CSEb544: Principles of Database
Systems

Query Optimization
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Announcements

* Project proposals due on Sunday, April 22
« Paper review for Wednesday

« Homework 2:
— Questions for Part A - Paris
— Questions for Part B > Dan
— Questions for Part C - you

CSE544 - Spring, 2012



Outline

* Finish Query Execution

» Chapter 15 in the textbook
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Steps of the Query Processor

SQL query
l
[Parse & Rewrite Query}

/_ ' .
[Select Logical Plan} Logical
Query olan
optimization< v
[Select Physical PIan}
- Physical
" w
[Query Executlon}




Query Execution: Final
Thoughts
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Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELECT * B(Movie) = 10k
FROM Movie T(Movie) = 1M
WHERE id = 12345’

What is your estimate

SELECT * of the I/O cost ?

FROM Movie
WHERE year = ‘1995
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Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELECT * B(Movie) = 10k
FROM Movie T(Movie) = 1M
WHERE id ='12345" }  Answer: 1

SELECT * Answer:
. e C(Clustered index - 10k/100 =100
FROM Movie . Unclustered index > 1M/100 =10k

WHERE year = ‘1995’ | assuming = 100 years=V(Movie,year)
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Cost formula for
Index Based Selection

Selection on equality: o,-,(R)
* Clustered index on A: B(R)/V(R,A)

* Unclustered index : T(R)/V(R,A)

Rule of thumb:
don’t build unclustered indexes when V(R,A) is small ! | 4




Index Based Join

¢ R NAzB S
« Assume S has an index on B

for each tuple rin R do

fetch tuples s in S using the index S(B)
output (r,s)
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Cost formula for
Index Based Join
Costof R X,_g S:

* If index is clustered: B(R) + T(R)B(S)/V(S,B)
* |f unclustered: B(R) + T(R)T(S)/V(S,B)
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Summary of

Query Execution Algorithms

« Join X; Group+aggregate vy
— Hash-based algorithms
— Merge-sort based algorithms
— Cost = 3B(R)+3B(S)
* JOInR X, 5 S:
— Nested Loop join: cost = B(R) +T(R)*B(S)
— Block nested loop join: cost = B(R) + B(R)*B(S)/M
— Index based:

» Clustered: cost = B(R) + T(R)*B(S)/V(S,B)
* Unclustered: cost = B(R) + T(R)*T(S)/V(S,B)



Combining Operators

Two options:
 Materialize intermediate results

* Pipeline intermediate results
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Materialize

/K
/\

/K
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@shTable < S \

repeat read(R, x)
y € join(HashTable, x)
write(V1, y)

HashTable < T

repeat read(V1,y)
z < join(HashTable, y)
write(V2, z)

HashTable < U
repeat read(V2, z)

u < join(HashTable, z)

\ write(Answer, u) /
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Materialize

Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

 What is the total cost of the plan ?
— Cost =

 How much main memory do we need ?
— M=
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Materialize

Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

 What is the total cost of the plan ?

— Cost = B(R)+B(S)+B(T)+B(U)+2B(V1)+2B(V2)
 How much main memory do we need ?

— M = max(B(S), B(T), B(U))
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/
”/ /\

/K

Pipeline

HashTable2 < T

HashTable3 < U

repeat read(R, x)
y < join(HashTable1, x)
z < join(HashTable2, y)
u € join(HashTable3, z)

\ write(Answer, u) /

X\ /HashTabIe1 < S \
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Pipeline

Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

 What is the total cost of the plan ?
— Cost =

 How much main memory do we need ?
— M=
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Pipeline

Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

 What is the total cost of the plan ?

— Cost = B(R)+B(S)+B(T)+B(U)+2B(\/1)+2B(\/2)
 How much main memory do we need ?

- M=B(S) + B(T) + B(U) (max(B(S):-B(H:B{Y))
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Pipeline in Bushy Trees

/\

// /\
//fN /X\
X //’\
/N
| ¥ .
S T | X Y
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Query Optimization
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Query Optimization Algorithm

 Enumerate alternative plans

« Compute estimated cost of each plan
— Compute number of I/Os
— Compute CPU cost

* Choose plan with lowest cost
— This Is called cost-based optimization
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Example

Supplier(sid, sname, scity, sstate) | SELECT sname

Supply(sid, pno, quantity) FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2

« Some statistics
— T(Supplier) = 1000 records
— T(Supply) = 10,000 records

and x.scity = ‘Seattle’
and x.sstate = ‘WA

— B(Supply) = 100 pages

— V(Supplier,scity) = 20, V(Supplier,state) = 10
— V(Supply,pno) = 2,500

— Both relations are clustered

« M=10

(

— B(Supplier) = 100 pages
(
(
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T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 1

(On the fly) T

sname

(On the fly)

