
1

CSE544: Principles of Database
Systems

Query Execution

CSE544 - Spring, 2012

Announcements

•  Homework 2 is posted
– Part A = SimpleDB (takes you a few days)
– Part B = AWS, Hadoop (ditto)
– Part C = a simple question (takes you 20’)
– Due on May 6 but start early!!

•  Project M2 (Proposal) due April 22
– Define clear, limited goals! Don’t try too much
– There is still time to switch

CSE544 - Spring, 2012 2

Outline

•  Relational Algebra: Ch. 4.2

•  Evaluating relational operators: Ch. 14
and Shapiro’s paper

CSE544 - Spring, 2012 3

Relational Algebra

CSE544 - Spring, 2012 4

Steps of the Query Processor

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

SQL = WHAT

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and z.city = ‘Seattle’

It’s clear WHAT we want, unclear HOW to get it

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Relational Algebra = HOW

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ	

cid=cid

Customer

Π	

σ	

T1(pid,name,price,pid,cid,store)

T2(. . . .)

T4(name,name)

Final answer

T3(. . .)

Temporary tables
T1, T2, . . .

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Relational Algebra = HOW

The order is now clearly specified:

For each PRODUCT x
 Join with PURCHASE y
 Join with CUSTOMER z
 Select tuples with Price>100
 and City=‘Seattle’
Project on the columns x.name, z.name
Eliminate duplicates

CSE544 - Spring, 2012 8

Extended Algebra Operators

•  Union ∪,
•  Difference -
•  Selection σ	

•  Projection Π	

•  Join ⨝
•  Rename ρ	

•  Duplicate elimination δ	

•  Grouping and aggregation γ	

•  Sorting τ	

 Relational
 Algebra

 Extended
 Relational
 Algebra

Relational Algebra:
Sets v.s. Bags Semantics

•  Sets: {a,b,c}, {a,d,e,f}, { }, . . .
•  Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two semantics:
•  Set semantics
•  Bag semantics

CSE544 - Spring, 2012 10

Union and Difference

What do they mean over bags ?

R1 ∪ R2
R1 – R2

CSE544 - Spring, 2012 11

What about Intersection ?

•  Derived operator using minus

•  Derived using join (will explain later)

R1 ∩ R2 = R1 – (R1 – R2)

R1 ∩ R2 = R1 ⨝ R2

CSE544 - Spring, 2012 12 What is the meaning under bag semantics?

Projection
•  Eliminates columns

•  Example:
–  Π SSN, Name (Employee)
–  Answer(SSN, Name)

Semantics differs over set or over bags

Π A1,…,An (R)

Π Name,Salary(Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000
John 20000

Employee

Name Salary
John 20000

John 60000

Bag semantics Set semantics

Which is more efficient?

Natural Join

•  Meaning: R1⨝ R2 = ΠA(σ(R1 × R2))

•  Where:
– σ checks equality of all common attributes
– ΠA eliminates the duplicate attributes

R1 ⨝ R2

CSE544 - Spring, 2012 15

Natural Join
A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝ S =
ΠABC(σR.B=S.B(R × S))

CSE544 - Spring, 2012 16

Natural Join

•  Given schemas R(A, B, C, D), S(A, C, E),
what is the schema of R ⨝ S ?

•  Given R(A, B, C), S(D, E), what is R ⨝ S ?

•  Given R(A, B), S(A, B), what is R ⨝ S ?

CSE544 - Spring, 2012 17

Theta Join

•  A join that involves a predicate

•  Here θ can be any condition
– Example band join: R ⨝R.A-5<S.B ∧ S.B<R.A+5 S

R1 ⨝θ R2 = σ θ (R1 × R2)

CSE544 - Spring, 2012 18

Eq-join

•  A theta join where θ is an equality

•  This is by far the most used variant of
join in practice

R1 ⨝A=B R2 = σA=B (R1 × R2)

CSE544 - Spring, 2012 19

Semijoin

•  Where A1, …, An are the attributes of R

R ⋉C S returns tuples in R that join with some tuple in S
•  Duplicates in R are preserved
•  Duplicates in S don’t matter

