
CSE544: Principles of
Database Systems
Part III: Database Theory

Datalog

Why DB Theory

•  Discuss the urgency of parallelism in the
paper

•  Discuss why data-centric approach to
parallel computing

•  Theory is key for understanding this
approach

Outline of DB Theory

•  Datalog – this lecture

•  Query complexity – next week

•  Static analysis (query equivalence)

•  Advanced optimizations (semijoin reduction)

Datalog

Review the following basic concepts from
Lecture 2:
•  Fact
•  Rule
•  Head and body of a rule
•  Existential variable
•  Head variable

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

First iteration:
T =

5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

Done

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

Simple datalog programs

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

Done

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

 Discovered
 3 times!

 Discovered
 twice

11

Simple datalog programs

CSE544 - Spring, 2012

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Alternative ways to compute TC:

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), T(z,y)

Right linear

Left linear

Non-linear

Discuss pros/cons in class

1

2

4

3

R

1 2

2 1
2 3

1 4

3 4

4 5

R=

5

12

Simple datalog programs

CSE544 - Spring, 2012

1 Red 2

2 Blue 1

2 Green 3

1 Blue 4

3 Red 4

4 Yellow 5

R=

Compute TC (ignoring color):

Compute pairs of nodes connected
by the same color (e.g. (2,4))

1

2

4

3

5

R encodes a colored graph

13

Simple datalog programs

CSE544 - Spring, 2012

1 Red 2

2 Blue 1

2 Green 3

1 Blue 4

3 Red 4

4 Yellow 5

R=

T(x,y) :- R(x,c,y)
T(x,y) :- R(x,c,z), T(z,y)

Compute TC (ignoring color):

Compute pairs of nodes connected
by the same color (e.g. (2,4))

1

2

4

3

5

R encodes a colored graph

14

Simple datalog programs

CSE544 - Spring, 2012

1 Red 2

2 Blue 1

2 Green 3

1 Blue 4

3 Red 4

4 Yellow 5

R=

T(x,y) :- R(x,c,y)
T(x,y) :- R(x,c,z), T(z,y)

Compute TC (ignoring color):

Compute pairs of nodes connected
by the same color (e.g. (2,4))

T(x,c,y) :- R(x,c,y)
T(x,c,y) :- R(x,c,z), T(z,c,y)
Answer(x,y) :- T(x,c,y)

1

2

4

3

5

R encodes a colored graph

15

Simple datalog programs

CSE544 - Spring, 2012

What does this program compute in general?

1

2

4

3

R, G, B encodes a 3-colored graph

1 2

3 4

4 5

R=

2 3

2 1

1 4

G=

B=

5 T(x,y) :- R(x,y)
T(x,y) :- G(x,y)
S(x,y) :- T(x,z),B(z,y)
S(x,y) :- S(x,z),B(z,y)
T(x,y) :- S(x,z),R(z,y)
T(x,y) :- S(x,z),G(z,y)
Answer(x,y) :- S(x,y)

16

Simple datalog programs

CSE544 - Spring, 2012

1

2

4

3

R, G, B encodes a 3-colored graph

1 2

3 4

4 5

R=

What does this program compute in general?

T(x,y) :- R(x,y)
T(x,y) :- G(x,y)
S(x,y) :- T(x,z),B(z,y)
S(x,y) :- S(x,z),B(z,y)
T(x,y) :- S(x,z),R(z,y)
T(x,y) :- S(x,z),G(z,y)
Answer(x,y) :- S(x,y)

2 3

2 1

1 4

G=

B=

Answer: it computes pairs of nodes connected
by a path spelling out certain regular expressions:
•  S = ((R or G).B+)*
•  T = ((R or G).B+)*.(R or G)

5

17

Syntax of Datalog Programs
The schema consists of two sets of relations:
•  Extensional Database (EDB): R1, R2, …
•  Intentional Database (IDB): P1, P2, …
A datalog program P has the form:

Pi1(x11,x12,…) :- body1
Pi2(x21,x22,…) :- body2

 ….

•  Each head predicate Pi is an IDB
•  Each body is a conjunction of IDB and/or EDB predicates
•  See lecture 2

Note: no negation (yet)! Recursion OK.

