CSE544: Principles of Database Systems

Query Optimization

Announcements

- Project proposals due on Sunday, April 22
- Paper review for Wednesday
- Homework 2:
 - Questions for Part A \rightarrow Paris
 - Questions for Part B \rightarrow Dan
 - Questions for Part C \rightarrow you

Outline

• Finish Query Execution

• Chapter 15 in the textbook

Query Execution: Final Thoughts

Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELECT *

FROM Movie

WHERE id = '12345'

SELECT * FROM Movie WHERE year = '1995' B(Movie) = 10kT(Movie) = 1M

What is your estimate of the I/O cost ?

Index Based Selection

Recall IMDB; assume indexes on Movie.id, Movie.year

SELECT *

FROM Movie

WHERE id = '12345'

B(Movie) = 10kT(Movie) = 1M

Answer: 1

SELECT *

FROM Movie

WHERE year = '1995'

Answer:

- Clustered index \rightarrow 10k/100 =100
- Unclustered index → 1M/100 = 10k assuming ≈ 100 years=V(Movie, year)

Cost formula for Index Based Selection

Selection on equality: $\sigma_{A=v}(R)$

- Clustered index on A: B(R)/V(R,A)
- Unclustered index : T(R)/V(R,A)

Rule of thumb: don't build unclustered indexes when V(R,A) is small !

Index Based Join

- R ⋈_{A=B} S
- Assume S has an index on B

for each tuple r in R do fetch tuples s in S using the index S(B) output (r,s)

Cost formula for Index Based Join

Cost of $R \bowtie_{A=B} S$:

- If index is clustered: B(R) + T(R)B(S)/V(S,B)
- If unclustered: B(R) + T(R)T(S)/V(S,B)

Summary of Query Execution Algorithms

- Join ⋈; Group+aggregate γ
 - Hash-based algorithms
 - Merge-sort based algorithms
 - Cost = 3B(R) + 3B(S)
- Join R ⋈_{A=B} S:
 - Nested Loop join: $cost = B(R) + T(R)^*B(S)$
 - Block nested loop join: cost = B(R) + B(R)*B(S)/M
 - Index based:
 - Clustered: cost = $B(R) + T(R)^*B(S)/V(S,B)$
 - Unclustered: cost = $B(R) + T(R)^{T(S)/V(S,B)}$

Combining Operators

Two options:

• Materialize intermediate results

• Pipeline intermediate results

Materialize

Materialize

```
Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join
```

• What is the total cost of the plan ?

– Cost =

• How much main memory do we need ?

– M =

Materialize

```
Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join
```

- What is the total cost of the plan ?
 Cost = B(R)+B(S)+B(T)+B(U)+2B(V1)+2B(V2)
- How much main memory do we need ?

 $- M = \max(B(S), B(T), B(U))$

Pipeline

HashTable1 \leftarrow S HashTable2 \leftarrow T HashTable3 \leftarrow U repeat read(R, x) $y \leftarrow$ join(HashTable1, x) $z \leftarrow$ join(HashTable2, y) $u \leftarrow$ join(HashTable3, z) write(Answer, u)

Pipeline

```
Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join
```

• What is the total cost of the plan ?

– Cost =

• How much main memory do we need ?

– M =

Pipeline

```
Given B(R), B(S), B(T), B(U)
Assume we do main-memory hash-join
```

- What is the total cost of the plan ?
 Cost = B(R)+B(S)+B(T)+B(U)+2B(V1)+2B(V2)
- How much main memory do we need ?
 M = B(S) + B(T) + B(U) (max(B(S), B(T), B(U)))

Query Optimization

Query Optimization Algorithm

- Enumerate alternative plans
- Compute estimated cost of each plan
 - Compute number of I/Os
 - Compute CPU cost
- Choose plan with lowest cost
 - This is called cost-based optimization

Example

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid, pno</u>, quantity)

- Some statistics
 - T(Supplier) = 1000 records
 - T(Supply) = 10,000 records
 - B(Supplier) = 100 pages
 - B(Supply) = 100 pages
 - V(Supplier,scity) = 20, V(Supplier,state) = 10
 - V(Supply,pno) = 2,500
 - Both relations are clustered
- M = 10

SELECT sname FROM Supplier x, Supply y WHERE x.sid = y.sid and y.pno = 2 and x.scity = 'Seattle' and x.sstate = 'WA' $\begin{array}{l} T(Supplier) = 1000 \\ T(Supply) = 10,000 \end{array}$

B(Supplier) = 100 B(Supply) = 100 V(Supplier,scity) = 20 V(Supplier,state) = 10 V(Supply,pno) = 2,500

Physical Query Plan 1

T(Supplier) = 1000T(Supply) = 10,000

B(Supplier) = 100 B(Supply) = 100 V(Supplier,scity) = 20 V(Supplier,state) = 10 V(Supply,pno) = 2,500

M = 10

Physical Query Plan 1

Simplifications

• In the previous examples, we assumed that all index pages were in memory

 When this is not the case, we need to add the cost of fetching index pages from disk

Lessons

- 1. Need to consider several physical plan
 - even for one, simple logical plan

- 2. No plan is best in general
 - need to have <u>statistics</u> over the data
 - the B's, the T's, the V's

