
CSE544: Principles of Database
Systems

Query Optimization

CSE544 - Spring, 2012 1

Announcements

•  Project proposals due on Sunday, April 22

•  Paper review for Wednesday

•  Homework 2:
–  Questions for Part A à Paris
–  Questions for Part B à Dan
–  Questions for Part C à you

CSE544 - Spring, 2012 2

Outline

•  Finish Query Execution

•  Chapter 15 in the textbook

CSE544 - Spring, 2012 3

Steps of the Query Processor

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

Query Execution: Final
Thoughts

CSE544 - Spring, 2012 5

Index Based Selection

CSE544 - Spring, 2012 6

SELECT *
FROM Movie
WHERE id = ‘12345’

Recall IMDB; assume indexes on Movie.id, Movie.year

SELECT *
FROM Movie
WHERE year = ‘1995’

B(Movie) = 10k
T(Movie) = 1M

What is your estimate
of the I/O cost ?

Index Based Selection

CSE544 - Spring, 2012 7

SELECT *
FROM Movie
WHERE id = ‘12345’

Recall IMDB; assume indexes on Movie.id, Movie.year

SELECT *
FROM Movie
WHERE year = ‘1995’

B(Movie) = 10k
T(Movie) = 1M

Answer: 1

Answer:
•  Clustered index à 10k/100 =100
•  Unclustered index à 1M/100 =10k
assuming ≈ 100 years=V(Movie,year)

8

Cost formula for
Index Based Selection

Selection on equality: σA=v(R)

•  Clustered index on A: B(R)/V(R,A)

•  Unclustered index : T(R)/V(R,A)

CSE544 - Spring, 2012

Rule of thumb:
don’t build unclustered indexes when V(R,A) is small !

9

Index Based Join

•  R ⨝A=B S
•  Assume S has an index on B

for each tuple r in R do
 fetch tuples s in S using the index S(B)

output (r,s)

CSE544 - Spring, 2012

10

Cost formula for
Index Based Join

Cost of R ⨝A=B S:

•  If index is clustered: B(R) + T(R)B(S)/V(S,B)
•  If unclustered: B(R) + T(R)T(S)/V(S,B)

CSE544 - Spring, 2012

Summary of
Query Execution Algorithms

•  Join ⨝; Group+aggregate γ	

–  Hash-based algorithms
–  Merge-sort based algorithms
–  Cost = 3B(R)+3B(S)

•  Join R ⨝A=B S:
–  Nested Loop join: cost = B(R) +T(R)*B(S)
–  Block nested loop join: cost = B(R) + B(R)*B(S)/M
–  Index based:

•  Clustered: cost = B(R) + T(R)*B(S)/V(S,B)
•  Unclustered: cost = B(R) + T(R)*T(S)/V(S,B)

Combining Operators

Two options:

•  Materialize intermediate results

•  Pipeline intermediate results

CSE544 - Spring, 2012 12

13

⋈

⋈

⋈ T

R S

U

HashTable ß S
repeat read(R, x)

 y ß join(HashTable, x)
 write(V1, y)

HashTable ß T
repeat read(V1, y)

 z ß join(HashTable, y)
 write(V2, z)

HashTable ß U
repeat read(V2, z)

 u ß join(HashTable, z)
 write(Answer, u)

V1

V2

CSE544 - Spring, 2012

Materialize

14

Materialize
Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

•  What is the total cost of the plan ?

–  Cost =

•  How much main memory do we need ?
–  M =

CSE544 - Spring, 2012

15

Materialize
Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

•  What is the total cost of the plan ?

–  Cost = B(R)+B(S)+B(T)+B(U)+2B(V1)+2B(V2)

•  How much main memory do we need ?
–  M = max(B(S), B(T), B(U))

CSE544 - Spring, 2012

16

Pipeline

⋈

⋈

⋈ T

R S

U

HashTable1 ß S
HashTable2 ß T
HashTable3 ß U
repeat read(R, x)

 y ß join(HashTable1, x)
 z ß join(HashTable2, y)
 u ß join(HashTable3, z)
 write(Answer, u)

CSE544 - Spring, 2012

17

Pipeline
Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

•  What is the total cost of the plan ?

–  Cost =

•  How much main memory do we need ?
–  M =

CSE544 - Spring, 2012

18

Pipeline
Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join

•  What is the total cost of the plan ?

