
CSE 544: Principles of Database 
Systems 

Parallel Databases 
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Announcements 

•  Project proposals were due last night 

•  MapReduce paper review due on 
Wednesday 

•  HW2 due on Sunday, May 6th 
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Overview of Today’s Lecture 

•  Discuss in class the Consistent Selectivity 
Estimation paper 

•  Parallel databases (Chapter 22.1 – 22.5) 
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Parallel v.s. Distributed 
Databases 

•  Parallel database system: 
–  Improve performance through parallel 

implementation 
– Will discuss in class 

•  Distributed database system: 
– Data is stored across several sites, each site 

managed by a DBMS capable of running 
independently 

– Will not discuss in class 
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Parallel DBMSs 
•  Goal 

–  Improve performance by executing multiple 
operations in parallel 

 
•  Key benefit 

– Cheaper to scale than relying on a single 
increasingly more powerful processor 

•  Key challenge 
– Ensure overhead and contention do not kill 

performance 
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Performance Metrics  
for Parallel DBMSs 

•  Speedup 
–  More processors è higher speed 

•  Scaleup 
–  More processors è can process more data 

•  Batch scaleup/speedup 
–  Decision Support: individual query should run faster 

(speedup) or same speed (scaleup) 
•  Transaction scaleup/speedup 

–  OLTP: Transactions Per Second (TPS) should 
increase (speedup) or should stay constant (scaleup) 
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Linear v.s. Non-linear Speedup 
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Speedup 
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Linear v.s. Non-linear Scaleup 

# processors (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
– Cost of starting an operation on many 

processors 

•  Interference 
– Contention for resources between processors 

•  Skew 
– Slowest processor becomes the bottleneck 
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Architectures for Parallel 
Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Shared Memory 

Interconnection Network 

P P P 

Global Shared Memory 

D D D 
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Shared Disk 

Interconnection Network 

P P P 

M M M 

D D D 
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Shared Nothing 

Interconnection Network 

P P P 

M M M 

D D D 
CSE544 - Spring, 2012                 13 



Shared Nothing 

•  Most scalable architecture 
– Minimizes interference by minimizing resource 

sharing 
– Can use commodity hardware 
– Terminology: processor = server = node 
– P = number of nodes 

•  Also most difficult to program and manage 
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Product 

Taxonomy 
•  Inter-query parallelism 

–  Transaction per node 
–  OLTP 

•  Inter-operator parallelism 
–  Operator per node 
–  Both OLTP and Decision Support 

•  Intra-operator parallelism 
–  Operator on multiple nodes 
–  Decision Support 
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Review in Class 
Basic query processing on one node. 
 
Given relations R(A,B) and S(B, C), compute: 

•  Selection:  σA=123(R) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 
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Horizontal Data Partitioning 
•  Partition a table R(K, A, B, C) into P chunks R1, …, 

RP, stored at the P nodes 

•  Block Partition: size(R1)≈ … ≈ size(RP)  

•  Hash partitioned on attribute A: 
–  Tuple t goes to chunk i = (h(t.A) mod P) + 1 

•  Range partitioned on attribute A: 
–  Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞ 
–  Tuple t goes to chunk i, if vi-1 ≤ t.A < vi 
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Parallel GroupBy 

R(K,A,B,C), discuss in class how to compute 
these GroupBy’s, for each of the partitions 

•  γA,sum(C)(R) 
 
 
•  γB,sum(C)(R) 
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Parallel GroupBy 

γA,sum(C)(R) 
•  If R is partitioned on A, then each node 

computes the group-by locally 
•  Otherwise, hash-partition R(K,A,B,C) on A, 

then compute group-by locally: 
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R1  R2  RP  .  .  . 

R1’  R2’  RP’  .  .  . 

Reshuffle R 
on attribute 



Speedup and Scaleup 

•  The runtime is dominated by the time to 
read the chunks from disk, i.e. size(Ri) 

•  If we double the number of nodes P, what 
is the new running time of γA,sum(C)(R)? 

•  If we double both P and the size of the 
relation R, what is the new running time? 
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Uniform Data v.s. Skewed Data 

•  Uniform partition:  
– size(R1) ≈ … ≈ size(RP) ≈    size(R) / P 
– Linear speedup, constant scaleup 

•  Skewed partition:  
– For some i,  size(Ri)  ≫ size(R) / P 
– Speedup and scaleup will suffer 
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Uniform Data v.s. Skewed Data 
•  Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

•  Range-partition 
–  On the key K 
–  On the attribute A 
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Uniform Data v.s. Skewed Data 
•  Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

•  Range-partition 
–  On the key K 
–  On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming uniform 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 

May be skewed Difficult to partition 
the range of A uniformly.  
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Parallel Join 

•  In class: compute R(A,B) ⋈ S(B,C) 
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Parallel Join 

•  In class: compute R(A,B) ⋈ S(B,C) 
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R1, S1 R2, S2 RP, SP .  .  . 

R’1, S’1 R’2, S’2 R’P, S’P .  .  . 

Reshuffle R on R.B 
and S on S.B 

Each server computes 
the join locally 
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Parallel Query Plans 

•  Same relational operators 

•  Add special split and merge operators 
– Handle data routing, buffering, and flow 

control 

•  Example: exchange operator  
–  Inserted between consecutive operators in the 

query plan 
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