P:

18

Naïve Datalog Evaluation Algorithm

Naïve datalog evaluation algorithm:

Datalog program:

Pi1 :- body1
Pi2 :- body2
 ….

è
P1 :- body11∪ body12∪ …
P2 :- body21∪ body22∪ …
….

Group by
IDB predicate

è
P1 :- SPJU1
P2 :- SPJU2
….

Each rule is a
Select-Project-Join-Union query

P1 = P2 = … = ∅
Loop

 NewP1 = SPJU1; NewP2 = SPJU2; …
 if (NewP1 = P1 and NewP2 = P2 and …)
 then break
 P1 = NewP1; P2 = NewP2; …
Endloop

Example: T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T= ∅
Loop

 NewT(x,y) = R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y))
 if (NewT = T)
 then break
 T = NewT
Endloop

T(x,y) :- R(x,y) ∪ Πxy(R(x,z) ⋈ T(z,y)) è

Problem with the Naïve Algorithm

•  The same facts are discovered over and
over again

•  The semi-naïve algorithm tries to reduce
the number of facts discovered multiple
times

Background: Incremental View
Maintenace

Let V be a view computed by one datalog rule (no recursion) V :- body

If (some of) the relations are updated: R1 ß R1 ∪ΔR1, R1 ß R2 ∪ΔR2, …
Then the view is also modified as follows: V ß V ∪ΔV

Incremental view maintenance: compute ΔV (without having to recompute V)

Background: Incremental View
Maintenace

Let V be a view computed by one datalog rule (no recursion) V :- body

If (some of) the relations are updated: R1 ß R1 ∪ΔR1, R1 ß R2 ∪ΔR2, …
Then the view is also modified as follows: V ß V ∪ΔV

Incremental view maintenance: compute ΔV (without having to recompute V)

Solution: by examples…

V(x,y) :- R(x,z),S(z,y)

W(x,y) :- R(x,z),R(z,y)

ΔV(x,y) :- ???

ΔW(x,y) :- ???

W(x,y) :- R(x,u),S(u,v),T(v,y)

Background: Incremental View
Maintenace

Let V be a view computed by one datalog rule (no recursion) V :- body

If (some of) the relations are updated: R1 ß R1 ∪ΔR1, R1 ß R2 ∪ΔR2, …
Then the view is also modified as follows: V ß V ∪ΔV

Incremental view maintenance: compute ΔV (without having to recompute V)

Solution: by examples…

V(x,y) :- R(x,z),S(z,y)

W(x,y) :- R(x,z),R(z,y)

ΔV(x,y) :- ???

ΔW(x,y) :- ???

W(x,y) :- R(x,u),S(u,v),T(v,y)

Background: Incremental View
Maintenace

ΔV(x,y) :- R(x,z), ΔS(z,y)
ΔV(x,y) :- ΔR(x,z), S(z,y)
ΔV(x,y) :- ΔR(x,z), ΔS(z,y)

ΔW(x,y) :- R(x,z), ΔR(z,y)
ΔW(x,y) :- ΔR(x,z), R(z,y)
ΔW(x,y) :- ΔR(x,z), ΔR(z,y)

. . . . Note: one rule may
generate multiple Δ-rules

Let V be a view computed by one datalog rule (no recursion) V :- body

If (some of) the relations are updated: R1 ß R1 ∪ΔR1, R1 ß R2 ∪ΔR2, …
Then the view is also modified as follows: V ß V ∪ΔV

Incremental view maintenance: compute ΔV (without having to recompute V)

Solution: by examples…

V(x,y) :- R(x,z),S(z,y)

W(x,y) :- R(x,z),R(z,y)

W(x,y) :- R(x,u),S(u,v),T(v,y)

Semi-naïve Evaluation Algorithm
Separate the Datalog program into the non-recursive, and the recursive part.
Each Pi defined by non-recursive-SPJUi and (recursive-)SPJUi.

