CSE544: Principles of Database Systems

Part III: Database Theory
 Datalog

Why DB Theory

- Discuss the urgency of parallelism in the paper
- Discuss why data-centric approach to parallel computing
- Theory is key for understanding this approach

Outline of DB Theory

- Datalog - this lecture
- Query complexity - next week
- Static analysis (query equivalence)
- Advanced optimizations (semijoin reduction)

Datalog

Review the following basic concepts from Lecture 2:

- Fact
- Rule
- Head and body of a rule
- Existential variable
- Head variable

Simple datalog programs

What does it compute?

Simple datalog programs

What does it compute?

Simple datalog programs

R encodes a graph

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

What does it compute?

First iteration: $\mathrm{T}=$

1	2
2	1
2	3
1	4
3	4
4	5

Simple datalog programs

R encodes a graph
$R=$

1	2
2	1
2	3
1	4
3	4
4	5

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

First iteration: $\mathrm{T}=$

1	2
2	1
2	3
1	4
3	4
4	5

Second iteration:
T =

1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	2
1	3
2	4
1	5
3	5

What does it compute?

Simple datalog programs

$R=$

1	2
2	1
2	3
1	4
3	4
4	5

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

What does it compute?

First iteration:
Initially:
T is empty.

Second itera

$T=$| 1 | 2 |
| :---: | :---: |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |
| 4 | 5 |
| 1 | 1 |
| 2 | 2 |
| 1 | 3 |
| 2 | 4 |
| 1 | 5 |
| 3 | 5 |

Third iteration:
$\mathrm{T}=$
1 2 2 1 2 3 1 4 3 4 4 5 1 1 2 2 1 3 2 4 1 5 3 5 2 5
:---

Simple datalog programs

$R=$

1	2
2	1
2	3
1	4
3	4
4	5

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

What does it compute?

First iteration:
Initially:
T is empty.

Second itera

$T=$| 1 | 2 |
| :---: | :---: |
| 2 | 1 |
| 2 | 3 |
| 1 | 4 |
| 3 | 4 |
| 4 | 5 |
| 1 | 1 |
| 2 | 2 |
| 1 | 3 |
| 2 | 4 |
| 1 | 5 |
| 3 | 5 |

Third iteration:
T =

1	2
2	1
2	3
1	4
3	4
4	5
1	1
2	2
1	3
2	4
1	5
3	5
2	5

Discovered
Discovered
twice

Done

Simple datalog programs

Alternative ways to compute TC:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

Right linear

Left linear

Non-linear

Simple datalog programs

Compute TC (ignoring color):
R encodes a colored graph

Compute pairs of nodes connected by the same color (e.g. $(2,4)$)
$\mathrm{R}=$

1	Red	2
2	Blue	1
2	Green	3
1	Blue	4
3	Red	4
4	Yellow	5

Simple datalog programs

Compute TC (ignoring color):
R encodes a colored graph

R=

1	Red	2
2	Blue	1
2	Green	3
1	Blue	4
3	Red	4
4	Yellow	5

Simple datalog programs

Compute TC (ignoring color):
R encodes a colored graph

$\mathrm{R}=$

1	Red	2
2	Blue	1
2	Green	3
1	Blue	4
3	Red	4
4	Yellow	5

$$
\begin{aligned}
& T(x, y):-R(x, c, y) \\
& T(x, y):-R(x, c, z), T(z, y)
\end{aligned}
$$

Compute pairs of nodes connected by the same color (e.g. $(2,4)$)

$$
\begin{aligned}
& T(x, c, y):-R(x, c, y) \\
& T(x, c, y):-R(x, c, z), T(z, c, y) \\
& \text { Answer(x,y) :- }(x, c, y) \\
& \hline
\end{aligned}
$$

Simple datalog programs

R, G, B encodes a 3-colored graph

$G=$| 2 | 3 |
| :--- | :--- |

$B=$| 2 | 1 |
| :--- | :--- |
| 1 | 4 |

2	1
1	4

Simple datalog programs

R, G, B encodes a 3-colored graph

$G=$| 2 | 3 |
| :--- | :--- |

$B=$| 2 | 1 |
| :--- | :--- |
| 1 | 4 |

What does this program compute in general?

