CSE544: Principles of Database Systems

Query Execution

Announcements

- Homework 2 is posted
- Part A = SimpleDB (takes you a few days)
- Part B = AWS, Hadoop (ditto)
- Part C = a simple question (takes you 20')
- Due on May 6 but start early!!
- Project M2 (Proposal) due April 22
- Define clear, limited goals! Don't try too much
- There is still time to switch

Outline

- Relational Algebra: Ch. 4.2
- Evaluating relational operators: Ch. 14 and Shapiro's paper

Relational Algebra

Steps of the Query Processor

 SQL queryParse \& Rewrite Query

SQL = WHAT

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid $=$ y.pid and y.cid $=y . c i d ~ a n d$ x.price > 100 and z.city = 'Seattle'

It's clear WHAT we want, unclear HOW to get it

Relational Algebra $=\mathrm{HOW}$

Relational Algebra $=\mathrm{HOW}$

The order is now clearly specified:

For each PRODUCT x Join with PURCHASE y Join with CUSTOMER z Select tuples with Price>100 and City='Seattle'
Project on the columns x.name, z.name Eliminate duplicates

Extended Algebra Operators

- Union U,
- Difference -
- Selection σ
- Projection Π
- Join \bowtie
- Rename ρ
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ

Relational Algebra: Sets v.s. Bags Semantics

- Sets: $\{a, b, c\},\{a, d, e, f\},\{ \}, \ldots$
- Bags: $\{a, a, b, c\},\{b, b, b, b, b\}, \ldots$

Relational Algebra has two semantics:

- Set semantics
- Bag semantics

Union and Difference

$\mathrm{R} 1 \cup \mathrm{R} 2$
$\mathrm{R} 1-\mathrm{R} 2$

What do they mean over bags?

What about Intersection?

- Derived operator using minus

$$
R 1 \cap \mathrm{R} 2=\mathrm{R} 1-(\mathrm{R} 1-\mathrm{R} 2)
$$

- Derived using join (will explain later)

$$
R 1 \cap R 2=R 1 \bowtie R 2
$$

Projection

- Eliminates columns

$\Pi_{A 1, \ldots, A n}(R)$

- Example:
- $\Pi_{\text {ssn, Name }}$ (Employee)
- Answer(SSN, Name)

Semantics differs over set or over bags

Employee

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

$\Pi_{\text {Name,Salary }}$ (Employee)

Name	Salary
John	20000
John	60000
John	20000

Name	Salary
John	20000
John	60000

Bag semantics

Set semantics

Which is more efficient?

Natural Join

$\mathrm{R} 1 \bowtie \mathrm{R} 2$

- Meaning: $\mathrm{R} 1 \bowtie \mathrm{R} 2=\Pi_{A}(\sigma(\mathrm{R} 1 \times \mathrm{R} 2))$
- Where:
- σ checks equality of all common attributes
$-\Pi_{A}$ eliminates the duplicate attributes

Natural Join

R

A	B
X	Y
X	Z
Y	Z
Z	V

S | \mathbf{B} | \mathbf{C} |
| :---: | :---: |
| \mathbf{Z} | U |
| V | W |
| z | V |

$\mathbf{R} \bowtie \mathbf{S}=$
$\Pi_{A B C}\left(\sigma_{R . B=S . B}(R \times S)\right)$

A	B	C
X	Z	U
X	Z	V
Y	Z	U
Y	Z	V
Z	V	W

CSE544-Spring, 2012

Natural Join

- Given schemas $R(A, B, C, D), S(A, C, E)$, what is the schema of $R \bowtie S$?
- Given $R(A, B, C), S(D, E)$, what is $R \bowtie S$?
- Given $R(A, B), S(A, B)$, what is $R \bowtie S$?

Theta Join

- A join that involves a predicate

$$
R 1 \bowtie_{\theta} R 2=\sigma_{\theta}(R 1 \times R 2)
$$

- Here θ can be any condition
- Example band join: $R \bowtie_{\text {R.A }-5<S . B} \wedge$ s.B<R.A+5S

Eq-join

- A theta join where θ is an equality

$$
R 1 \bowtie_{A=B} R 2=\sigma_{A=B}(R 1 \times R 2)
$$

- This is by far the most used variant of join in practice

Semijoin

$$
R \ltimes_{C} S=\Pi_{A 1, \ldots, A n}\left(R \bowtie_{C} S\right)
$$

- Where A_{1}, \ldots, A_{n} are the attributes of R
$R \ltimes_{C} S$ returns tuples in R that join with some tuple in S
- Duplicates in R are preserved
- Duplicates in S don't matter

Operators on Bags

- Duplicate elimination $\delta(R)=$ SELECT DISTINCT * FROM R
- Grouping $\gamma_{\mathrm{A}, \text { sum(B) }}(\mathrm{R})=$

SELECT A,sum(B) FROM R GROUP BY A

- Sorting $\tau_{A, B}(R)$

SELECT * FROM R ORDER BY A

Complex RA Expressions

Query Evaluation

Physical Operators

Each of the logical operators may have one or more implementations = physical operators

Will discuss several basic physical operators, with a focus on join

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)
Question in Class

Logical operator:
Product(pid, name,price) $\bowtie_{\text {pid=pid }}$ Purchase(pid,cid,store)
Propose three physical operators for the join, assuming the tables are in main memory:
1.
2.
3.