P1 = P2 = … = ∅,
ΔP1 = non-recursive-SPJU1, ΔP2 = non-recursive-SPJU2, …
Loop

 ΔP1 = Δ SPJU1; ΔP2 = ΔSPJU2; …
 if (ΔP1 = ∅ and ΔP2 = ∅ and …)
 then break
 P1 = P1 ∪ ΔP1; P2 = P2 ∪ ΔP2; …
Endloop

Example: T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T= ∅, ΔT = R
Loop

 ΔT(x,y) = Πxy(R(x,z) ⋈ ΔT(z,y))
 if (ΔT = ∅)
 then break
 T = T∪ΔT
Endloop

Note: for any linear datalog programs,
the semi-naïve algorithm has only
one Δ-rule for each rule!

Discussion in Class

How would you compute
the transitive closure of a
very large graph R(x,y)?

•  Assume a single server

•  Assume a shared
nothing architecture

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), T(z,y)

Right linear TC

Non-linear TC

Discussion in Class

The Declarative Imperative paper:
•  What are the extensions to datalog in

Dedalus?
•  What is the main usage of Dedalus

described in the paper? Discuss some
applications, discuss what’s missing.

Semantics of a Datalog Program

Three different, equivalent semantics:

•  Minimal model semantics

•  Least fixpoint semantics

•  Proof-theoretic semantics

Minimal Model Semantics (1/2)
To each rule r: P(x1…xk) :- R1(…),R2(…), …

Associate the logical sentence Σr: ∀z1…∀zn. [(R1(…)∧R2(…)∧ …) è P(…)]

Same as: ∀x1…∀xk. [∃y1…∃ym.(R1(…)∧R2(…)∧ …) è P(…)]

All variables in the rule

Head variables Existential variables

Example. Rule: T(x,y) :- R(x,z), T(z,y) Sentence: ∀x.∀y.∀z.(R(x,z)∧T(z,y)àT(x,y)
≡ ∀x.∀y.(∃z.R(x,z)∧T(z,y)àT(x,y)

Definition. If P is a datalog program,
ΣP is the set of all logical sentences associated to its rules.

Minimal Model Semantics (1/2)

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition. A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

Theorem. The minimal model always exists, and is unique.

Minimal Model Semantics (1/2)

Definition. Given an EDB database instance I and a datalog program P,
the minimal model, denoted J = P(I) is a minimal database instance J s.t. (I,J) ⊨ ΣP

Definition. A pair (I,J) where I is an EDB and J is an IDB
is a model for P, if (I,J) ⊨ ΣP

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Which of these IDBs are models?
Which are minimal models?

T=

R= 1 2

2 3

3 4

4 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

T=

Theorem. The minimal model always exists, and is unique.

1 2

1 3

1 4

1 5

2 …

… …

… …

5 3

5 4

1 2 4 3 5

Example:
1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 5

T=

All pairs of
distinct nodes

Minimal Fixpoint Semantics (1/2)
Definition. Fix an EDB I, and a datalog program P.
The immediate consequence operator TP is defined as follows.
For any IDB J:
 TP(J) = all IDB facts that are immediate consequences from I and J.

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J1 ⊆ J2 then TP(J1) ⊆ TP(J2).

Theorem. The immediate consequence operator has a unique, minimal fixpoint J:
fix(TP) = J, where J is the minimal instance with the property TP(J) = J.

Proof: using Knaster-Tarski’s theorem for monotone functions.
The fixpoint is given by:
 fix (TP) = J0 ∪ J1 ∪ J2∪… where J0 = ∅ , Jk+1 = TP(Jk)

32

Minimal Fixpoint Semantics (2/2)

CSE544 - Spring, 2012

1 2 4 3

1 2

2 3

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T =

5

J0 = ∅ J1 = TP(J0) J2 = TP(J1) J3 = TP(J2) J4 = TP(J3)
1 2

2 3

3 4

4 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 2

2 3

3 4

4 5

1 3

2 4

3 5

1 4

2 5

1 5

33

Proof Theoretic Semantics

CSE544 - Spring, 2012

1 2 4 3

1 2

2 3

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

5

Every fact in the IDB has a derivation tree, or proof tree justifying its existence.

Derivation tree
of T(1,4) T(1,4)

R(1,2) T(2,4)

R(2,3) T(3,4)

R(3,4)

34

Adding Negation: Datalog¬

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Example: compute the complement of the transitive closure

What does this mean??

Recursion and Negation
Don’t Like Each Other

CSE544 - Spring, 2012 35

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Yes: the facts in J2 are
R(a), S(a), ¬T(a)

and both rules are true.