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{G}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{S}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{B}(\mathrm{z}, \mathrm{y}) \\
& \mathrm{S}(\mathrm{x}, \mathrm{y}):-\mathrm{S}(\mathrm{x}, \mathrm{z}), \mathrm{B}(\mathrm{z}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{S}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{z}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{S}(\mathrm{x}, \mathrm{z}) \mathrm{G}(\mathrm{z,y)} \\
& \text { Answer(x,y)}:-\mathrm{S}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Answer: it computes pairs of nodes connected by a path spelling out certain regular expressions:

- $S=\left((R \text { or } G) \cdot B^{+}\right)^{*}$
- $\quad T=\left((R \text { or } G) \cdot B^{+}\right)^{*}$.(R or $\left.G\right)$

Syntax of Datalog Programs

The schema consists of two sets of relations:

- Extensional Database (EDB): $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots$
- Intentional Database (IDB): $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$

A datalog program \mathbf{P} has the form:

$$
\text { P: } \begin{aligned}
& P_{i 1}\left(x_{11}, x_{12}, \ldots\right):- \text { body }_{1} \\
& P_{i 2}\left(x_{21}, x_{22}, \ldots\right):- \text { body }_{2}
\end{aligned}
$$

- Each head predicate P_{i} is an IDB
- Each body is a conjunction of IDB and/or EDB predicates
- See lecture 2

Naïve Datalog Evaluation Algorithm

Datalog program:
 IDB predicate

\rightarrow	$P_{1}:-\operatorname{SPJU}_{1}$ $P_{2}:-$ \ldots.
EPJU	

Naïve datalog evaluation algorithm:

$$
\begin{aligned}
& P_{1}=P_{2}=\ldots=\varnothing \\
& \text { Loop } \\
& \quad \text { NewP }_{1}=\text { SPJU }_{1} ; \text { NewP }_{2}=\text { SPJU }_{2} ; \ldots \\
& \text { if }\left(\operatorname{NewP}_{1}=P_{1} \text { and } \text { NewP }_{2}=P_{2} \text { and } \ldots\right) \\
& \quad \text { then break } \\
& P_{1}=\text { NewP }_{1} ; P_{2}=\operatorname{NewP}_{2} ; \ldots \\
& \text { Endloop }
\end{aligned}
$$

Example:

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-R(x, z), T(z, y) \\
& \hline
\end{aligned}
$$

$$
\rightarrow \quad T(x, y):-R(x, y) \cup \Pi_{x y}(R(x, z) \bowtie T(z, y))
$$

T=\varnothing
T=\varnothing
Loop
Loop
NewT(x,y) = R(x,y) U \Pi
NewT(x,y) = R(x,y) U \Pi
if (NewT = T)
if (NewT = T)
then break
then break
T = NewT
T = NewT
Endloop
Endloop

Problem with the Naïve Algorithm

- The same facts are discovered over and over again
- The semi-naïve algorithm tries to reduce the number of facts discovered multiple times

Background: Incremental View Maintenace

Let V be a view computed by one datalog rule (no recursion)
If (some of) the relations are updated: $R_{1} \leftarrow R_{1} \cup \Delta R_{1}, R_{1} \leftarrow R_{2} \cup \Delta R_{2}, \ldots$ Then the view is also modified as follows: $\mathrm{V} \leftarrow \mathrm{V} \cup \Delta \mathrm{V}$

Incremental view maintenance: compute $\Delta \mathrm{V}$ (without having to recompute V)

Background: Incremental View Maintenace

Let V be a view computed by one datalog rule (no recursion)
If (some of) the relations are updated: $R_{1} \leftarrow R_{1} \cup \Delta R_{1}, R_{1} \leftarrow R_{2} \cup \Delta R_{2}, \ldots$ Then the view is also modified as follows: $\mathrm{V} \leftarrow \mathrm{V} \cup \Delta V$

Incremental view maintenance: compute $\Delta \mathrm{V}$ (without having to recompute V)
Solution: by examples..

$$
\mathrm{V}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{S}(\mathrm{z}, \mathrm{y})
$$

$$
W(x, y):-R(x, z), R(z, y) \quad \Delta W(x, y):-\quad ? ? ?
$$

$$
W(x, y):-R(x, u), S(u, v), T(v, y)
$$

Background: Incremental View Maintenace

Let V be a view computed by one datalog rule (no recursion)
If (some of) the relations are updated: $R_{1} \leftarrow R_{1} \cup \Delta R_{1}, R_{1} \leftarrow R_{2} \cup \Delta R_{2}, \ldots$ Then the view is also modified as follows: $\mathrm{V} \leftarrow \mathrm{V} \cup \Delta V$

Incremental view maintenance: compute $\Delta \mathrm{V}$ (without having to recompute V)
Solution: by examples..

