
CSE544: Principles of 
Database Systems 
Part III: Database Theory 

Datalog 



Why DB Theory 

•  Discuss the urgency of parallelism in the 
paper 

•  Discuss why data-centric approach to 
parallel computing 

•  Theory is key for understanding this 
approach 



Outline of DB Theory 

•  Datalog – this lecture 

•  Query complexity – next week 

•  Static analysis (query equivalence) 

•  Advanced optimizations (semijoin reduction) 



Datalog 

Review the following basic concepts from 
Lecture 2: 
•  Fact 
•  Rule 
•  Head and body of a rule 
•  Existential variable 
•  Head variable 
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it compute? 
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Simple datalog programs 

CSE544 - Spring, 2012 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

Alternative ways to compute TC: 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), T(z,y) 

Right linear 

Left linear 

Non-linear 

Discuss pros/cons in class 
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Simple datalog programs 

CSE544 - Spring, 2012 
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Compute TC (ignoring color): 

Compute pairs of nodes connected  
by the same color (e.g. (2,4)) 
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Simple datalog programs 
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Simple datalog programs 

CSE544 - Spring, 2012 
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1 Blue 4 
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4 Yellow 5 

R= 

T(x,y) :- R(x,c,y) 
T(x,y) :- R(x,c,z), T(z,y) 

Compute TC (ignoring color): 

Compute pairs of nodes connected  
by the same color (e.g. (2,4)) 

T(x,c,y) :- R(x,c,y) 
T(x,c,y) :- R(x,c,z), T(z,c,y) 
Answer(x,y) :- T(x,c,y) 
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R encodes a colored graph 
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Simple datalog programs 

CSE544 - Spring, 2012 

What does this program compute in general? 
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R, G, B encodes a 3-colored graph 
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5 T(x,y) :- R(x,y) 
T(x,y) :- G(x,y) 
S(x,y) :- T(x,z),B(z,y) 
S(x,y) :- S(x,z),B(z,y) 
T(x,y) :- S(x,z),R(z,y) 
T(x,y) :- S(x,z),G(z,y) 
Answer(x,y) :- S(x,y) 
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Simple datalog programs 

CSE544 - Spring, 2012 

1 
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R, G, B encodes a 3-colored graph 

1 2 

3 4 

4 5 

R= 

What does this program compute in general? 

T(x,y) :- R(x,y) 
T(x,y) :- G(x,y) 
S(x,y) :- T(x,z),B(z,y) 
S(x,y) :- S(x,z),B(z,y) 
T(x,y) :- S(x,z),R(z,y) 
T(x,y) :- S(x,z),G(z,y) 
Answer(x,y) :- S(x,y) 

2 3 

2 1 

1 4 

G= 

B= 

Answer: it computes pairs of nodes connected 
by a path spelling out certain regular expressions: 
•  S = ((R or G).B+)* 
•  T = ((R or G).B+)*.(R or G) 

5 
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Syntax of Datalog Programs 
The schema consists of two sets of relations: 
•  Extensional Database (EDB): R1, R2, … 
•  Intentional Database (IDB): P1, P2, … 
A datalog program P has the form: 

Pi1(x11,x12,…) :- body1 
Pi2(x21,x22,…) :- body2 
 
           …. 

•  Each head predicate Pi is an IDB 
•  Each body is a conjunction of IDB and/or EDB predicates 
•  See lecture 2 

Note: no negation (yet)! Recursion OK. 

P: 
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Naïve Datalog Evaluation Algorithm 

Naïve datalog evaluation algorithm: 

Datalog program: 

Pi1 :-  body1 
Pi2 :-  body2 
     …. 

è 
P1 :-  body11∪ body12∪ … 
P2 :-  body21∪ body22∪ … 
…. 

Group by  
IDB predicate 

è 
P1 :-  SPJU1 
P2 :-  SPJU2 
…. 