–  Cost = B(R)+B(S)+B(T)+B(U)+2B(V1)+2B(V2)

•  How much main memory do we need ?
–  M = B(S) + B(T) + B(U) (max(B(S), B(T), B(U)))

CSE544 - Spring, 2012

19

Pipeline in Bushy Trees
⋈

⋈

⋈

X R S

⋈

⋈
Z

Y

⋈

V

T

⋈

I
CSE544 - Spring, 2012

Query Optimization

CSE544 - Spring, 2012 20

CSE544 - Spring, 2012 21

Query Optimization Algorithm
•  Enumerate alternative plans

•  Compute estimated cost of each plan
– Compute number of I/Os
– Compute CPU cost

•  Choose plan with lowest cost
– This is called cost-based optimization

CSE544 - Spring, 2012 22

Example

•  Some statistics
–  T(Supplier) = 1000 records
–  T(Supply) = 10,000 records
–  B(Supplier) = 100 pages
–  B(Supply) = 100 pages
–  V(Supplier,scity) = 20, V(Supplier,state) = 10
–  V(Supply,pno) = 2,500
–  Both relations are clustered

•  M = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

CSE544 - Spring, 2012 23

Physical Query Plan 1

Supplier Supply

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Block-nested loop)

(On the fly)

(On the fly)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

CSE544 - Spring, 2012 24

Physical Query Plan 1

Supplier Supply

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Block-nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)/M
= 100 + 10 * 100
= 1,100 I/Os

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

CSE544 - Spring, 2012 25

Supplier Supply

sid = sid

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(2) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2

(3)

(4)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

CSE544 - Spring, 2012 26

Supplier Supply

sid = sid

(1) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(2) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2
Total cost=
B(Supplier)+B(Supplier)/V(Supplier,scity)/V(Supplier,sstate)
+ B(Supply) + B(Supply)/V(Supplier,pno) + [merge join]
= 100 + 100 * 1/20 * 1/10 (1)
+ 100 + 100 * 1/2500 (2)
+ 2 (3)
+ 0 (4)
Total cost ≈ 204 I/Os (3)

(4)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Supply Supplier

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Index lookup on sid)
Doesn’t matter if clustered or not

(On the fly)

(1) σ pno=2

(Index lookup on pno)
Assume: clustered

Physical Query Plan 3

(Use index)

(2)

(3)

(4)

(On the fly)

27

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Supply Supplier

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Index lookup on sid)
Doesn’t matter if clustered or not

(On the fly)

(1) σ pno=2

(Index lookup on pno)
Assume: clustered

Physical Query Plan 3

(Use index)

(2)

(3)

(4)

(On the fly)

4 tuples

28

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

Supply Supplier

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Index lookup on sid)
Doesn’t matter if clustered or not

(On the fly)

(1) σ pno=2

(Index lookup on pno)
Assume: clustered

Physical Query Plan 3
Total cost
= 1 (1)
+ 4 (2)
+ 0 (3)
+ 0 (3)
Total cost ≈ 5 I/Os

(Use index)

(2)

(3)

(4)

(On the fly)

4 tuples

29

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 10

CSE544 - Spring, 2012 30

Simplifications

•  In the previous examples, we assumed
that all index pages were in memory

•  When this is not the case, we need to
add the cost of fetching index pages
from disk

31

Lessons

1.  Need to consider several physical plan
–  even for one, simple logical plan

2.  No plan is best in general
–  need to have statistics over the data
–  the B’s, the T’s, the V’s

CSE544 - Spring, 2012

More Lessons

3.  The plan
depends a lot
on the
statistics of
the selection
predicates

[Chaudhuri]

The “prepare” statement must
choose a plan without knowing the
actual predicate values.
Discuss the Anatomy paper

CSE544 - Spring, 2012 33

Query Optimization

Three major components:

1.  Search space

2.  Plan enumeration algorithms

3.  Cardinality and cost estimation

History of Query Optimization

•  First query optimizer: System R, IBM,1979

•  It had all three components in place

•  You will see often references to System R

•  See Section 15.6 in the book
CSE544 - Spring, 2012 34

1. Search Space

CSE544 - Spring, 2012 35

1. Search Space

•  This is the set of all alternative plans
that are considered by the optimizer

•  Defined by the set of algebraic laws and
the set of plans used by the optimizer

CSE544 - Spring, 2012 36

Relational Algebra Laws:
Joins

CSE544 - Spring, 2012 37

Commutativity : R ⋈ S = S ⋈ R
Associativity: R ⋈ (S ⋈ T) = (R ⋈ S) ⋈ T
Distributivity: R ⨝ (S ∪ T) = (R ⨝ S) ∪ (R ⨝ T)

Outer joins get more complicated

Left-Deep Plans and
Bushy Plans

CSE544 - Spring, 2012 38

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

System R considered only left deep plans,
and so do some optimizers today

Relational Algebra Laws:
Selections

CSE544 - Spring, 2012 39

R(A, B, C, D), S(E, F, G)

σ F=3 (R ⨝ D=E S) = ?
σ A=5 AND G=9 (R ⨝ D=E S) = ?

