CSEb544: Principles of Database
Systems

Query Optimization

CSE544 - Spring, 2012 1

Announcements

* Project proposals due on Sunday, April 22
« Paper review for Wednesday

« Homework 2:
— Questions for Part A - Paris
— Questions for Part B > Dan
— Questions for Part C - you

CSE544 - Spring, 2012

Outline

* Finish Query Execution

» Chapter 15 in the textbook

CSE544 - Spring, 2012

Steps of the Query Processor

SQL query
l
[Parse & Rewrite Query}

/_ ' .
[Select Logical Plan} Logical
Query olan
optimization< v
[Select Physical PIan}
- Physical
" w
[Query Executlon}

Query Execution: Final
Thoughts

CSE544 - Spring, 2012

Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELECT * B(Movie) = 10k
FROM Movie T(Movie) = 1M
WHERE id = 12345’

What is your estimate

SELECT * of the I/O cost ?

FROM Movie
WHERE year = ‘1995

CSEb544 - Spring, 2012 6

Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELECT * B(Movie) = 10k
FROM Movie T(Movie) = 1M
WHERE id ='12345" } Answer: 1

SELECT * Answer:
. e C(Clustered index - 10k/100 =100
FROM Movie . Unclustered index > 1M/100 =10k

WHERE year = ‘1995’ | assuming = 100 years=V(Movie,year)

CSE544 - Spring, 2012 7

Cost formula for
Index Based Selection

Selection on equality: o,-,(R)
* Clustered index on A: B(R)/V(R,A)

* Unclustered index : T(R)/V(R,A)

Rule of thumb:
don’t build unclustered indexes when V(R,A) is small ! | 4

Index Based Join

¢ R NAzB S
« Assume S has an index on B

for each tuple rin R do

fetch tuples s in S using the index S(B)
output (r,s)

CSEb544 - Spring, 2012 9

Cost formula for
Index Based Join
Costof R X,_g S:

* If index is clustered: B(R) + T(R)B(S)/V(S,B)
* |f unclustered: B(R) + T(R)T(S)/V(S,B)

CSEb544 - Spring, 2012 10

Summary of

Query Execution Algorithms

« Join X; Group+aggregate vy
— Hash-based algorithms
— Merge-sort based algorithms
— Cost = 3B(R)+3B(S)
* JOInR X, 5 S:
— Nested Loop join: cost = B(R) +T(R)*B(S)
— Block nested loop join: cost = B(R) + B(R)*B(S)/M
— Index based:

» Clustered: cost = B(R) + T(R)*B(S)/V(S,B)
* Unclustered: cost = B(R) + T(R)*T(S)/V(S,B)

Combining Operators

Two options:
 Materialize intermediate results

* Pipeline intermediate results

CSE544 - Spring, 2012

12

Materialize

/K
/\

/K

CSEb544 - Spring,

@shTable < S \

repeat read(R, x)
y € join(HashTable, x)
write(V1, y)

HashTable < T

repeat read(V1,y)
z < join(HashTable, y)
write(V2, z)

HashTable < U
repeat read(V2, z)

u < join(HashTable, z)

\ write(Answer, u) /

2012 13

Materialize

Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

 What is the total cost of the plan ?
— Cost =

 How much main memory do we need ?
— M=

CSE544 - Spring, 2012

14

Materialize

Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

 What is the total cost of the plan ?

— Cost = B(R)+B(S)+B(T)+B(U)+2B(V1)+2B(V2)
 How much main memory do we need ?

— M = max(B(S), B(T), B(U))

CSE544 - Spring, 2012

15

/
”/ /\

/K

Pipeline

HashTable2 < T

HashTable3 < U

repeat read(R, x)
y < join(HashTable1, x)
z < join(HashTable2, y)
u € join(HashTable3, z)

\ write(Answer, u) /

X\ /HashTabIe1 < S \

CSEb544 - Spring, 2012 16

Pipeline

Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

 What is the total cost of the plan ?
— Cost =

 How much main memory do we need ?
— M=

CSE544 - Spring, 2012

17

Pipeline

Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

 What is the total cost of the plan ?

— Cost = B(R)+B(S)+B(T)+B(U)+2B(\/1)+2B(\/2)
 How much main memory do we need ?

- M=B(S) + B(T) + B(U) (max(B(S):-B(H:B{Y))

CSE544 - Spring, 2012

18

Pipeline in Bushy Trees

/\

// /\
//fN /X\
X //’\
/N
| ¥ .
S T | X Y

CSE544 - Spring, 2012

19

Query Optimization

CSE544 - Spring, 2012

20

Query Optimization Algorithm

 Enumerate alternative plans

« Compute estimated cost of each plan
— Compute number of I/Os
— Compute CPU cost

* Choose plan with lowest cost
— This Is called cost-based optimization

CSEb544 - Spring, 2012 21

Example

Supplier(sid, sname, scity, sstate) | SELECT sname

Supply(sid, pno, quantity) FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2

