CSEb544: Principles of
Database Systems

Part lll: Database Theory
Datalog



Why DB Theory

* Discuss the urgency of parallelism in the
paper

* Discuss why data-centric approach to
parallel computing

* Theory is key for understanding this
approach



Outline of DB Theory

Datalog — this lecture
Query complexity — next week
Static analysis (query equivalence)

Advanced optimizations (semijoin reduction)



Datalog

Review the following basic concepts from
Lecture 2:

* Fact

* Rule

 Head and body of a rule
» Existential variable
 Head variable



Simple datalog programs

R encodes a graph

T(x,y) . R(x,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)
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Simple datalog programs

R encodes a graph

T(x,y) . R(x,y) What does

it compute?

T(X’y) - R(X’Z)’ T(Z’y)

Initially:

T is empty.

PO ININ|=-
Al O N




Simple datalog programs

R encodes a graph

What does
it compute?

R= First iteration:
Initially: T=
1 5 T is empty.
2 1 1 2
2 1
2 3 > | 3
1 4 1 4
3 4
3 4 7 | 5
4 5




Simple datalog programs

R encodes a graph

What does
it compute?

Second iteration:

R= First iteration: T=

Initially: T= ; f

1 5 T is empty. -
2 1 1 2 1 4
2 | 1 3 | 4

2 3 2 3 4 5
1 4 1| 4 1] 1
3 4 2 2

3 4 4 5 1 3
4 5 2 | 4
1 5

3 5




Simple datalog programs

R encodes a graph

What does
it compute?

Third iteration:

Second iteration: T=
R= First iteration: T= P
- ngn . _ 1 2
Initially: T= L T
1 2 T is empty. - TS
1 2 1 4 1 4
2 1
2 1 3 4 3 4
2 3 2 3 4 5 4 5
1 1
1 : - —_— 2 | 2
3 4 2 2 ; :
3 4 4 5 1 3 > -
4 S 2 4
1 5
1 5
3 5
3 5
2 5

Done




Simple datalog programs

R encodes a graph

What does
it compute?

Third iteration:

Second iteration: T=
_ First iteration: T= 1] 2] )
R= i B 1| 2
Initially: T= T 2 |
1 2 T is empty. > | 3 2 | 3 Discovered
1 4 3 times!
o 1 1] 2 1| a4 T
2 | 1 3| 4 T
2 3 2 | 3 4 | s .
1] 4 1 | 1 LN
1 4 P
3| 4 2 | 2
3 4 2 | s 1| 3 ' | 3 I Ipiscovered
2 | 4 :
4 5 . P twice
1| 5
1] 5 T
3| s /
2 | 5

Done




Simple datalog programs

e Alternative ways to compute TC:

O T(x,y) - R(x,y) Right linear

T(xy) - R(x,2), T(z.y)
@> T(xy) - R(x.Y)

R= T(x,y) . T(X,Z), R(z,y) Left linear
1 2
2 | ] T(xy) - R(x,y) y
5 3 T(x,y) . T(X,Z), T(z,y) Non-linear
1 4
3 4
4 5 Discuss pros/cons in class
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Simple datalog programs

R encodes a colored graph

>

Red

Blue

Green

Blue

Red

Yellow

al(ld|[|O]I=~DN

()

Compute TC (ignoring color):

Compute pairs of nodes connected
by the same color (e.g. (2,4))
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Simple datalog programs

R encodes a colored graph

>

Red

Blue

Green

Blue

Red

O] ININ|[-

Yellow

al(ld|[|O]I=~DN

Compute TC (ignoring color):

@ T(x,y) :- R(x,c,y)
T(x,y) :- R(x,c,z), T(z,y)

Compute pairs of nodes connected
by the same color (e.g. (2,4))

CSE544 - Spring, 2012

13



Simple datalog programs

R encodes a colored graph

>

Red

Blue

Green

Blue

Red

Yellow

al(ld|[|O]I=~DN

Compute TC (ignoring color):

@ T(x,y) :- R(x,c,y)
T(x,y) :- R(x,c,z), T(z,y)

Compute pairs of nodes connected
by the same color (e.g. (2,4))

T(x,c,y) :- R(x,c,y)
T(x,c,y) - R(x,c,z2), T(z,c,y)
Answer(x,y) :- T(x,c,y)

CSE544 - Spring, 2012
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Simple datalog programs

R, G, B encodes a 3-colored graph What does this program compute in general?
(8 T(xy) - R(x,y)
(19 (4) T(xy) - G(xy)
) S(x,y) - T(x,2),B(z,y)
S(x,y) - S(x,2),B(z,y)
T(x,y) :- S(x,z),R(z,y)
R= Lt T(xy) :- S(X, ,G(2,
1 Answer(X,
G= 2 | 3
B= 2 | 1
! 4 CSE544 - Spring, 2012 15




