
CSE 544: Principles of Database
Systems

Parallel Databases

CSE544 - Spring, 2012 1

Announcements

•  Project proposals were due last night

•  MapReduce paper review due on
Wednesday

•  HW2 due on Sunday, May 6th

CSE544 - Spring, 2012 2

Overview of Today’s Lecture

•  Discuss in class the Consistent Selectivity
Estimation paper

•  Parallel databases (Chapter 22.1 – 22.5)

CSE544 - Spring, 2012 3

Parallel v.s. Distributed
Databases

•  Parallel database system:
–  Improve performance through parallel

implementation
– Will discuss in class

•  Distributed database system:
– Data is stored across several sites, each site

managed by a DBMS capable of running
independently

– Will not discuss in class

CSE544 - Spring, 2012 4

Parallel DBMSs
•  Goal

–  Improve performance by executing multiple
operations in parallel

•  Key benefit

– Cheaper to scale than relying on a single
increasingly more powerful processor

•  Key challenge
– Ensure overhead and contention do not kill

performance

CSE544 - Spring, 2012 5

Performance Metrics
for Parallel DBMSs

•  Speedup
–  More processors è higher speed

•  Scaleup
–  More processors è can process more data

•  Batch scaleup/speedup
–  Decision Support: individual query should run faster

(speedup) or same speed (scaleup)
•  Transaction scaleup/speedup

–  OLTP: Transactions Per Second (TPS) should
increase (speedup) or should stay constant (scaleup)

CSE544 - Spring, 2012 6

Linear v.s. Non-linear Speedup

CSE544 - Spring, 2012

processors (=P)

Speedup

7

Linear v.s. Non-linear Scaleup

processors (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

CSE544 - Spring, 2012 8

Challenges to
Linear Speedup and Scaleup

•  Startup cost
– Cost of starting an operation on many

processors

•  Interference
– Contention for resources between processors

•  Skew
– Slowest processor becomes the bottleneck

CSE544 - Spring, 2012 9

Architectures for Parallel
Databases

•  Shared memory

•  Shared disk

•  Shared nothing

CSE544 - Spring, 2012 10

Shared Memory

Interconnection Network

P P P

Global Shared Memory

D D D
CSE544 - Spring, 2012 11

Shared Disk

Interconnection Network

P P P

M M M

D D D
CSE544 - Spring, 2012 12

Shared Nothing

Interconnection Network

P P P

M M M

D D D
CSE544 - Spring, 2012 13

Shared Nothing

•  Most scalable architecture
– Minimizes interference by minimizing resource

sharing
– Can use commodity hardware
– Terminology: processor = server = node
– P = number of nodes

•  Also most difficult to program and manage

14

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Taxonomy
•  Inter-query parallelism

–  Transaction per node
–  OLTP

•  Inter-operator parallelism
–  Operator per node
–  Both OLTP and Decision Support

•  Intra-operator parallelism
–  Operator on multiple nodes
–  Decision Support

CSE544 - Spring, 2012 We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Review in Class
Basic query processing on one node.

Given relations R(A,B) and S(B, C), compute:

•  Selection: σA=123(R)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

CSE544 - Spring, 2012

Horizontal Data Partitioning
•  Partition a table R(K, A, B, C) into P chunks R1, …,

RP, stored at the P nodes

•  Block Partition: size(R1)≈ … ≈ size(RP)

•  Hash partitioned on attribute A:
–  Tuple t goes to chunk i = (h(t.A) mod P) + 1

•  Range partitioned on attribute A:
–  Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
–  Tuple t goes to chunk i, if vi-1 ≤ t.A < vi

17 CSE544 - Spring, 2012

Parallel GroupBy

R(K,A,B,C), discuss in class how to compute
these GroupBy’s, for each of the partitions

•  γA,sum(C)(R)

•  γB,sum(C)(R)

18 CSE544 - Spring, 2012

Parallel GroupBy

γA,sum(C)(R)
•  If R is partitioned on A, then each node

computes the group-by locally
•  Otherwise, hash-partition R(K,A,B,C) on A,

then compute group-by locally:

19

R1 R2 RP . . .

R1’ R2’ RP’ . . .

Reshuffle R
on attribute

Speedup and Scaleup

•  The runtime is dominated by the time to
read the chunks from disk, i.e. size(Ri)

•  If we double the number of nodes P, what
is the new running time of γA,sum(C)(R)?

•  If we double both P and the size of the
relation R, what is the new running time?

CSE544 - Spring, 2012

Uniform Data v.s. Skewed Data

•  Uniform partition:
– size(R1) ≈ … ≈ size(RP) ≈ size(R) / P
– Linear speedup, constant scaleup

•  Skewed partition:
– For some i, size(Ri) ≫ size(R) / P
– Speedup and scaleup will suffer

CSE544 - Spring, 2012

Uniform Data v.s. Skewed Data
•  Let R(K,A,B,C); which of the following partition

methods may result in skewed partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

•  Range-partition
–  On the key K
–  On the attribute A

CSE544 - Spring, 2012

Uniform Data v.s. Skewed Data
•  Let R(K,A,B,C); which of the following partition

methods may result in skewed partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

•  Range-partition
–  On the key K
–  On the attribute A

Uniform

Uniform

May be skewed

Assuming uniform
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

May be skewed Difficult to partition
the range of A uniformly.

CSE544 - Spring, 2012

Parallel Join

•  In class: compute R(A,B) ⋈ S(B,C)

24 CSE544 - Spring, 2012

R1, S1 R2, S2 RP, SP . . .

Parallel Join

•  In class: compute R(A,B) ⋈ S(B,C)

25

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSE544 - Spring, 2012

Parallel Query Plans

•  Same relational operators

•  Add special split and merge operators
– Handle data routing, buffering, and flow

control

•  Example: exchange operator
–  Inserted between consecutive operators in the

query plan

CSE544 - Spring, 2012 26