R ⋉C S = Π A1,…,An (R ⨝C S)

Note: the semijoin is an important notion; we will return to it

Operators on Bags
•  Duplicate elimination δ(R) =

•  Grouping γA,sum(B) (R) =

•  Sorting τA,B (R)	

SELECT DISTINCT *
FROM R

SELECT A,sum(B)
FROM R
GROUP BY A

SELECT *
FROM R
ORDER BY A

Complex RA Expressions

 Customer x Purchase y Customer z Product u

 σname=fred σname=gizmo

Π pid Π cid

y.cid=z.cid

y.pid=u.pid

x.cid=z.cid

γ u.name, count(*) Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT u.name, count(*)
FROM Customer x, Purchase y,
 Customer z, Product u
WHERE z.name=‘fred’
 and u.name=‘gizmo’
 and y.cid = z.cid
 and y.pid = u.pid
 and x.cid=z.cid
GROUP BY u.name

Query Evaluation

CSE544 - Spring, 2012 23

Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

Will discuss several basic physical operators,

with a focus on join

CSE544 - Spring, 2012 24

Question in Class
Logical operator:
Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store)

Propose three physical operators for the join, assuming the
tables are in main memory:

1. 
2. 
3. 

CSE544 - Spring, 2012 25

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Question in Class
Logical operator:
Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store)

Propose three physical operators for the join, assuming the

tables are in main memory:
1.  Nested Loop Join
2.  Merge join
3.  Hash join

CSE544 - Spring, 2012 26

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

1. Nested Loop Join
for x in Product do {
 for y in Purchase do {
 if (x.pid == y.pid) output(x,y);
 }
}

Product = outer relation
Purchase = inner relation
Note: sometimes
terminology is switched

Would it be more efficient to
choose Purchase=outer, Product=inner?
What if we had an index on Product.pid ?

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store)

Hash Tables
0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations on a hash table:

find(103) = ??
insert(488) = ??

2. “Classic Hash Join”
for y in Purchase do insert(y);

for x in Product do {
 ylist = find(x.pid);
 for y in ylist do { output(x,y); }
}

Build
phase

Probe
phase

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store)

Better: make Product=inner, Purchse=outer (why?)

Product = outer relation
Purchase = inner relation

3. Merge Join (main memory)
Product1= sort(Product, pid);
Purchase1= sort(Purchase, pid);
x=Product1.get_next(); y=Purchase1.get_next();

While (x!=NULL and y!=NULL) {
 case:
 x.pid < y.pid: x = Product1.get_next();
 x.pid > y.pid: y = Purchase1.get_next();
 x.pid == y.pid { output(x,y);
 y = Purchase1.get_next();
 }
}

Why ???

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store)

External Memory Algorithms

•  Data is too large to fit in main memory

•  Issue: disk access is 3-4 orders of
magnitude slower than memory access

•  Assumption: runtime dominated by # of
disk I/O’s; will ignore the main memory
part of the runtime

Cost Parameters
The cost of an operation = total number of I/Os
Cost parameters (used both in the book and by Shapiro):

•  B(R) = number of blocks for relation R
•  T(R) = number of tuples in relation R
•  V(R, A) = number of distinct values of attribute A
•  M = size of main memory buffer pool, in blocks

Facts: (1) B(R) << T(R):
 (2) When A is a key, V(R,A) = T(R)
 When A is not a key, V(R,A) << T(R)

Ad-hoc Convention

•  The operator reads the data from disk

•  The operator does not write the data
back to disk (e.g.: pipelining)

•  Thus:

Any main memory join algorithms for R ⋈ S: Cost = B(R)+B(S)

The Iterator Model
Each operator implements this interface

•  open()

•  get_next()

•  close()

CSE544 - Spring, 2012 34

Main Memory Nested Loop Join
open() {
 Product.open();
 Purchase.open();
 x = Product.get_next();
}

get_next() {
 repeat {
 y= Purchase.get_next();
 if (y== NULL)
 { Purchase.close();
 x= Product.get_next();
 if (x== NULL) return NULL;
 Purchase.open();
 y= Purchase.get_next();
 }
 until (x.cid == y.cid);
 return (x,y)
}

close() {
 Product.close();
 Purchase.close();
}

ALL operators need to be implemented this way !