$$
\mathrm{V}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{S}(\mathrm{z}, \mathrm{y})
$$

$$
W(x, y):-R(x, z), R(z, y) \quad \Delta W(x, y):-\quad ? ? ?
$$

$$
W(x, y):-R(x, u), S(u, v), T(v, y)
$$

Background: Incremental View Maintenace

Let V be a view computed by one datalog rule (no recursion)
V :- body
If (some of) the relations are updated: $R_{1} \leftarrow R_{1} \cup \Delta R_{1}, R_{1} \leftarrow R_{2} \cup \Delta R_{2}, \ldots$ Then the view is also modified as follows: $\mathrm{V} \leftarrow \mathrm{V} \cup \Delta \mathrm{V}$

Incremental view maintenance: compute $\Delta \mathrm{V}$ (without having to recompute V)
Solution: by examples.
$\Delta V(x, y):-\quad R(x, z), \Delta S(z, y)$
$\begin{aligned} V(x, y):-R(x, z), S(z, y) & \Delta V(x, y):-\Delta R(x, z), S(z, y) \\ \Delta V(x, y):- & \Delta R(x, z), \Delta S(z, y)\end{aligned}$
$W(x, y):-R(x, z), R(z, y)$
$\Delta W(x, y):-\quad R(x, z), \Delta R(z, y)$
$\Delta W(x, y):-\Delta R(x, z), R(z, y)$
$\Delta W(x, y):-\Delta R(x, z), \Delta R(z, y)$

$$
W(x, y):-R(x, u), S(u, v), T(v, y)
$$

Semi-naïve Evaluation Algorithm

Separate the Datalog program into the non-recursive, and the recursive part. Each P_{i} defined by non-recursive-SPJU ${ }_{i}$ and (recursive-)SPJU ${ }_{i}$.

```
P}=\mp@subsup{P}{2}{}=\ldots=\varnothing
\DeltaP
Loop
    \Delta\mp@subsup{P}{1}{}=\Delta\mp@subsup{SPJU}{1}{\prime};\Delta\mp@subsup{P}{2}{}=\Delta\mp@subsup{SPSJU}{2}{\prime};\ldots
    if ( }\Delta\mp@subsup{P}{1}{}=\varnothing\mathrm{ and }\Delta\mp@subsup{P}{2}{}=\varnothing\mathrm{ and ...)
        then break
    P
Endloop
```

Example:

```
T(x,y) :- R(x,y)
    T(x,y):- R(x,z),T(z,y)
```

Note: for any linear datalog programs, the semi-naïve algorithm has only

```
T= },\Delta\textrm{T}=\textrm{R
Loop
    \DeltaT(x,y) = \Pi
    if (\DeltaT=\varnothing)
        then break
    T=TU\DeltaT
Endloop
```


Discussion in Class

How would you compute the transitive closure of a very large graph $R(x, y)$?

- Assume a single server
- Assume a shared nothing architecture

Right linear TC

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

Non-linear TC

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), T(z, y)
\end{aligned}
$$

Discussion in Class

The Declarative Imperative paper:

- What are the extensions to datalog in Dedalus?
- What is the main usage of Dedalus described in the paper? Discuss some applications, discuss what's missing.

Semantics of a Datalog Program

Three different, equivalent semantics:

- Minimal model semantics
- Least fixpoint semantics
- Proof-theoretic semantics

Minimal Model Semantics (1/2)

To each rule $r: P\left(x_{1} \ldots x_{k}\right):-R_{1}(\ldots), R_{2}(\ldots), \ldots$

Associate the logical sentence Σ_{r} :

$$
\forall z_{1} \ldots \forall z_{n} \cdot\left[\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]
$$

Same as: $\forall x_{1} \ldots \forall x_{k} \cdot\left[\exists y_{1} \ldots \exists y_{m} \cdot\left(R_{1}(\ldots) \wedge R_{2}(\ldots) \wedge \ldots\right) \rightarrow P(\ldots)\right]$

Definition. If \mathbf{P} is a datalog program, Σ_{p} is the set of all logical sentences associated to its rules.

Example. Rule:

$$
T(x, y):-R(x, z), T(z, y)
$$

Sentence: $\forall x . \forall y . \forall z .(R(x, z) \wedge T(z, y) \rightarrow T(x, y)$

$$
\equiv \forall x \cdot \forall y \cdot(\exists z \cdot R(x, z) \wedge T(z, y) \rightarrow T(x, y)
$$

Definition. A pair (I, J) where I is an EDB and J is an IDB is a model for P, if $(I, J) \vDash \Sigma_{P}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=P(I)$ is a minimal database instance J s.t. $(I, J) \vDash \Sigma_{P}$

Theorem. The minimal model always exists, and is unique.