Simple datalog programs

R, G, B encodes a 3-colored graph What does this program compute in general?

e T(x,y) :-R
(1) (4) T(x,y) - G

S(X’y) .~ T(X’Z)!B(Z’y)
9 S(x,y) :- S(x,2),B(z,y)
)

T(x,y) - S(x,z),R(z,y

R= | 1|2 T(x)y) :- S(x,2),G(z,y)
T Answer(x,y) - S(X,y)
_ Answer: it computes pairs of nodes connected
G= [2]3 by a path spelling out certain regular expressions:
« S=((RorG).B*)*
B= 2 | 1 « T=((RorG).B*)*.(RorG)
! 4 CSE544 - Spring, 2012 16




Syntax of Datalog Programs

The schema consists of two sets of relations:
« Extensional Database (EDB): R, R,, ...
 Intentional Database (IDB): P,, P,, ...

A datalog program P has the form:

Pi2(X21,X22,...) - bOdy2

« Each head predicate P, is an IDB
« Each body is a conjunction of IDB and/or EDB predicates
« See lecture 2

Note: no negation (yet)! Recursion OK.




Naive Datalog Evaluation Algorithm

Datalog program:

Group by Eachruleis a
IDB predicate Select-Project-Join-Union query

Naive datalog evaluation algorithm:

E— Example: T(x,y) - R(x,Y)
P,=P,=...=0 T(x,y) - R(x,2), T(z,y)

Loop
NewP, = SPJU,; NewP, = SPJU,; ...
if (NewP, = P, and NewP, =P, and ...)

9 T(X’y) - R(X’y) U nxy(R(X’Z) > T(Z’y))

then break
— . — . T=2
P, = NewP,; P, = NewP,; ... Loop
Endloop NewT(xy) =R(xy) U My (R(x2) = T(z,y))
if (NewT = T)
then break
T = NewT
Endloop




Problem with the Naive Algorithm

« The same facts are discovered over and
over again

* The semi-naive algorithm tries to reduce
the number of facts discovered multiple
times




Background: Incremental View
Maintenace

Let V be a view computed by one datalog rule (no recursion) V :- body '

If (some of) the relations are updated: R, € R; UAR;, R; € R, UAR,, ...
Then the view is also modified as follows: V €<V UAV

Incremental view maintenance: compute AV (without having to recompute V)




Background: Incremental View
Maintenace

Let V be a view computed by one datalog rule (no recursion) V :- body '

If (some of) the relations are updated: R, € R; UAR;, R; € R, UAR,, ...
Then the view is also modified as follows: V €<V UAV

Incremental view maintenance: compute AV (without having to recompute V)

Solution: by examples...

V(xy) - R(x,2),S(z,y) AV(x,y) - 2?27

W(X’y) - R(X’Z)’R(Z’y) AW(X,y) - 27?7

W(x,y) - R(x,u),S(u,v),T(v,y)
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Maintenace

Let V be a view computed by one datalog rule (no recursion) V :- body '
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V(xy) - R(x,2),S(z,y) AV(x,y) - 2?27
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Background: Incremental View
Maintenace

Let V be a view computed by one datalog rule (no recursion) V :- body '

If (some of) the relations are updated: R, € R; UAR;, R; € R, UAR,, ...
Then the view is also modified as follows: V €<V UAV

Incremental view maintenance: compute AV (without having to recompute V)

Solution: by examples...

AV(xy) - R(x,z), AS(z,y)
V(xy) - Rx2).5(y) Rz, &)
Y ) - £/, 9\ AV(x,y) - AR(x,z), AS(z,y)

AW(x,y) :- R(x,z), AR(z,y)
W(x,y) - R(x,z),R(z,y) AW(x,y) :- AR(x,2), R(z,)y)
AW(x,y) - AR(x,z), AR(z,y)

Z
Z

W(x,y) - R(x,u),S(u,v),T(v,y) e Note: one rule may
generate multiple A-rules



Semi-naive Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part.
Each P, defined by non-recursive-SPJU, and (recursive-)SPJU..

P,=P,=...=9,
AP, = non-recursive-SPJU,, AP, = non-recursive-SPJU,, ...
Loop

AP, =ASPJU,; AP, = ASPJU,; ...
if (AP, =2and AP, =2and ...)

then break
P,=P, UAP,; P,=P, U AP,; ...
Endloop
Example: T= 0, AT=R
Loop
AT(x,y) =T,(R(x,z) = AT(z,y))
if (AT = 2)
then break
Note: for any linear datalog programs, T=TUAT
the semi-naive algorithm has only Endloop

one A-rule for each rule!