More Lessons

3. The plan
depends a lot
on the
statistics of
the selection
predicates

The "prepare" statement must choose a plan without knowing the actual predicate values. Discuss the *Anatomy* paper

Query Optimization

Three major components:

1. Search space

- 2. Plan enumeration algorithms
- 3. Cardinality and cost estimation

History of Query Optimization

- First query optimizer: System R, IBM, 1979
- It had all three components in place
- You will see often references to System R

• See Section 15.6 in the book

1. Search Space

1. Search Space

• This is the set of all alternative plans that are considered by the optimizer

 Defined by the set of <u>algebraic laws</u> and the <u>set of plans</u> used by the optimizer

Relational Algebra Laws: Joins

Commutativity : Associativity: Distributivity: $R \bowtie S = S \bowtie R$ $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$ $R \bowtie (S \cup T) = (R \bowtie S) \cup (R \bowtie T)$

Outer joins get more complicated

Left-Deep Plans and Bushy Plans

System R considered only left deep plans, and so do some optimizers today

Relational Algebra Laws: Selections

R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R \bowtie_{D=E} S) = \sigma_{A=5 \text{ AND } G=9}(R \bowtie_{D=E} S) =$$

Relational Algebra Laws: Selections

R(A, B, C, D), S(E, F, G)

 $\sigma_{\mathsf{F=3}}(\mathsf{R} \bowtie_{\mathsf{D=E}} \mathsf{S}) = \mathsf{R} \bowtie_{\mathsf{D=E}} (\sigma_{\mathsf{F=3}}(\mathsf{S}))$ $\sigma_{\mathsf{A=5}\,\mathsf{AND}\,\mathsf{G=9}}(\mathsf{R} \bowtie_{\mathsf{D=E}} \mathsf{S}) = \sigma_{\mathsf{A=5}}(\mathsf{R}) \bowtie_{\mathsf{D=E}} \sigma_{\mathsf{G=9}}(\mathsf{S})$

Group-by and Join

R(A, B), S(C,D)

 $\gamma_{A, sum(D)}(R(A,B) \bowtie_{B=C} S(C,D)) =$

Group-by and Join

R(A, B), S(C,D)

 $\begin{array}{l} \gamma_{A, \text{ sum}(D)}(\mathsf{R}(A,B) \bowtie_{\mathsf{B}=\mathsf{C}} \mathsf{S}(\mathsf{C},\mathsf{D})) = \\ \gamma_{A, \text{ sum}(D)}(\mathsf{R}(A,B) \bowtie_{\mathsf{B}=\mathsf{C}} (\gamma_{\mathsf{C}, \text{ sum}(D)} \mathsf{S}(\mathsf{C},\mathsf{D}))) \end{array}$

These are very powerful laws. They were introduced only in the 90's.

$$\Pi_{pid, price}(Product \bowtie_{cid=cid} Company) = ?$$

$\Pi_{pid, price}$ (Product $\bowtie_{cid=cid}$ Company) = $\Pi_{pid, price}$ (Product)

Need a second constraint for this law to hold. Which ?

Law of Semijoins

Recall the definition of a semijoin:

- $\mathsf{R} \ltimes \mathsf{S} = \Pi_{\mathsf{A1},\ldots,\mathsf{An}} (\mathsf{R} \bowtie \mathsf{S})$
- The schemas are:
 - Input: R(A1,...,An), S(B1,...,Bm)
 - Output: T(A1,...,An)
- The law of semijoins is:

$$R \bowtie S = (R \ltimes S) \bowtie S$$

Laws with Semijoins

- Very important in parallel databases
- Often combined with Bloom Filters (my plan is to discuss them in the next lecture)
- Read pp. 747 in the textbook

Pruning the Search Space

 Prune entire sets of plans that are unpromising

• The choice of *partial plans* influences how effective we can prune

Complete Plans

CSE544 - Spring, 2012

Bottom-up Partial Plans

Top-down Partial Plans

Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

3. Cardinality and cost estimation

CSE544 - Spring, 2012

2. Algorithm for enumerating query plans

2. Plan Enumeration Algorithms

- System R
 - Join reordering dynamic programming
 - Access path selection
 - Bottom-up; simple; limited
- Modern database optimizers
 - Rule-based: database of rules (x 100s)
 - Dynamic programming
 - Top-down; complex; extensible

We won't discuss them. See book for some more details

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate)

σ_{scategory = 'organic' ∧ scity='Seattle'} (Supplier)

Clustered index on scity Unclustered index on (scategory,scity) B(Supplier) = 10k T(Supplier) = 1M

V(Supplier,city) = 1000 V(Supplier,scategory)=100

Access plan options:

- Table scan: cost = ?
- Index scan on scity: cost = ?
- Index scan on scategory, scity: cost =

?

Access Path Selection

Supplier(sid,sname,scategory,scity,sstate)

σ_{scategory = 'organic' ∧ scity='Seattle'} (Supplier)

Clustered index on scity Unclustered index on (scategory,scity) B(Supplier) = 10k T(Supplier) = 1M

V(Supplier,city) = 1000 V(Supplier,scategory)=100

Access plan options:

- Table scan:
- Index scan on scity:
- Index scan on scategory, scity:

cost =	10k	= 10k
cost =	10k/1000	= 10
cost =	1M/1000*100	= 10

Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

Next lecture

3. Cardinality and cost estimation