Minimal Model Semantics (1/2)

Definition. A pair (I, J) where I is an EDB and J is an IDB is a model for P, if $(1, J) \vDash \Sigma_{P}$

Definition. Given an EDB database instance I and a datalog program \mathbf{P}, the minimal model, denoted $J=P(I)$ is a minimal database instance J s.t. $(I, J) \vDash \Sigma_{p}$

Theorem. The minimal model always exists, and is unique.

Minimal Fixpoint Semantics (1/2)

Definition. Fix an EDB I, and a datalog program \mathbf{P}.
The immediate consequence operator T_{p} is defined as follows.
For any IDB J:
$T_{p}(J)=$ all IDB facts that are immediate consequences from I and J.

Fact. For any datalog program P, the immediate consequence operator is monotone. In other words, if $J_{1} \subseteq J_{2}$ then $T_{p}\left(J_{1}\right) \subseteq T_{p}\left(J_{2}\right)$.

Theorem. The immediate consequence operator has a unique, minimal fixpoint J : $\operatorname{fix}\left(T_{p}\right)=J$, where J is the minimal instance with the property $T_{p}(J)=J$.

Proof: using Knaster-Tarski's theorem for monotone functions.
The fixpoint is given by:

$$
\operatorname{fix}\left(T_{P}\right)=J_{0} \cup J_{1} \cup J_{2} \cup \ldots \text { where } J_{0}=\varnothing, \quad J_{k+1}=T_{p}\left(J_{k}\right)
$$

Minimal Fixpoint Semantics (2/2)

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{z}), \mathrm{T}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

$R=$

1	2
2	3
3	4
4	5

$J_{1}=T_{P}\left(J_{0}\right)$

1	2
2	3
3	4
4	5

$J_{2}=T_{P}\left(J_{1}\right)$

1	2
2	3
3	4
4	5
1	3
2	4
3	5

$J_{3}=T_{P}\left(J_{2}\right)$

1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5

$$
J_{4}=T_{p}\left(J_{3}\right)
$$

1	2
2	3
3	4
4	5
1	3
2	4
3	5
1	4
2	5
1	5

Proof Theoretic Semantics

Every fact in the IDB has a derivation tree, or proof tree justifying its existence.

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-R(x, z), T(z, y) \\
& \hline
\end{aligned}
$$

Adding Negation: Datalog ${ }^{-}$

Example: compute the complement of the transitive closure

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)
\end{aligned}
$$

What does this mean??

Recursion and Negation Don't Like Each Other

EDB: $I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x) \\
& \hline
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{1}=\{ \} \quad J_{2}=\{S(a)\} \quad J_{3}=\{T(a)\} \quad J_{4}=\{S(a), T(a)\}
$$

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x) \\
& \hline
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{2}=\{S(a)\}
$$

$$
J_{3}=\{T(a)\}
$$

$$
J_{4}=\{S(a), T(a)\}
$$

There is no minimal model!

Recursion and Negation Don't Like Each Other

EDB: $\quad I=\{R(a)\}$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x)
\end{aligned}
$$

Which IDBs are models of \mathbf{P} ?

$$
J_{1}=\{ \} \quad J_{2}=\{\mathrm{S}(\mathrm{a})\} \quad \mathrm{J}_{3}=\{\mathrm{T}(\mathrm{a})\} \quad \mathrm{J}_{4}=\{\mathrm{S}(\mathrm{a}), \mathrm{T}(\mathrm{a})\}
$$

There is no minimal model!

There is no minimal fixpoint! (Why does Knaster-Tarski's theorem fail?)

Adding Negation: datalog ${ }^{-}$

- Solution 1: Stratified Datalog ${ }^{-}$
- Insist that the program be stratified: rules are partitioned into strata, and an IDB predicate that occurs only in strata $\leq k$ may be negated in strata $\geq k+1$
- Solution 2: Inflationary-fixpoint Datalog ${ }^{-}$
- Compute the fixpoint of $J \cup T_{p}(J)$
- Always terminates (why ?)
- Solution 3: Partial-fixpoint Datalog-,*
- Compute the fixpoint of $T_{p}(J)$
- May not terminate

Stratified datalog ${ }^{-}$

A datalog ${ }^{\wedge}$ program is stratified if its rules can be partitioned into k strata, such that:

- If an IDB predicate P appears negated in a rule in stratum i, then it can only appear in the head of a rule in strata $1,2, \ldots, \mathrm{i}-1$

Note: a datalog` program either is stratified or it ain't!