Each rule is a 
Select-Project-Join-Union query 

P1 = P2 = … = ∅ 
Loop 

 NewP1 = SPJU1; NewP2 = SPJU2;  … 
       if (NewP1 = P1 and NewP2 = P2 and …) 
              then break 
       P1 = NewP1; P2 = NewP2; … 
Endloop 

Example: T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T= ∅ 
Loop 

 NewT(x,y)  = R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) 
       if (NewT = T) 
              then break 
       T = NewT 
Endloop 

T(x,y) :- R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) è 



Problem with the Naïve Algorithm 

•  The same facts are discovered over and 
over again 

•  The semi-naïve algorithm tries to reduce 
the number of facts discovered multiple 
times 



Background: Incremental View 
Maintenace 

Let V be a view computed by one datalog rule (no recursion) V :- body 

If (some of) the relations are updated:  R1 ß R1 ∪ΔR1, R1 ß R2 ∪ΔR2, … 
Then the view is also modified as follows:  V ß V ∪ΔV 

Incremental view maintenance: compute ΔV (without having to recompute V) 
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Background: Incremental View 
Maintenace 

ΔV(x,y) :-   R(x,z), ΔS(z,y) 
ΔV(x,y) :-   ΔR(x,z), S(z,y) 
ΔV(x,y) :-   ΔR(x,z), ΔS(z,y) 

ΔW(x,y) :-   R(x,z), ΔR(z,y) 
ΔW(x,y) :-   ΔR(x,z), R(z,y) 
ΔW(x,y) :-   ΔR(x,z), ΔR(z,y) 

. . . . Note: one rule may 
generate multiple Δ-rules 

Let V be a view computed by one datalog rule (no recursion) V :- body 

If (some of) the relations are updated:  R1 ß R1 ∪ΔR1, R1 ß R2 ∪ΔR2, … 
Then the view is also modified as follows:  V ß V ∪ΔV 

Incremental view maintenance: compute ΔV (without having to recompute V) 

Solution: by examples… 

V(x,y) :- R(x,z),S(z,y) 

W(x,y) :- R(x,z),R(z,y) 

W(x,y) :- R(x,u),S(u,v),T(v,y) 



Semi-naïve Evaluation Algorithm 
Separate the Datalog program into the non-recursive, and the recursive part. 
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi. 

P1 = P2 = … = ∅,  
ΔP1 = non-recursive-SPJU1, ΔP2 = non-recursive-SPJU2, … 
Loop 

 ΔP1 = Δ SPJU1; ΔP2 = ΔSPJU2;  … 
       if (ΔP1 = ∅ and ΔP2 = ∅ and  …) 
              then break 
       P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2;  … 
Endloop 

Example: T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T= ∅, ΔT = R 
Loop 

 ΔT(x,y)  = Πxy(R(x,z) ⋈ ΔT(z,y)) 
       if (ΔT = ∅) 
              then break 
       T = T∪ΔT 
Endloop 

Note: for any linear datalog programs, 
the semi-naïve algorithm has only 
one Δ-rule for each rule! 



Discussion in Class 

How would you compute 
the transitive closure of a 
very large graph R(x,y)? 

•  Assume a single server 

•  Assume a shared 
nothing architecture 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), T(z,y) 

Right linear TC 

Non-linear TC 



Discussion in Class 

The Declarative Imperative paper: 
•  What are the extensions to datalog in 

Dedalus? 
•  What is the main usage of Dedalus 

described in the paper? Discuss some 
applications, discuss what’s missing. 



Semantics of a Datalog Program 

Three different, equivalent semantics: 

•  Minimal model semantics 

•  Least fixpoint semantics 

•  Proof-theoretic semantics 



Minimal Model Semantics (1/2) 
To each rule r: P(x1…xk) :- R1(…),R2(…), … 

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧ …) è P(…)] 

Same as: ∀x1…∀xk. [∃y1…∃ym.(R1(…)∧R2(…)∧ …) è P(…)] 

All variables in the rule 

Head variables Existential variables 

Example.  Rule: T(x,y) :- R(x,z), T(z,y) Sentence: ∀x.∀y.∀z.(R(x,z)∧T(z,y)àT(x,y) 
≡ ∀x.∀y.(∃z.R(x,z)∧T(z,y)àT(x,y) 

Definition. If P is a datalog program,  
ΣP is the set of all logical sentences associated to its rules. 