« Some statistics
— T(Supplier) = 1000 records
— T(Supply) = 10,000 records

and x.scity = ‘Seattle’
and x.sstate = ‘WA

— B(Supply) = 100 pages

— V(Supplier,scity) = 20, V(Supplier,state) = 10
— V(Supply,pno) = 2,500

— Both relations are clustered

« M=10

(

— B(Supplier) = 100 pages
(
(

CSEb544 - Spring, 2012 22

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 1

(On the fly) T

sname

(On the fly)

O scity="Seattle’ nsstate="WA’ A pno=2

(Block-nested loop)

=<
sid = sid
Supplier Supply
(File scan) (File scan)

CSE544 - Spring, 2012

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M=10
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500
Physical Query Plan 1
(On the fly) T sname Selection and project on-the-fly
-> No additional cost.
(On the fly)
O scity="Seattle’ nsstate="WA’ A pno=2

Block-nested loo Total cost of plan is thus cost of join:

(p)>< = B(Supplier)+B(Supplier)*B(Supply)/M
sid = sid =100+ 10 * 100
Supplier Supply
(File scan) (File scan)

CSEb544 - Spring, 2012 24

T(Supplier) = 1000
T(Supply) = 10,000

(On the fly)

B(Supplier) = 100 V(Supplier,scity) = 20
B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 2

! sname (4)

(Sort-merge join) —~—— (3)

sid = sid
(Scan
wrlte to T1) / (Scan
(1) o scity="Seattle’ nsstate="WA’ (2) pn(\)Nglte to T2)
Supplier Supply
(File scan) (File scan)

CSE544 - Spring, 2012

<
I

25

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M=10
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500
Total cost=
B(Supplier)+B(Supplier)/V(Supplier,scity)/V(Supplier,sstate)
(On the ﬂy) T sname (4) + B(Supply) + B(Supply)/V(Supplier,pno) + [merge join]

=100 + 100 * 1/20 * 1/10 (1)

+100 + 100 * 1/2500 (2)
+2 (3)
+0 (4)
(SOrt-merge jOin) (3) Total cost = 204 1/0s
sid = sid
(Scan
write to T1) (Scan
(1)o scity="Seattle’ rsstate="WA’ 2) o pn(\)Ngte to T2)
Supplier Supply
(File scan) (File scan)

CSEb544 - Spring, 2012 26

T(Supplier) = 1000 B(Supplier) =

T(Supply) = 10,000 B(Supply) =

100 V(Supplier,scity) = 20
100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

<
I

Physical Query Plan 3

(Onthefly) 4) =

sname

(On the fly)

(3) O scity="Seattle’ nsstate="WA'

Sld sid

(Use index) ////

(1) o pno =2

Supply
(Index lookup on pno)
Assume: clustered

(Index nested loop)

Supplier

(Index lookup on sid)
Doesn’'t matter if clustered or not’

T(Supplier) = 1000 B(Supplier) =

T(Supply) = 10,000 B(Supply) =

100 V(Supplier,scity) = 20
100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

<
I

Physical Query Plan 3

(Onthefly) 4) =

sname

(On the fly)

(3) O scity="Seattle’ nsstate="WA'

Sld sid

(Use index) /tUDleS

(1) o pno =2

Supply
(Index lookup on pno)
Assume: clustered

(Index nested loop)

N\

Supplier

(Index lookup on sid)
Doesn’'t matter if clustered or not®

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 3

(Onthefly) 4) =

sname

Total cost
=1(1)
(On the fly) . +4(2)
3) o scity="Seattle’ rsstate="WA + 0 (3)
+ 0 (3)
Total cost =
S,d sid - (Index nested loop)
(Use index) /tup'es
(1) o pno =2
Supply Supplier

(Index lookup on pno) (Index lookup on sid)

51/0s

Assume: clustered Doesn’'t matter if clustered or not®

Simplifications

* In the previous examples, we assumed
that all index pages were in memory

 When this is not the case, we need to
add the cost of fetching index pages
from disk

CSE544 - Spring, 2012

30

Lessons

1. Need to consider several physical plan
— even for one, simple logical plan

2. No plan is best in general
— need to have statistics over the data

— the B’s, the T's, the V’s

CSEb544 - Spring, 2012 31

More Lessons

[Chaudhuri]

1 29.82 Pl
I 16.82 P2

3. The plan :

depends alot) H b
on the . &
statistics of i o
the selection
predicates . ; e

The “prepare” Stgtement mu-st Figure 1: Plan diagram for TPC-H Query 8
choose a plan without knowing the

actual predicate values.
Discuss the Anatomy paper

Query Optimization

Three major components:

1. Search space

2. Plan enumeration algorithms

3. Cardinality and cost estimation

CSE544 - Spring, 2012

33

History of Query Optimization

First query optimizer: System R, IBM,1979
It had all three components in place
You will see often references to System R

See Section 15.6 in the book

CSEb544 - Spring, 2012 34

1. Search Space

CSE544 - Spring, 2012

35

1. Search Space

* This is the set of all alternative plans
that are considered by the optimizer

* Defined by the set of algebraic laws and
the set of plans used by the optimizer

CSEb544 - Spring, 2012 36

Relational Algebra Laws:
Joins

Commutativity : RXS=SXR
Associativity: RX(SXT)=(RXS)XT
Distributivity: RX(SUT) = (RXS)U(RNXT)

Outer joins get more complicated

CSEb544 - Spring, 2012 37

Left-Deep Plans and
Bushy Plans

/<\R /\

. \ R3/ \R1 / \

R3 R1

Left-deep plan Bushy plan

System R considered only left deep plans,
and so do some optimizers today 38

Relational Algebra Laws:
Selections

R(A, B, C, D), S(E, F, G)

OF=3(R[X]D=E S)= ?
O a=5AND G=9 (R X pg S) = ?

