
CSE544: Principles of Database 
Systems 

Query Optimization 
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Announcements 

•  Project proposals due on Sunday, April 22 

•  Paper review for Wednesday 

•  Homework 2: 
–  Questions for Part A à Paris 
–  Questions for Part B à Dan 
–  Questions for Part C à you 
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Outline 

•  Finish Query Execution 

•  Chapter 15 in the textbook 
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Steps of the Query Processor 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 



Query Execution: Final 
Thoughts 
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Index Based Selection 
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SELECT * 
FROM Movie 
WHERE id = ‘12345’ 

Recall IMDB; assume indexes on Movie.id, Movie.year 

SELECT * 
FROM Movie 
WHERE year = ‘1995’ 

B(Movie) = 10k 
T(Movie) = 1M 

What is your estimate 
of the I/O cost ? 



Index Based Selection 
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SELECT * 
FROM Movie 
WHERE id = ‘12345’ 

Recall IMDB; assume indexes on Movie.id, Movie.year 

SELECT * 
FROM Movie 
WHERE year = ‘1995’ 

B(Movie) = 10k 
T(Movie) = 1M 

Answer:  1 

Answer: 
•  Clustered index à 10k/100  =100 
•  Unclustered index à 1M/100 =10k 
assuming ≈ 100 years=V(Movie,year) 
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Cost formula for 
Index Based Selection 

Selection on equality: σA=v(R) 

•  Clustered index on A:   B(R)/V(R,A) 

•  Unclustered index :       T(R)/V(R,A) 
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Rule of thumb:  
don’t build unclustered indexes when V(R,A) is small ! 
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Index Based Join 

•  R  ⨝A=B S 
•  Assume S has an index on B 

for each tuple r in R do 
   fetch tuples s in S using the index S(B) 

output (r,s) 
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Cost formula for 
Index Based Join 

Cost of R  ⨝A=B S: 

•  If index is clustered: B(R) + T(R)B(S)/V(S,B) 
•  If unclustered:          B(R) + T(R)T(S)/V(S,B) 
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Summary of 
Query Execution Algorithms 

•  Join ⨝; Group+aggregate γ	


–  Hash-based algorithms 
–  Merge-sort based algorithms 
–  Cost = 3B(R)+3B(S) 

•  Join R ⨝A=B S: 
–  Nested Loop join: cost = B(R) +T(R)*B(S) 
–  Block nested loop join: cost = B(R) + B(R)*B(S)/M 
–  Index based: 

•  Clustered: cost = B(R) + T(R)*B(S)/V(S,B) 
•  Unclustered: cost = B(R) + T(R)*T(S)/V(S,B) 



Combining Operators 

Two options: 

•  Materialize intermediate results 

•  Pipeline intermediate results 
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⋈ 

⋈ 

⋈ T 

R S 

U 

HashTable ß S 
repeat  read(R, x) 

 y ß join(HashTable, x) 
 write(V1, y) 

 
HashTable ß T 
repeat  read(V1, y) 

 z ß join(HashTable, y) 
 write(V2, z) 

 
HashTable ß U 
repeat  read(V2, z) 

 u ß join(HashTable, z) 
 write(Answer, u) 

V1 

V2 
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Materialize 
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Materialize 
Given B(R), B(S), B(T), B(U) 
Assume we do main-memory hash-join 
 
•  What is the total cost of the plan ? 

–  Cost =  

•  How much main memory do we need ? 
–  M =  
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Materialize 
Given B(R), B(S), B(T), B(U) 
Assume we do main-memory hash-join 
 
•  What is the total cost of the plan ? 

–  Cost = B(R)+B(S)+B(T)+B(U)+2B(V1)+2B(V2) 

•  How much main memory do we need ? 
–  M = max(B(S), B(T), B(U)) 
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Pipeline 

⋈ 

⋈ 

⋈ T 

R S 

U 

HashTable1 ß S 
HashTable2 ß T 
HashTable3 ß U 
repeat  read(R, x) 

 y ß join(HashTable1, x)  
 z ß join(HashTable2, y) 
 u ß join(HashTable3, z) 
 write(Answer, u) 
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Pipeline 
Given B(R), B(S), B(T), B(U) 
Assume we do main-memory hash-join 
 
•  What is the total cost of the plan ? 

–  Cost =  

•  How much main memory do we need ? 
–  M =  
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Pipeline 
Given B(R), B(S), B(T), B(U) 
Assume we do main-memory hash-join 
 
•  What is the total cost of the plan ? 