O scity="Seattle’ nsstate="WA’ A pno=2

(Block-nested loop)

=<
sid = sid
Supplier Supply
(File scan) (File scan)
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T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M=10
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500
Physical Query Plan 1
(On the fly) T sname Selection and project on-the-fly
-> No additional cost.
(On the fly)
O scity="Seattle’ nsstate="WA’ A pno=2

Block-nested loo Total cost of plan is thus cost of join:

( p)>< = B(Supplier)+B(Supplier)*B(Supply)/M
sid = sid =100+ 10 * 100
Supplier Supply
(File scan) (File scan)
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T(Supplier) = 1000
T(Supply) = 10,000

(On the fly)

B(Supplier) = 100 V(Supplier,scity) = 20
B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 2

! sname (4)

(Sort-merge join) —~—— (3)

sid = sid
(Scan
wrlte to T1) / (Scan
(1) o scity="Seattle’ nsstate="WA’ (2) pn(\)Nglte to T2)
Supplier Supply
(File scan) (File scan)

CSE544 - Spring, 2012
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T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M=10
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500
Total cost=
B(Supplier)+B(Supplier)/V(Supplier,scity)/V(Supplier,sstate)
(On the ﬂy) T sname (4) + B(Supply) + B(Supply)/V(Supplier,pno) + [merge join]

=100 + 100 * 1/20 * 1/10 (1)

+100 + 100 * 1/2500 (2)
+2 (3)
+0 (4)
(SOrt-merge jOin) (3) Total cost = 204 1/0s
sid = sid
(Scan
write to T1) (Scan
(1)o scity="Seattle’ rsstate="WA’ 2) o pn(\)Ngte to T2)
Supplier Supply
(File scan) (File scan)

CSEb544 - Spring, 2012 26



T(Supplier) = 1000 B(Supplier) =

T(Supply) = 10,000 B(Supply) =

100 V(Supplier,scity) = 20
100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

<
I

Physical Query Plan 3

(Onthefly) 4) =

sname

(On the fly)

(3 ) O scity="Seattle’ nsstate="WA'

Sld sid

(Use index) ////

(1) o pno =2

Supply
(Index lookup on pno )
Assume: clustered

(Index nested loop)

Supplier

(Index lookup on sid)
Doesn’'t matter if clustered or not’



T(Supplier) = 1000 B(Supplier) =

T(Supply) = 10,000 B(Supply) =

100 V(Supplier,scity) = 20
100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

<
I

Physical Query Plan 3

(Onthefly) 4) =

sname

(On the fly)

(3 ) O scity="Seattle’ nsstate="WA'

Sld sid

(Use index) /tUDleS

(1) o pno =2

Supply
(Index lookup on pno )
Assume: clustered

(Index nested loop)

N\

Supplier

(Index lookup on sid)
Doesn’'t matter if clustered or not®



T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 3

(Onthefly) 4) =

sname

Total cost
=1(1)
(On the fly) . +4(2)
3) o scity="Seattle’ rsstate="WA + 0 (3)
+ 0 (3)
Total cost =
S,d sid - (Index nested loop)
(Use index) /tup'es
(1) o pno =2
Supply Supplier

(Index lookup on pno ) (Index lookup on sid)

51/0s

Assume: clustered Doesn’'t matter if clustered or not®



Simplifications

* In the previous examples, we assumed
that all index pages were in memory

 When this is not the case, we need to
add the cost of fetching index pages
from disk
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Lessons

1. Need to consider several physical plan
— even for one, simple logical plan

2. No plan is best in general
— need to have statistics over the data

— the B’s, the T's, the V’s
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More Lessons

[Chaudhuri]

1 29.82 Pl
I 16.82 P2

3. The plan :

depends alot ) H b
on the . &
statistics of i o
the selection
predicates . ; e

The “prepare” Stgtement mu-st Figure 1: Plan diagram for TPC-H Query 8
choose a plan without knowing the

actual predicate values.
Discuss the Anatomy paper




Query Optimization

Three major components:

1. Search space

2. Plan enumeration algorithms

3. Cardinality and cost estimation

CSE544 - Spring, 2012
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History of Query Optimization

First query optimizer: System R, IBM,1979
It had all three components in place
You will see often references to System R

See Section 15.6 in the book
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1. Search Space

CSE544 - Spring, 2012
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1. Search Space

* This is the set of all alternative plans
that are considered by the optimizer

* Defined by the set of algebraic laws and
the set of plans used by the optimizer
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Relational Algebra Laws:
Joins

Commutativity : RXS=SXR
Associativity: RX(SXT)=(RXS)XT
Distributivity: RX(SUT) = (RXS)U(RNXT)

Outer joins get more complicated
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Left-Deep Plans and
Bushy Plans