CSEb544 - Spring, 2012 39

Relational Algebra Laws:
Selections

R(A, B, C, D), S(E, F, G)

O F=3 (RX pp S) = R X pg (0 (=3 (S))
O a=5 AND G=9 (R X p_p S) =0-5(R) Mp_g 0g=9(S)

CSE544 - Spring, 2012 40

Group-by and Join

R(A, B), S(C,D)

VA, sum(D)(R(AaB) M g=c S(C,D)) =

CSE544 - Spring, 2012

?

41

Group-by and Join

R(A, B), S(C,D)

VA, sum(D)(R(AaB) M g=c S(C,D)) =
YA, sum(D (R(A,B) X B=C (YC, sum(D S(C’D)))

These are very powerful laws.
They were introduced only in the 90’s.

CSE544 - Spring, 2012

42

Laws Involving Constraints

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

d. pricelProduct X ,_ .,y Company) = ?

CSE544 - Spring, 2012

43

Laws Involving Constraints

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

d. oricelProduct X ._..qy GCompany) = I1; ,...(Product)

Need a second constraint for this law to hold. Which ?

CSE544 - Spring, 2012 44

Why such queries occur

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

SELECT *
FROM Product x, Company y

SELECT pname, price
FROM CheapProductCompany

CSE544 - Spring, 2012

WHERE x.cid = y.cid and x.price < 100

CREATE VIEW CheapProductCompany

SELECT pname, price
FROM Product
WHERE price < 100

Law of Semijoins

Recall the definition of a semijoin:
..... An (R X S)
 The schemas are:
— Input: R(A1,...An), S(B1,..., Bm)
— Qutput: T(A1,...,An)
* The law of semijoins is:

R X S=(RXS) X S

CSE544 - Spring, 2012

46

Laws with Semijoins

* Very important in parallel databases

« Often combined with Bloom Filters (my

plan is to discuss them in the next
lecture)

 Read pp. 747 in the textbook

CSE544 - Spring, 2012

47

Pruning the Search Space

* Prune entire sets of plans that are
unpromising

* The choice of partial plans influences how
effective we can prune

CSE544 - Spring, 2012 48

Complete Plans

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

A
T

O <40

|

R

/N\

GA<4O

CSE544 - Spring, 2012

I\

If the algorithm
enumerates
complete plans,

then it is difficult
to prune out
unpromising
sets of plans.

Bottom-up Partial Plans

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

If the algorithm enumerates

partial bottom-up plans, X
then pruning can be done

more efficiently
/7 ST
GAI<40 / N\ Opcsg O / N\ Opcso O
S T R R S

R R 50

Top-down Partial Plans

R(A,B)
S(B,C)
T(C,D)

Same here.

[\

SELECT *

FROMR, S

WHERE R.B=S.B
and R.A<40

T

SELECT *
FROMR, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

N \ Oa<40

SELECT R.A, T.D
/ FROMR, S, T
WHERE R.B=S.B
SELECT * andSC=TCf} -

FROM R
WHERE R.A< 40

51

Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

3. Cardinality and cost estimation

CSE544 - Spring, 2012

52

2. Algorithm for enumerating
guery plans

CSE544 - Spring, 2012

53

2. Plan Enumeration Algorithms

¢ System R
— Join reordering — dynamic programming
— Access path selection
— Bottom-up; simple; limited

 Modern database optimizers
— Rule-based: database of rules (x 100s)
— Dynamic programming
— Top-down; complex; extensible

We won'’t discuss them. See book for some more details

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate) B(Supplier) = 10k

T(Supplier) = 1M

o) Supplier)

scategory = ‘organic’ A scity='Seattle’ (

V(Supplier,city) = 1000
Clustered index on scity V(Supplier,scategory)=100
Unclustered index on (scategory,scity)

Access plan options:

« Table scan: cost= ?
* Index scan on scity: cost= ?
« Index scan on scategory,scity: cost= ?

CSEb544 - Spring, 2012 55

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate) B(Supplier) = 10k

T(Supplier) = 1M

o) Supplier)

scategory = ‘organic’ A scity='Seattle’ (

V(Supplier,city) = 1000
Clustered index on scity V(Supplier,scategory)=100
Unclustered index on (scategory,scity)

Access plan options:

* Table scan: cost= 10k =10k
* Index scan on scity: cost= 10k/1000 =10
* |Index scan on scategory,scity: cost= 1M/1000*100 =10

CSE544 - Spring, 2012 56

Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

T
Next lecture
3. Cardinality and cost estimation\/(‘/

CSEb544 - Spring, 2012 57