–  Cost = B(R)+B(S)+B(T)+B(U)+2B(V1)+2B(V2) 

•  How much main memory do we need ? 
–  M = B(S) + B(T) + B(U)  (max(B(S), B(T), B(U))) 
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Pipeline in Bushy Trees 
⋈ 

⋈ 

⋈ 

X R S 

⋈ 

⋈ 
Z

Y 

⋈ 

V 

T 

⋈ 

I 
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Query Optimization 
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Query Optimization Algorithm 
•  Enumerate alternative plans 

•  Compute estimated cost of each plan 
– Compute number of I/Os 
– Compute CPU cost 

•  Choose plan with lowest cost 
– This is called cost-based optimization 
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Example 

•  Some statistics 
–  T(Supplier) = 1000 records 
–  T(Supply) = 10,000 records 
–  B(Supplier) = 100 pages 
–  B(Supply) = 100 pages 
–  V(Supplier,scity) = 20, V(Supplier,state) = 10 
–  V(Supply,pno) = 2,500 
–  Both relations are clustered 

•  M = 10 

SELECT sname 
FROM Supplier x, Supply y 
WHERE x.sid = y.sid 
    and  y.pno = 2 
    and x.scity = ‘Seattle’ 
    and x.sstate = ‘WA’ 

Supplier(sid, sname, scity, sstate) 
Supply(sid, pno, quantity) 
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Physical Query Plan 1 

Supplier Supply 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Block-nested loop) 

(On the fly) 

(On the fly) 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 
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Physical Query Plan 1 

Supplier Supply 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Block-nested loop) 

(On the fly) 

(On the fly) Selection and project on-the-fly 
-> No additional cost. 
 
 
 
 
Total cost of plan is thus cost of join: 
= B(Supplier)+B(Supplier)*B(Supply)/M 
= 100 + 10 * 100 
= 1,100 I/Os 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 
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Supplier Supply 

sid = sid 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(On the fly) 

(2) σ pno=2 

(Scan 
 write to T1) 

Physical Query Plan 2 

(3) 

(4) 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 
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Supplier Supply 

sid = sid 

(1) σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan 
write to T2) 

(On the fly) 

(2) σ pno=2 

(Scan 
 write to T1) 

Physical Query Plan 2 
Total cost= 
B(Supplier)+B(Supplier)/V(Supplier,scity)/V(Supplier,sstate) 
+ B(Supply) + B(Supply)/V(Supplier,pno) + [merge join] 
= 100 + 100 * 1/20 * 1/10 (1) 
+ 100 + 100 * 1/2500 (2) 
+ 2 (3) 
+ 0 (4) 
Total cost  ≈  204 I/Os (3) 

(4) 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 



Supply Supplier 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Index lookup on sid) 
Doesn’t matter if clustered or not 

(On the fly) 

(1) σ pno=2 

(Index lookup on pno ) 
Assume: clustered 

Physical Query Plan 3 

(Use index) 

(2) 

(3) 

(4) 

(On the fly) 
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B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 



Supply Supplier 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Index lookup on sid) 
Doesn’t matter if clustered or not 

(On the fly) 

(1) σ pno=2 

(Index lookup on pno ) 
Assume: clustered 

Physical Query Plan 3 

(Use index) 

(2) 

(3) 

(4) 

(On the fly) 

4 tuples 
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B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 



Supply Supplier 

sid = sid 

σ scity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(Index nested loop) 

(Index lookup on sid) 
Doesn’t matter if clustered or not 

(On the fly) 

(1) σ pno=2 

(Index lookup on pno ) 
Assume: clustered 

Physical Query Plan 3 
Total cost 
= 1 (1) 
+ 4 (2) 
+ 0 (3) 
+ 0 (3) 
Total cost  ≈  5 I/Os 

(Use index) 

(2) 

(3) 

(4) 

(On the fly) 

4 tuples 

29 

B(Supplier) = 100 
B(Supply) = 100 

T(Supplier) = 1000 
T(Supply) = 10,000 

V(Supplier,scity) = 20 
V(Supplier,state) = 10 
V(Supply,pno) = 2,500 

M = 10 
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Simplifications 

•  In the previous examples, we assumed 
that all index pages were in memory 

•  When this is not the case, we need to 
add the cost of fetching index pages 
from disk 
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Lessons 

1.  Need to consider several physical plan 
–  even for one, simple logical plan 

2.  No plan is best in general 
–  need to have statistics over the data 
–  the B’s, the T’s, the V’s 
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More Lessons 

3.  The plan 
depends a lot 
on the 
statistics of 
the selection 
predicates 

[Chaudhuri] 

The “prepare” statement must 
choose a plan without knowing the 
actual predicate values.  
Discuss the Anatomy paper 
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Query Optimization 

Three major components: 

1.  Search space 

2.  Plan enumeration algorithms 

3.  Cardinality and cost estimation 



History of Query Optimization 

•  First query optimizer: System R, IBM,1979 

•  It had all three components in place 

•  You will see often references to System R 

•  See Section 15.6 in the book 
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1. Search Space 
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1. Search Space 

•  This is the set of all alternative plans 
that are considered by the optimizer 

•  Defined by the set of algebraic laws and 
the set of plans used by the optimizer 
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Relational Algebra Laws: 
Joins 
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Commutativity :  R ⋈ S = S ⋈ R  
Associativity:  R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T  
Distributivity:  R ⨝ (S ∪ T)  =  (R ⨝ S) ∪ (R ⨝ T) 

Outer joins get more complicated 



Left-Deep Plans and 
Bushy Plans 
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R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 

System R considered only left deep plans,  
and so do some optimizers today 



Relational Algebra Laws: 
Selections 
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R(A, B, C, D), S(E, F, G) 

σ F=3 (R ⨝ D=E S) =                                     ? 
σ A=5 AND G=9 (R ⨝ D=E S) =                         ? 