Minimal Model Semantics (1/2) 

Definition. Given an EDB database instance I and a datalog program P, 
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP 

Definition.  A pair (I,J) where I is an EDB and J is an IDB 
is a model for P, if (I,J) ⊨ ΣP 

Theorem. The minimal model always exists, and is unique. 



Minimal Model Semantics (1/2) 

Definition. Given an EDB database instance I and a datalog program P, 
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP 

Definition.  A pair (I,J) where I is an EDB and J is an IDB 
is a model for P, if (I,J) ⊨ ΣP 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

Which of these IDBs are models? 
Which are minimal models? 

T= 

R= 1 2 

2 3 

3 4 

4 5 

1 2 

2 3 

3 4 

4 5 

1 3 

2 4 

3 5 

T= 

Theorem. The minimal model always exists, and is unique. 

1 2 

1 3 

1 4 

1 5 

2 … 

… … 

… … 

5 3 

5 4 

1 2 4 3 5 

Example: 
1 2 

2 3 

3 4 

4 5 

1 3 

2 4 

3 5 

1 4 

2 5 

1 5 

T= 

All pairs of 
distinct nodes 



Minimal Fixpoint Semantics (1/2) 
Definition.  Fix an EDB I, and a datalog program P. 
The immediate consequence operator TP is defined as follows. 
For any IDB J: 
    TP(J) = all IDB facts that are immediate consequences from I and J. 

Fact. For any datalog program P, the immediate consequence operator 
is monotone. In other words, if J1 ⊆ J2 then TP(J1) ⊆ TP(J2). 

Theorem. The immediate consequence operator has a unique, minimal fixpoint J: 
fix(TP) = J, where J is the minimal instance with the property TP(J) = J. 

Proof: using Knaster-Tarski’s theorem for monotone functions. 
The fixpoint is given by: 
   fix (TP) = J0 ∪  J1 ∪ J2∪…   where  J0 = ∅ ,   Jk+1 = TP(Jk)  
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Minimal Fixpoint Semantics (2/2) 

CSE544 - Spring, 2012 

1 2 4 3 

1 2 

2 3 

3 4 

4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

T = 

5 

J0 = ∅ J1 = TP(J0) J2 = TP(J1) J3 = TP(J2) J4 = TP(J3)  
1 2 

2 3 

3 4 

4 5 

1 2 

2 3 

3 4 

4 5 

1 3 

2 4 

3 5 

1 2 

2 3 

3 4 

4 5 

1 3 

2 4 

3 5 

1 4 

2 5 

1 2 

2 3 

3 4 

4 5 

1 3 

2 4 

3 5 

1 4 

2 5 

1 5 
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Proof Theoretic Semantics 

CSE544 - Spring, 2012 

1 2 4 3 

1 2 

2 3 

3 4 

4 5 

R= 

T(x,y) :- R(x,y) 
T(x,y) :- R(x,z), T(z,y) 

5 

Every fact in the IDB has a derivation tree, or proof tree justifying its existence. 

Derivation tree 
of T(1,4) T(1,4) 

R(1,2) T(2,4) 

R(2,3) T(3,4) 

R(3,4) 
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Adding Negation:  Datalog¬ 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Example: compute the complement of the transitive closure 

What does this mean?? 



Recursion and Negation 
Don’t Like Each Other 

CSE544 - Spring, 2012                 35 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

EDB:    I  = { R(a) } 

Which IDBs are models of P? 

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) } 



Recursion and Negation 
Don’t Like Each Other 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

EDB:    I  = { R(a) } 

Which IDBs are models of P? 

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) } 

Yes: the facts in J2 are 
R(a), S(a), ¬T(a) 

and both rules are true. 

Yes Yes 

There is no minimal model! 

No: both 
rules fail 



Recursion and Negation 
Don’t Like Each Other 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

EDB:    I  = { R(a) } 

Which IDBs are models of P? 

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) } 

Yes: the facts in J2 are 
R(a), S(a), ¬T(a) 

and both rules are true. 

Yes Yes 

There is no minimal model! 

No: both 
rules fail 

There is no minimal fixpoint! 
(Why does Knaster-Tarski’s 
theorem fail?) 