Which programs are stratified?

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& S(x):-R(x), \operatorname{not} T(x) \\
& T(x):-R(x), \operatorname{not} S(x)
\end{aligned}
$$

Stratified datalog ${ }^{-}$

- Evaluation algorithm for stratified datalog ${ }^{\text {: }}$
- For each stratum $i=1,2, \ldots$, do:
- Treat all IDB's defined in prior strata as EBS
- Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?

$$
\begin{aligned}
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{R}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}(\mathrm{x}, \mathrm{y}):-\mathrm{T}(\mathrm{x}, \mathrm{z}), \mathrm{R}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

CT(x,y) :- Node(x), Node(y), not T(x,y)

Stratified datalog ${ }^{-}$

- Evaluation algorithm for stratified datalog ${ }^{\text {: }}$
- For each stratum $i=1,2, \ldots$, do:
- Treat all IDB's defined in prior strata as EBS
- Evaluate the IDB's defined in stratum i, using either the naïve or the semi-naïve algorithm

Does this compute a minimal model?

NO:
$\mathrm{J}_{1}=\{\mathrm{T}=$ transitive closure, $\mathrm{CT}=$ its complement $\}$

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y)
\end{aligned}
$$

CT(x,y) :- Node(x), Node(y), not T(x,y)
$\mathrm{J}_{2}=\{T=$ all pairs of nodes, CT = empty $\}$

Inflationary-fixpoint datalog ${ }^{-}$

Let \mathbf{P} be any datalog program, and I an EDB.
Let $T_{p}(J)$ be the immediate consequence operator.
Let $\mathrm{F}(\mathrm{J})=\mathrm{J} \cup \mathrm{T}_{\mathrm{p}}(\mathrm{J})$ be the inflationary immediate consequence operator.
Define the sequence: $J_{0}=\varnothing, J_{n+1}=F\left(J_{n}\right)$, for $n \geq 0$.
Definition. The inflationary fixpoint semantics of \mathbf{P} is $J=J_{n}$ where n is such that $\mathrm{J}_{\mathrm{n}+1}=J_{\mathrm{n}}$

Why does there always exists an n such that $J_{n}=F\left(J_{n}\right)$?

Find the inflationary semantics for:

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& S(x):-R(x), n o t T(x) \\
& T(x):-R(x), n o t S(x) \\
& \hline
\end{aligned}
$$

Inflationary-fixpoint datalog ${ }^{-}$

- Evaluation for Inflationary-fixpoint datalog ${ }^{-}$
- Use the naïve, of the semi-naïve algorithm
- Inhibit any optimization that rely on monotonicity (e.g. out of order execution)

Partial-fixpoint datalog-,*

Let \mathbf{P} be any datalog program, and I an EDB.
Let $\mathrm{T}_{\mathrm{P}}(\mathrm{J})$ be the immediate consequence operator.

Define the sequence: $J_{0}=\varnothing, J_{n+1}=T_{p}\left(J_{n}\right)$, for $n \geq 0$.
Definition. The partial fixpoint semantics of \mathbf{P} is $\mathrm{J}=\mathrm{J}_{\mathrm{n}}$ where n is such that $J_{n+1}=J_{n}$, if such an n exists, undefined otherwise.

Find the partial fixpoint semantics for:

Note: there may not exists an n

$$
\begin{aligned}
& T(x, y):-R(x, y) \\
& T(x, y):-T(x, z), R(z, y) \\
& C T(x, y):-\operatorname{Node}(x), \operatorname{Node}(y), \operatorname{not} T(x, y)
\end{aligned}
$$ such that $J_{n}=F\left(J_{n}\right)$

$$
\begin{aligned}
& S(x):-R(x), n o t T(x) \\
& T(x):-R(x), n o t S(x)
\end{aligned}
$$

Discussion

- Which semantics does Daedalus adopt?

Discussion

Comparing datalog ${ }^{-}$

- Compute the complement of the transitive closure in inflationary datalog ${ }^{-}$
- Compare the expressive power of:
- Stratified datalog ${ }^{-}$
- Inflationary fixpoint datalog ${ }^{-}$
- Partial fixpoint datalog-

Discussion

Comparing datalog ${ }^{-}$

- Compute the complement of the transitive closure in inflationary datalog ${ }^{-}$
- Compare the expressive power of stratified datalog ${ }$ and inflationary datalog ${ }{ }^{\circ}$

You will answer both these questions in HW3!