Relational Algebra Laws: 
Selections 
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R(A, B, C, D), S(E, F, G) 

σ F=3 (R ⨝ D=E S) =  R ⨝ D=E (σ F=3 (S)) 
σ A=5 AND G=9 (R ⨝ D=E S) =σA=5(R) ⨝D=E σG=9(S) 



Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =        ? 
      

R(A, B),  S(C,D) 



Group-by and Join 
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γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =   
     γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D))) 

These are very powerful laws. 
They were introduced only in the 90’s. 

R(A, B),  S(C,D) 



Laws Involving Constraints 
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Foreign key 

Πpid, price(Product ⨝cid=cid Company) =     ? 

Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 



Laws Involving Constraints 
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Foreign key 

Need a second constraint for this law to hold. Which ? 

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product) 

Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 



Why such queries occur 
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CREATE VIEW CheapProductCompany 
     SELECT * 
     FROM Product x, Company y 
     WHERE x.cid = y.cid and x.price < 100 

SELECT pname, price 
FROM CheapProductCompany 

SELECT pname, price 
FROM Product 
WHERE price < 100 

Foreign key 

Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 
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Law of Semijoins 

Recall the definition of a semijoin: 
•  R ⋉ S  = Π A1,…,An (R  ⨝  S) 
•  The schemas are: 

–  Input: R(A1,…An),  S(B1,…,Bm) 
– Output: T(A1,…,An) 

•  The law of semijoins is: 
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R  ⨝  S = (R ⋉ S)  ⨝  S 



Laws with Semijoins 

•  Very important in parallel databases 
•  Often combined with Bloom Filters (my 

plan is to discuss them in the next 
lecture) 

•  Read pp. 747 in the textbook 

CSE544 - Spring, 2012        47 



Pruning the Search Space 

•  Prune entire sets of plans that are 
unpromising 

•  The choice of partial plans influences how 
effective we can prune 
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Complete Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

⨝ 

S σA<40 

R 

⨝ 

T 

⨝ 

S 

σA<40 

R 

⨝ 

T 

If the algorithm 
enumerates 
complete plans, 
then it is difficult 
to prune out 
unpromising 
sets of plans. 

R(A,B) 
S(B,C) 
T(C,D) 



Bottom-up Partial Plans 
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SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

R S T 

⨝ 

S σA<40 

R 

⨝ 

R S 

⨝ 

S σA<40 

R 

⨝ 

T 

….. 

If the algorithm enumerates 
partial bottom-up plans, 
then pruning can be done 
more efficiently 



Top-down Partial Plans 

51 

SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

T 
⨝ 

S 

⨝ 

T 

….. 

SELECT R.A, T.D 
FROM R, S, T 
WHERE R.B=S.B 
        and S.C=T.C 

SELECT * 
FROM R, S 
WHERE R.B=S.B 
        and R.A < 40 SELECT * 

FROM R 
WHERE R.A < 40 

Same here. 
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Query Optimization 

Three major components: 

1.  Search space 

2.  Algorithm for enumerating query plans 

3.  Cardinality and cost estimation 



2. Algorithm for enumerating 
query plans 
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2. Plan Enumeration Algorithms 

•  System R  
– Join reordering – dynamic programming 
– Access path selection 
– Bottom-up; simple; limited 

•  Modern database optimizers  
– Rule-based: database of rules (x 100s) 
– Dynamic programming 
– Top-down; complex; extensible 
We won’t discuss them.  See book for some more details 



Access Path Selection 
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Supplier(sid,sname,scategory,scity,sstate) 

V(Supplier,city) = 1000 
V(Supplier,scategory)=100 Clustered index on scity 

Unclustered index on (scategory,scity) 

B(Supplier) = 10k 
T(Supplier) = 1M 

Access plan options: 
•  Table scan:     cost =    ? 
•  Index scan on scity:    cost =    ? 
•  Index scan on scategory,scity:  cost =    ? 

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier) 



Access Path Selection 
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Supplier(sid,sname,scategory,scity,sstate) 

V(Supplier,city) = 1000 
V(Supplier,scategory)=100 Clustered index on scity 

Unclustered index on (scategory,scity) 

B(Supplier) = 10k 
T(Supplier) = 1M 

Access plan options: 
•  Table scan:     cost =    10k   = 10k 
•  Index scan on scity:    cost =    10k/1000  = 10 
•  Index scan on scategory,scity:  cost =    1M/1000*100  = 10 

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier) 
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Query Optimization 

Three major components: 

1.  Search space 

2.  Algorithm for enumerating query plans 

3.  Cardinality and cost estimation 
Next lecture 


