OR and AND gates ?

Relational Queries

Question in Class

Datalog is not in AC⁰

Recall that "parity" is not in AC⁰ We will reduce "parity" to the reachability problem

Given input $(x_1, x_2, x_3, x_4, x_5) = (0, 1, 1, 0, 1)$ construct the graph:

T(x,y) := R(x,y)T(x,y) := T(x,z), R(z,y)Answer() :- $T(a_1', b_6')$

The # of 1's is odd iff Answer is true

Theorem. Datalog is in PTIME.

More precisely, fix any Boolean datalog program P. The problem: given D, check if P(D) = true is in PTIME

Proof: ... [discuss in class]

Theorem. Datalog is in PTIME.

More precisely, fix any Boolean datalog program P. The problem: given D, check if P(D) = true is in PTIME

Proof: ... [discuss in class]

Each iteration of the naïve algorithm is in PTIME (in fact, in AC⁰)

```
P_{1} = P_{2} = \dots = \emptyset

Loop

NewP_{1} = SPJU_{1}; NewP_{2} = SPJU_{2}; \dots

if (NewP_{1} = P_{1} and NewP_{2} = P_{2} and ...)

then break

P_{1} = NewP_{1}; P_{2} = NewP_{2}; \dots

Endloop
```

If an IDB P_i has arity k, then it will reach its fixpoint after at most n^k iterations. Hence, it is in PTIME.

Stratified and Inflationary Datalog[¬]

Theorem. Stratified datalog[¬] is in PTIME.

Why?

Theorem. datalog[¬] with inflationary semantics is in PTIME.

Why?

Datalog can express the Circuit Value Problem

Circuit value:

Input = a rooted DAG; leaves labeled 0/, internal nodes labeled AND/OR/NOT, Output = check if the value of the root is 1

Note: assume w.l.o.g. that the circuit is in Negation Normal Form, i.e. all negations are pushed to the leaves (where $0 \rightarrow 1$ and $1 \rightarrow 0$)

Write datalog program over EDB:

ROOT(x) AND(x,y1,y2) OR(x,y1,y2) ZERO(x) ONE(x)

Datalog can expression the Circuit Value Problem

IsOne(x) :- ONE(x) IsOne(x) :- OR(x,y1,y2),IsOne(y1) IsOne(x) :- OR(x,y1,y2),IsOne(y2) IsOne(x) :- AND(x,y1,y2),IsOne(y1),IsOne(y2) Answer() :- ROOT(x), IsOne(x)

ROOT(x) AND(x,y1,y2) OR(x,y1,y2) ZERO(x) ONE(x)

Discuss the "move-win" game in class.

Datalog, stratified and inflationary datalog[¬]

Theorem. Datalog, stratified and inflationary datalog[¬] are in PTIME

NLogspace

Some datalog programs are in NL (= Nlogspace)

T(x,y) :- R(x,y) T(x,y) :- T(x,z),R(z,y) Answer() :- T(ʻa','b')

What about the following "same generation" query? Is it in NL, or is it PTIME complete?

S(x,y) := R(z,x), R(z,y)S(x,y) := R(x1,x), R(y1,y), S(x1,y1)Answer() :- S('a','b')

Answer at home...

Partial Fixpoint Datalog[¬]

Descriptive Complexity

 In computational complexity one describes complexity classes in terms of a computational model

– Turing Machine, circuit, etc

 In descriptive complexity one describes complexity classes in terms of the logic ("query language") that captures that class

Descriptive Complexity

Assume we have access to an order relation < (and to a BIT relation for AC⁰)

RC + Transitive Closure = NL

Inflationary datalog[¬] = PTIME

Partial fixpoint datalog[¬] = PSPACE