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Question in Class

Logical operator:
Product(pid, name,price) $\bowtie_{\text {pid=pid }}$ Purchase(pid,cid,store)
Propose three physical operators for the join, assuming the tables are in main memory:

1. Nested Loop Join
2. Merge join
3. Hash join

Product(pid, name, price) \quad Product(pid, name,price) $\bowtie_{\text {pid=pid }}$ Purchase(pid,cid,store) Purchase(pid, cid, store) Customer(cid, name, city)

1. Nested Loop Join

```
for x in Product do {
    for y in Purchase do {
    if (x.pid == y.pid) output(x,y);
    }
}
```

Product = outer relation
Purchase = inner relation
Note: sometimes terminology is switched

Would it be more efficient to choose Purchase=outer, Product=inner? What if we had an index on Product.pid?

Hash Tables

Separate chaining:
A (naïve) hash function:
$h(x)=x \bmod 10$

Product(pid, name, price) \quad Product(pid,name,price) $\bowtie_{\text {pid=pid }}$ Purchase(pid,cid,store) Purchase(pid, cid, store) Customer(cid, name, city)
2. "Classic Hash Join"
$\begin{aligned} & \text { Build } \\ & \text { phase }\end{aligned}$ for y in Purchase do insert(y);
for x in Product do \{ ylist = find(x.pid); for y in ylist do $\{$ output($\mathrm{x}, \mathrm{y}) ;$ \}

\}

Product $=$ outer relation
Purchase $=$ inner relation
Better: make Product=inner, Purchse=outer (why?)

Product(pid, name, price) \quad Product(pid,name,price) $\bowtie_{\text {pid=pid }}$ Purchase(pid,cid,store) Purchase(pid, cid, store) Customer(cid, name, city)

3. Merge Join (main memory)

Product1 = sort(Product, pid);
Purchase1= sort(Purchase, pid);
$\mathrm{x}=$ Product1.get_next(); y=Purchase1.get_next();
While (x!=NULL and y!=NULL) \{ case:
x.pid < y.pid: x = Product1.get_next(); x.pid > y.pid: $\quad y=$ Purchase1.get_next(); x. pid $==y . p i d\{$ output(x, y);

External Memory Algorithms

- Data is too large to fit in main memory
- Issue: disk access is 3-4 orders of magnitude slower than memory access
- Assumption: runtime dominated by \# of disk I/O's; will ignore the main memory part of the runtime

Cost Parameters

The cost of an operation = total number of I/Os
Cost parameters (used both in the book and by Shapiro):

- $B(R)=$ number of blocks for relation R
- $T(R)=$ number of tuples in relation R
- $\mathrm{V}(\mathrm{R}, \mathrm{A})=$ number of distinct values of attribute A
- $M=$ size of main memory buffer pool, in blocks

Facts: (1) $B(R) \ll T(R)$:
(2) When A is a key, $V(R, A)=T(R)$

When A is not a key, $V(R, A) \ll T(R)$

Ad-hoc Convention

- The operator reads the data from disk
- The operator does not write the data back to disk (e.g.: pipelining)
- Thus:

Any main memory join algorithms for $R \bowtie S$: Cost $=B(R)+B(S)$

The Iterator Model

Each operator implements this interface

- open()
- get_next()
- close()

Product(pid, name, price) Purchase(pid, cid, store) Customer(cid, name, city)

Main Memory Nested Loop Join

```
get_next( ) {
    repeat {
    y= Purchase.get_next( );
    if (y== NULL)
        { Purchase.close();
            x= Product.get_next( );
        if (x== NULL) return NULL;
            Purchase.open( );
            y= Purchase.get_next( );
        }
    until (x.cid == y.cid);
    return (x,y)
}
```

ALL operators need to be implemented this way !

Join Algorithms

- Nested Loop Joins - have seen already
- Merge Join
- Hash join (and variations)

External Sorting

- Problem: sort a file R of size $B(R)$ with memory M
- Will discuss only 2-pass sorting, when $B \leq M^{2}$

External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

Can increase to length 2M using "replacement selection" (How?)

External Merge-Sort: Step 2

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $\mathrm{M}(\mathrm{M}-1) \approx \mathrm{M}^{2}$

Assuming $\mathrm{B} \leq \mathrm{M}^{2}$ then we are done

```
If B > M M
why not merge
more than M runs
in one step?
```


Cost of External Merge Sort

- Read+write+read = 3B(R) (we don't count the final write)
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Application: Merge-Join

Join $R \bowtie S$

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

Partitioned Hash Join, or GRACE Join

$R \bowtie S$

How does it work?

Partitioned Hash Join, or GRACE Join

$R \bowtie S$

- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

The Idea of Hash-Based Partitioning

- Idea: partition a relation R into $\mathrm{M}-1$ buckets, on disk
- Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$

$$
\text { Assumption: } B(R) / M<=M \text {, i.e. } B(R)<=M^{2}
$$

Grace-Join

- Partition both relations using hash fn h: R tuples in partition i will only join S tuples in partition i.

Partitions
of R \& S

- Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, search for matches.

Grace Join

- Cost: 3B(R) $+3 \mathrm{~B}(\mathrm{~S})$
- Assumption: $\min (B(R), B(S))<=M^{2}$

Hybrid Hash Join

- What problem does it address?

Hybrid Hash Join

- What problem does it address?
- If $B(R) \leq M$ then we can use main memory hash-join: cost $=B(R)+B(S)$
- If $B(R)>\approx M$ then we must use Grace join: cost jumps to $3^{*} B(R)+3^{*} B(S)$

Hybrid Hash Join

- How does it work?

Hybrid Hash Join

- How does it work?
- Use B(R)/M buckets
- Since $B(R) / M \ll M$, there is enough space left in main memory: use it to store a few buckets
- Fuzzy math to make this work, but best done adaptively:
- Start by keeping all buckets in main memory
- When the remaining memory $(M-B(R) / M)$ fills up, spill one bucket to disk