/<\R /\

. \ R3/ \R1 / \

R3 R1

Left-deep plan Bushy plan

System R considered only left deep plans,
and so do some optimizers today 38




Relational Algebra Laws:
Selections

R(A, B, C, D), S(E, F, G)

OF=3(R[X]D=E S)= ?
O a=5AND G=9 (R X pg S) = ?
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Relational Algebra Laws:
Selections

R(A, B, C, D), S(E, F, G)

O F=3 (RX pp S) = R X pg (0 (=3 (S))
O a=5 AND G=9 (R X p_p S) =0-5(R) Mp_g 0g=9(S)
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Group-by and Join

R(A, B), S(C,D)

VA, sum(D)(R(AaB) M g=c S(C,D)) =

CSE544 - Spring, 2012
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Group-by and Join

R(A, B), S(C,D)

VA, sum(D)(R(AaB) M g=c S(C,D)) =
YA, sum(D (R(A,B) X B=C (YC, sum(D S(C’D)))

These are very powerful laws.
They were introduced only in the 90’s.

CSE544 - Spring, 2012
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Laws Involving Constraints

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

d. pricelProduct X ,_ .,y Company) = ?

CSE544 - Spring, 2012
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Laws Involving Constraints

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

d. oricelProduct X ._..qy GCompany) = I1; ,...(Product)

Need a second constraint for this law to hold. Which ?
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Why such queries occur

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

SELECT *
FROM Product x, Company y

SELECT pname, price
FROM CheapProductCompany

CSE544 - Spring, 2012

WHERE x.cid = y.cid and x.price < 100

CREATE VIEW CheapProductCompany

SELECT pname, price
FROM Product
WHERE price < 100




Law of Semijoins

Recall the definition of a semijoin:
..... An (R X S)
 The schemas are:
— Input: R(A1,...An), S(B1,..., Bm)
— Qutput: T(A1,...,An)
* The law of semijoins is:

R X S=(RXS) X S

CSE544 - Spring, 2012

46



Laws with Semijoins

* Very important in parallel databases

« Often combined with Bloom Filters (my

plan is to discuss them in the next
lecture)

 Read pp. 747 in the textbook
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Pruning the Search Space

* Prune entire sets of plans that are
unpromising

* The choice of partial plans influences how
effective we can prune
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Complete Plans

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

A
T

O <40

|

R

/N\

GA<4O

CSE544 - Spring, 2012
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If the algorithm
enumerates
complete plans,

then it is difficult
to prune out
unpromising
sets of plans.




Bottom-up Partial Plans

R(A,B) SELECT *
S(B,C) FROMR, S, T
T(C,D) WHERE R.B=S.B and S.C=T.C and R.A<40

If the algorithm enumerates

partial bottom-up plans, X
then pruning can be done

more efficiently
/7 ST
GAI<40 / N\ Opcsg O / N\ Opcso O
S T R R S
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Top-down Partial Plans

R(A,B)
S(B,C)
T(C,D)

Same here.

[\

SELECT *

FROMR, S

WHERE R.B=S.B
and R.A<40

T

SELECT *
FROMR, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

N \ Oa<40

SELECT R.A, T.D
/ FROMR, S, T
WHERE R.B=S.B
SELECT * andSC=TCf} -

FROM R
WHERE R.A< 40
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Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

3. Cardinality and cost estimation
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2. Algorithm for enumerating
guery plans
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2. Plan Enumeration Algorithms

¢ System R
— Join reordering — dynamic programming
— Access path selection
— Bottom-up; simple; limited

 Modern database optimizers
— Rule-based: database of rules (x 100s)
— Dynamic programming
— Top-down; complex; extensible

We won'’t discuss them. See book for some more details




Access Path Selection

Supplier(sid,sname,scategory,scity,sstate) B(Supplier) = 10k

T(Supplier) = 1M

o) Supplier)

scategory = ‘organic’ A scity='Seattle’ (

V(Supplier,city) = 1000
Clustered index on scity V(Supplier,scategory)=100
Unclustered index on (scategory,scity)

Access plan options:

« Table scan: cost= ?
* Index scan on scity: cost= ?
« Index scan on scategory,scity: cost= ?
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Access Path Selection

Supplier(sid,sname,scategory,scity,sstate) B(Supplier) = 10k

T(Supplier) = 1M

o) Supplier)

scategory = ‘organic’ A scity='Seattle’ (

V(Supplier,city) = 1000
Clustered index on scity V(Supplier,scategory)=100
Unclustered index on (scategory,scity)

Access plan options:

* Table scan: cost= 10k =10k
* Index scan on scity: cost= 10k/1000 =10
* |Index scan on scategory,scity: cost= 1M/1000*100 =10
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Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

T
Next lecture
3. Cardinality and cost estimation\/(‘/
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