Yes Yes

There is no minimal model!

No: both
rules fail

Recursion and Negation
Don’t Like Each Other

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

EDB: I = { R(a) }

Which IDBs are models of P?

J1 = { } J2 = {S(a)} J3 = {T(a)} J4 = {S(a), T(a) }

Yes: the facts in J2 are
R(a), S(a), ¬T(a)

and both rules are true.

Yes Yes

There is no minimal model!

No: both
rules fail

There is no minimal fixpoint!
(Why does Knaster-Tarski’s
theorem fail?)

Adding Negation: datalog¬
•  Solution 1: Stratified Datalog¬

–  Insist that the program be stratified: rules are
partitioned into strata, and an IDB predicate that
occurs only in strata ≤ k may be negated in strata
≥ k+1

•  Solution 2: Inflationary-fixpoint Datalog¬
– Compute the fixpoint of J ∪ TP(J)
– Always terminates (why ?)

•  Solution 3: Partial-fixpoint Datalog¬,*
– Compute the fixpoint of TP(J)
– May not terminate

CSE544 - Spring, 2012 38

Stratified datalog¬

P1 :- body1
P2 :- body2
 ….

 ….

Pj :- bodyj

 ….
 ….

 ….
Pn :- bodyn

P:

A datalog¬ program is stratified if its rules can be partitioned into k strata, such that:
•  If an IDB predicate P appears negated in a rule in stratum i,

then it can only appear in the head of a rule in strata 1, 2, …, i-1

 Stratum i

Note: a datalog¬ program
either is stratified or it ain’t!

Which programs are stratified?

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Stratified datalog¬

•  Evaluation algorithm for stratified datalog¬:

•  For each stratum i = 1, 2, …, do:
– Treat all IDB’s defined in prior strata as EBS
– Evaluate the IDB’s defined in stratum i, using

either the naïve or the semi-naïve algorithm

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Does this compute a
minimal model?

Stratified datalog¬

•  Evaluation algorithm for stratified datalog¬:

•  For each stratum i = 1, 2, …, do:
– Treat all IDB’s defined in prior strata as EBS
– Evaluate the IDB’s defined in stratum i, using

either the naïve or the semi-naïve algorithm

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

Does this compute a
minimal model?

NO:
J1 = { T = transitive closure, CT = its complement}
J2 = { T = all pairs of nodes, CT = empty}

Inflationary-fixpoint datalog¬

Definition. The inflationary fixpoint semantics of P is J = Jn
where n is such that Jn+1 = Jn

Why does there always exists an n
such that Jn = F(Jn)?

Find the inflationary semantics for:

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Let P be any datalog¬ program, and I an EDB.
Let TP(J) be the immediate consequence operator.
Let F(J) = J ∪TP(J) be the inflationary immediate consequence operator.

Define the sequence: J0 = ∅, Jn+1 = F(Jn), for n ≥ 0.

Inflationary-fixpoint datalog¬

•  Evaluation for Inflationary-fixpoint datalog¬

•  Use the naïve, of the semi-naïve algorithm

•  Inhibit any optimization that rely on
monotonicity (e.g. out of order execution)

Partial-fixpoint datalog¬,*

Definition. The partial fixpoint semantics of P is J = Jn
where n is such that Jn+1 = Jn, if such an n exists,
undefined otherwise.

Note: there may not exists an n
such that Jn = F(Jn)

Find the partial fixpoint semantics for:

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

Let P be any datalog¬ program, and I an EDB.
Let TP(J) be the immediate consequence operator.

Define the sequence: J0 = ∅, Jn+1 = TP (Jn), for n ≥ 0.

Discussion

•  Which semantics does Daedalus adopt?

Discussion

Comparing datalog¬

•  Compute the complement of the transitive
closure in inflationary datalog¬

•  Compare the expressive power of:
– Stratified datalog¬

–  Inflationary fixpoint datalog¬
– Partial fixpoint datalog¬

Discussion

Comparing datalog¬

•  Compute the complement of the transitive
closure in inflationary datalog¬

•  Compare the expressive power of
stratified datalog¬ and inflationary datalog¬

You will answer both these questions in HW3!