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store)

Join Algorithms

•  Nested Loop Joins – have seen already

•  Merge Join

•  Hash join (and variations)

CSE544 - Spring, 2012 36

External Sorting

•  Problem: sort a file R of size B(R) with
memory M

•  Will discuss only 2-pass sorting, when B ≤ M2

CSE544 - Spring, 2012 37

External Merge-Sort: Step 1

•  Phase one: load M bytes in memory, sort

Disk Disk

. .

.
. . .

M

Main memory Runs of
length M

Can increase to length 2M using “replacement selection” (How?)

External Merge-Sort: Step 2

•  Merge M – 1 runs into a new run
•  Result: runs of length M (M – 1)≈ M2

Disk Disk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

Main memory

Assuming B ≤ M2 then we are done

If B > M2,
why not merge
more than M runs
in one step?

Cost of External Merge Sort

• Read+write+read = 3B(R)
(we don’t count the final write)

• Assumption: B(R) <= M2

CSE544 - Spring, 2012 40

Application: Merge-Join

Join R ⨝ S
•  Step 1a: initial runs for R
•  Step 1b: initial runs for S
•  Step 2: merge and join

CSE544 - Spring, 2012 41

Merge-Join

Main memory
Disk Disk

. .

.
. . .

Input M

Input 1

Input 2
. . . .

Output

M1 = B(R)/M runs for R
M2 = B(S)/M runs for S
Merge-join M1 + M2 runs;
need M1 + M2 ≤ M, or B(R) + B(S) ≤ M2

Partitioned Hash Join,
or GRACE Join

R ⨝ S

CSE544 - Spring, 2012 43

How does it work?

Partitioned Hash Join,
or GRACE Join

R ⨝ S
•  Step 1:

–  Hash S into M buckets
–  send all buckets to disk

•  Step 2
–  Hash R into M buckets
–  Send all buckets to disk

•  Step 3
–  Join every pair of buckets

CSE544 - Spring, 2012 44

The Idea of Hash-Based
Partitioning

•  Idea: partition a relation R into M-1 buckets, on disk
•  Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M

M main memory buffers Disk Disk

Relation R
OUTPUT

2 INPUT

1

hash function
h M-1

Partitions

1

2

M-1
. . .

1

2

B(R)

Assumption: B(R)/M <= M, i.e. B(R) <= M2

Grace-Join
•  Partition both relations

using hash fn h: R tuples
in partition i will only join S
tuples in partition i.

•  Read in a partition of R,
hash it using h2 (<> h!).
Scan matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash function
h M-1

Partitions

1

2

M-1
. . .

Grace Join

•  Cost: 3B(R) + 3B(S)
•  Assumption: min(B(R), B(S)) <= M2

CSE544 - Spring, 2012 47

Hybrid Hash Join

•  What problem does it address?

CSE544 - Spring, 2012 48

Hybrid Hash Join

•  What problem does it address?

•  If B(R) ≤ M then we can use main
memory hash-join: cost = B(R) + B(S)

•  If B(R) >≈ M then we must use Grace
join: cost jumps to 3*B(R) + 3*B(S)

CSE544 - Spring, 2012 49

Hybrid Hash Join

•  How does it work?

CSE544 - Spring, 2012 50

Hybrid Hash Join

•  How does it work?
•  Use B(R)/M buckets
•  Since B(R)/M << M, there is enough space left

in main memory: use it to store a few buckets
•  Fuzzy math to make this work, but best done

adaptively:
–  Start by keeping all buckets in main memory
–  When the remaining memory (M - B(R)/M) fills up,

spill one bucket to disk
CSE544 - Spring, 2012 51