Discussion in Class

Right linear TC

How would you compute
the transitive closure of a T(x,y) :- R(x,y)

very large graph R(x,y)? T(x.y) - R(x,2), T(z,y)

« Assume a single server Non-linear TC
T(x,y) - R(x,y)
« Assume a shared T(x,y) - T(x,z), T(z,y)

nothing architecture



Discussion in Class

The Declarative Imperative paper:

* What are the extensions to datalog in
Dedalus?

* What is the main usage of Dedalus
described in the paper? Discuss some
applications, discuss what’s missing.



Semantics of a Datalog Program

Three different, equivalent semantics:
 Minimal model semantics
» Least fixpoint semantics

* Proof-theoretic semantics



Minimal Model Semantics (1/2)

All variables in the rule

/

Associate the logical sentence .. | Vz,...Vz,. [(R(...)AR,(...)A ...) 2 P(...)]

To each rule r;

Same as: VX;...VX. [TY4... Y. (R{(..DAR(..IA ...) D P(...)]

A1 ™~

Head variables Existential variables

Definition. If P is a datalog program,
2p is the set of all logical sentences associated to its rules.

Example. Rule: | T(x,y) - R(x,z), T(z,y) § Sentence: VX.Vy.Vz.(R(x,z2)AT(z,y)2>T(X,y)
= VX.Vy.(3z.R(X,2)AT(z,y)=>T(X,y)



Minimal Model Semantics (1/2)

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (I,J) F 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) F 2

Theorem. The minimal model always exists, and is unique.




Minimal Model Semantics (1/2)

Definition. A pair (I,J) where | is an EDB and J is an IDB
is a model for P, if (I,J) F 2p

Definition. Given an EDB database instance | and a datalog program P,
the minimal model, denoted J = P(l) is a minimal database instance J s.t. (I,J) F 2

Theorem. The minimal model always exists, and is unique.

T=
Example:
1 2 T=
(D—=(2—() 2 | 3 —
T= 3 4 1 3
Which of these IDBs are models? ; > 4 5 1 4
Which are minimal models? 1 3 ) 5
2 3
5 . 2 4 2
3 5
R=| 1 2 4 > ] 4
2 3 1 3 5 3
3 4 2 4 2 > 5 4
1 5
4 S 3 > All pairs of

distinct nodes



Minimal Fixpoint Semantics (1/2)

Definition. Fix an EDB |, and a datalog program P.
The immediate consequence operator Tp is defined as follows.

For any IDB J:
Tp(J) = all IDB facts that are immediate consequences from | and J.

Fact. For any datalog program P, the immediate consequence operator
is monotone. In other words, if J; € J, then Tp(J,) € Tp(Js).

Theorem. The immediate consequence operator has a unique, minimal fixpoint J:
fix(Tp) = J, where J is the minimal instance with the property Tp(J) = J.

Proof: using Knaster-Tarski’s theorem for monotone functions.
The fixpoint is given by:
fix (Tp)=Jo U J; U J,U... where Jy=2, J,1=Tp(J)




Minimal Fixpoint Semantics (2/2)

T(X,y) - R(X,y)
(D—=(2—=()—()—(5 T(x,y) - R(x,z), T(z,y)

Jp=9 Ji1=Tp(Jo) Jy=Tp(Jy) J3 = Tp(Jy) Js = Tp(J3)

2 2

Al jJw]IDN

1

2 3
3 4
4 5

WIN|~ DWW IN]|~
aldbjlwjlO|lbd|w®

N |~ WIN|~ DN~

= IN|=2 W IN]|~~2]PDO]DN
ajloo|lbhl]lOa|lA|]lw|lO|BDIOIDN
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Proof Theoretic Semantics

Every fact in the IDB has a derivation tree, or proof tree justifying its existence.

(=235

R Derivation tree
112 of T(1,4)
2 3
3 4
4 5

G Crow

R(3,4)

CSE544 - Spring, 2012
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Adding Negation: Datalog-

Example: compute the complement of the transitive closure

T(X’y) - R(X!y)
T(X’y) - T(X’Z)’ R(Z’y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

What does this mean??

34



Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a); J3 = 1T(a); J,=18(a), T(a) }



Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)} S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a); J3 = 1T(a); Jy=1S(a

No: both Yes: the facts in J, are
rules fail R(a), S(a), T(a)

and both rules are true.

There is no minimal model!