Relational Algebra Laws:
Selections

CSE544 - Spring, 2012 40

R(A, B, C, D), S(E, F, G)

σ F=3 (R ⨝ D=E S) = R ⨝ D=E (σ F=3 (S))
σ A=5 AND G=9 (R ⨝ D=E S) =σA=5(R) ⨝D=E σG=9(S)

Group-by and Join

CSE544 - Spring, 2012 41

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) = ?

R(A, B), S(C,D)

Group-by and Join

CSE544 - Spring, 2012 42

γA, sum(D)(R(A,B) ⨝ B=C S(C,D)) =
 γA, sum(D)(R(A,B) ⨝ B=C (γC, sum(D)S(C,D)))

These are very powerful laws.
They were introduced only in the 90’s.

R(A, B), S(C,D)

Laws Involving Constraints

CSE544 - Spring, 2012 43

Foreign key

Πpid, price(Product ⨝cid=cid Company) = ?

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Laws Involving Constraints

CSE544 - Spring, 2012 44

Foreign key

Need a second constraint for this law to hold. Which ?

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product)

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Why such queries occur

CSE544 - Spring, 2012 45

CREATE VIEW CheapProductCompany
 SELECT *
 FROM Product x, Company y
 WHERE x.cid = y.cid and x.price < 100

SELECT pname, price
FROM CheapProductCompany

SELECT pname, price
FROM Product
WHERE price < 100

Foreign key

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

46

Law of Semijoins

Recall the definition of a semijoin:
•  R ⋉ S = Π A1,…,An (R ⨝ S)
•  The schemas are:

–  Input: R(A1,…An), S(B1,…,Bm)
– Output: T(A1,…,An)

•  The law of semijoins is:

CSE544 - Spring, 2012

R ⨝ S = (R ⋉ S) ⨝ S

Laws with Semijoins

•  Very important in parallel databases
•  Often combined with Bloom Filters (my

plan is to discuss them in the next
lecture)

•  Read pp. 747 in the textbook

CSE544 - Spring, 2012 47

Pruning the Search Space

•  Prune entire sets of plans that are
unpromising

•  The choice of partial plans influences how
effective we can prune

CSE544 - Spring, 2012 48

Complete Plans

CSE544 - Spring, 2012 49

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

If the algorithm
enumerates
complete plans,
then it is difficult
to prune out
unpromising
sets of plans.

R(A,B)
S(B,C)
T(C,D)

Bottom-up Partial Plans

50

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

If the algorithm enumerates
partial bottom-up plans,
then pruning can be done
more efficiently

Top-down Partial Plans

51

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40 SELECT *

FROM R
WHERE R.A < 40

Same here.

CSE544 - Spring, 2012 52

Query Optimization

Three major components:

1.  Search space

2.  Algorithm for enumerating query plans

3.  Cardinality and cost estimation

2. Algorithm for enumerating
query plans

CSE544 - Spring, 2012 53

2. Plan Enumeration Algorithms

•  System R
– Join reordering – dynamic programming
– Access path selection
– Bottom-up; simple; limited

•  Modern database optimizers
– Rule-based: database of rules (x 100s)
– Dynamic programming
– Top-down; complex; extensible
We won’t discuss them. See book for some more details

Access Path Selection

CSE544 - Spring, 2012 55

Supplier(sid,sname,scategory,scity,sstate)

V(Supplier,city) = 1000
V(Supplier,scategory)=100 Clustered index on scity

Unclustered index on (scategory,scity)

B(Supplier) = 10k
T(Supplier) = 1M

Access plan options:
•  Table scan: cost = ?
•  Index scan on scity: cost = ?
•  Index scan on scategory,scity: cost = ?

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier)

Access Path Selection

CSE544 - Spring, 2012 56

Supplier(sid,sname,scategory,scity,sstate)

V(Supplier,city) = 1000
V(Supplier,scategory)=100 Clustered index on scity

Unclustered index on (scategory,scity)

B(Supplier) = 10k
T(Supplier) = 1M

Access plan options:
•  Table scan: cost = 10k = 10k
•  Index scan on scity: cost = 10k/1000 = 10
•  Index scan on scategory,scity: cost = 1M/1000*100 = 10

σscategory = ‘organic’ ∧ scity=‘Seattle’ (Supplier)

CSE544 - Spring, 2012 57

Query Optimization

Three major components:

1.  Search space

2.  Algorithm for enumerating query plans

3.  Cardinality and cost estimation
Next lecture