Adding Negation:  datalog¬ 
•  Solution 1: Stratified Datalog¬ 

–  Insist that the program be stratified: rules are 
partitioned into strata, and an IDB predicate that 
occurs only in strata ≤ k may be negated in strata 
≥ k+1 

•  Solution 2: Inflationary-fixpoint Datalog¬ 
– Compute the fixpoint of J ∪ TP(J) 
– Always terminates (why ?) 

•  Solution 3: Partial-fixpoint Datalog¬,* 
– Compute the fixpoint of TP(J) 
– May not terminate 

CSE544 - Spring, 2012                 38 



Stratified datalog¬ 

P1 :- body1 
P2 :- body2 
           …. 
 
           …. 
 
Pj :- bodyj 
 
           …. 
           …. 
 
           …. 
Pn :- bodyn 

P: 

A datalog¬ program is stratified if its rules can be partitioned into k strata, such that: 
•  If an IDB predicate P appears negated in a rule in stratum i, 

then it can only appear in the head of a rule in strata 1, 2, …, i-1 

   Stratum i 

Note: a datalog¬ program 
either is stratified or it ain’t! 

Which programs are stratified? 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
CT(x,y) :- Node(x), Node(y), not T(x,y) 



Stratified datalog¬ 

•  Evaluation algorithm for stratified datalog¬: 

•  For each stratum i = 1, 2, …, do: 
– Treat all IDB’s defined in prior strata as EBS 
– Evaluate the IDB’s defined in stratum i, using 

either the naïve or the semi-naïve algorithm 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Does this compute a 
minimal model? 



Stratified datalog¬ 

•  Evaluation algorithm for stratified datalog¬: 

•  For each stratum i = 1, 2, …, do: 
– Treat all IDB’s defined in prior strata as EBS 
– Evaluate the IDB’s defined in stratum i, using 

either the naïve or the semi-naïve algorithm 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Does this compute a 
minimal model? 

NO:  
J1 = { T = transitive closure, CT = its complement} 
J2 = { T = all pairs of nodes, CT = empty} 



Inflationary-fixpoint datalog¬ 

Definition. The inflationary fixpoint semantics of P is J = Jn  
where n is such that Jn+1 = Jn 

Why does there always exists an n 
such that Jn = F(Jn)? 

Find the inflationary semantics for: 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Let P be any datalog¬ program, and I an EDB. 
Let TP(J) be the immediate consequence operator. 
Let F(J) = J ∪TP(J) be the inflationary immediate consequence operator. 
 
Define the sequence: J0 = ∅, Jn+1 = F(Jn), for n ≥ 0. 



Inflationary-fixpoint datalog¬ 

•  Evaluation for Inflationary-fixpoint datalog¬ 

•  Use the naïve, of the semi-naïve algorithm 

•  Inhibit any optimization that rely on 
monotonicity (e.g. out of order execution) 



Partial-fixpoint datalog¬,* 

Definition. The partial fixpoint semantics of P is J = Jn  
where n is such that Jn+1 = Jn, if such an n exists, 
undefined otherwise. 

Note: there may not exists an n 
such that Jn = F(Jn) 

Find the partial fixpoint semantics for: 

S(x) :- R(x), not T(x) 
T(x) :- R(x), not S(x) 

T(x,y) :- R(x,y) 
T(x,y) :- T(x,z), R(z,y) 
CT(x,y) :- Node(x), Node(y), not T(x,y) 

Let P be any datalog¬ program, and I an EDB. 
Let TP(J) be the immediate consequence operator. 
 
 
Define the sequence: J0 = ∅, Jn+1 = TP (Jn), for n ≥ 0. 



Discussion 

•  Which semantics does Daedalus adopt? 



Discussion 

Comparing datalog¬ 

•  Compute the complement of the transitive 
closure in inflationary datalog¬ 

•  Compare the expressive power of: 
– Stratified datalog¬ 

–  Inflationary fixpoint datalog¬ 
– Partial fixpoint datalog¬ 



Discussion 

Comparing datalog¬ 

•  Compute the complement of the transitive 
closure in inflationary datalog¬ 

•  Compare the expressive power of 
stratified datalog¬ and inflationary datalog¬ 

You will answer both these questions in HW3! 