Recursion and Negation
Don’t Like Each Other

EDB: | ={R(a)}

Which IDBs are models of P?

Ji=1{} Jp = 1{S(a);

No: both
rules fail

Yes: the facts in J, are
R(a), S(a), =T(a)
and both rules are frue.

There is no minimal model!

S(X) :- R(x), not T(x)
T(x) - R(x), not S(x)

Jy = {T(a)} J,={S(a

There is no minimal fixpoint!
(Why does Knaster-Tarski’s
theorem fail?)



Adding Negation: datalog-

» Solution 1: Stratified Datalog-

— Insist that the program be stratified: rules are
partitioned into strata, and an IDB predicate that
occurs only in strata < k may be negated in strata
> K+1

« Solution 2: Inflationary-fixpoint Datalog-

— Compute the fixpoint of J U Tp(J)

— Always terminates (why ?)

 Solution 3: Partial-fixpoint Datalog~"
— Compute the fixpoint of Tp(J)
— May not terminate




Stratified datalog~

A datalog™ program is stratified if its rules can be partitioned into k strata, such that:
» If an IDB predicate P appears negated in a rule in stratum i,
then it can only appear in the head of a rule in strata 1, 2, ..., i-1

Note: a datalog™ program
either is stratified or it ain’t!

Which programs are stratified?

T(X’y) - R(X,y)

Stratum i T(x,y) - T(x,z), R(z,y)
CT(x,y) :- Node(x), Node(y), not T(x,y)

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)




Stratified datalog~

 Evaluation algorithm for stratified datalog™:

« Foreach stratumi=1, 2, ..., do:
— Treat all IDB’s defined in prior strata as EBS

— Evaluate the IDB’s defined in stratum i, using
either the nalve or the semi-naive algorithm

Does this compute a
minimal model?

T(X’y) - R(X’y)
T(X’y) - T(X’Z)’ R(Z’y)

CT(x,y) :- Node(x), Node(y), not T(x,y)




Stratified datalog~

 Evaluation algorithm for stratified datalog™:

« Foreach stratumi=1, 2, ..., do:
— Treat all IDB’s defined in prior strata as EBS

— Evaluate the IDB’s defined in stratum i, using
either the nalve or the semi-naive algorithm

Does this compute a
minimal model?

NO:
J, ={ T = transitive closure, CT = its complement}
J, ={ T = all pairs of nodes, CT = empty}

T(X’y) - R(X’y)
T(X’y) - T(X’Z)’ R(Z’y)

CT(x,y) :- Node(x), Node(y), not T(x,y)




Inflationary-fixpoint datalog-

Let P be any datalog~ program, and | an EDB.
Let Tp(J) be the immediate consequence operator.
Let F(J) =J UTp(J) be the inflationary immediate consequence operator.

Define the sequence: J, =92, J.., = F(J,), for n = 0.

Definition. The inflationary fixpoint semantics of P is J = J
where n is such that J,,, = J,,

Find the inflationary semantics for:

Why does there always exists an n
such that Jn = F(Jn)? T(x,y) - R(X,y)
T(x,y) - T(x,2), R(z,y)

CT(x,y) :- Node(x), Node(y), not T(x,y)

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)



Inflationary-fixpoint datalog-

« Evaluation for Inflationary-fixpoint datalog-
* Use the naive, of the semi-naive algorithm

* Inhibit any optimization that rely on
monotonicity (e.g. out of order execution)



Partial-fixpoint datalog~

Let P be any datalog~ program, and | an EDB.
Let Tp(J) be the immediate consequence operator.

Define the sequence: J, =92, J,., = Tp(J,,), for n = 0.

Definition. The partial fixpoint semantics of P is J = J_
where n is such that J.,, = J,, if such an n exists,
undefined otherwise.

Find the partial fixpoint semantics for:

T(X’y) - R(X,y)

T(X’y) - T(X’Z)’ R(Z’y)

Note: there may not exists an n CT(x,y) :- Node(x), Node(y), not T(x,y)
such that J, = F(J,)

S(x) :- R(x), not T(x)
T(x) :- R(x), not S(x)



Discussion

* Which semantics does Daedalus adopt?



Discussion

Comparing datalog™

« Compute the complement of the transitive
closure in inflationary datalog-

« Compare the expressive power of:
— Stratified datalog-
— Inflationary fixpoint datalog~
— Partial fixpoint datalog-



Discussion

Comparing datalog~

« Compute the complement of the transitive
closure in inflationary datalog-

« Compare the expressive power of
stratified datalog~ and inflationary datalog-

You will answer both these questions in HW3!




