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CSE544: Principles of Database 
Systems 

Query Execution 
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Announcements 

•  Homework 2 is posted 
– Part A = SimpleDB  (takes you a few days) 
– Part B = AWS, Hadoop (ditto) 
– Part C = a simple question (takes you 20’) 
– Due on May 6 but start early!! 

•  Project M2 (Proposal) due April 22 
– Define clear, limited goals! Don’t try too much 
– There is still time to switch 
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Outline 

•  Relational Algebra: Ch. 4.2 

•  Evaluating relational operators: Ch. 14 
and Shapiro’s paper 
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Relational Algebra 
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Steps of the Query Processor 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 



SQL  = WHAT 

SELECT DISTINCT x.name, z.name 
FROM Product x, Purchase y, Customer z 
WHERE x.pid = y.pid and y.cid = y.cid and 
                x.price > 100 and z.city = ‘Seattle’ 

It’s clear WHAT we want, unclear HOW to get it 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Relational Algebra = HOW 

Product Purchase 

pid=pid 

price>100 and city=‘Seattle’ 

x.name,z.name 

δ	



cid=cid 

Customer 

Π	



σ	



T1(pid,name,price,pid,cid,store) 

T2( . . . .) 

T4(name,name) 

Final answer 

T3(. . . ) 

Temporary tables 
T1, T2, . . . 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Relational Algebra = HOW 

The order is now clearly specified: 

For each PRODUCT x 
   Join with PURCHASE y 
      Join with CUSTOMER z 
         Select tuples with Price>100  
                               and City=‘Seattle’ 
Project on the columns x.name, z.name 
Eliminate duplicates 
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Extended Algebra Operators 

•  Union ∪,  
•  Difference -  
•  Selection  σ	


•  Projection Π	


•  Join ⨝ 
•  Rename ρ	


•  Duplicate elimination δ	


•  Grouping and aggregation γ	


•  Sorting τ	



       Relational 
       Algebra 

       Extended 
       Relational 
       Algebra 



Relational Algebra: 
Sets v.s. Bags Semantics 

•  Sets: {a,b,c}, {a,d,e,f}, { }, . . . 
•  Bags: {a, a, b, c}, {b, b, b, b, b}, . . . 

Relational Algebra has two semantics: 
•  Set semantics 
•  Bag semantics 
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Union and Difference 

What do they mean over bags ? 

R1 ∪ R2 
R1 – R2 
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What about Intersection ? 

•  Derived operator using minus 

•  Derived using join (will explain later) 

R1 ∩ R2 = R1 – (R1 – R2) 

R1 ∩ R2 = R1 ⨝ R2 
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Projection 
•  Eliminates columns 

•  Example: 
–    Π SSN, Name (Employee) 
–    Answer(SSN, Name) 

Semantics differs over set or over bags 

Π A1,…,An (R) 



Π Name,Salary(Employee) 

SSN Name Salary 
1234545 John 20000 
5423341 John 60000 
4352342 John 20000 

Name Salary 
John 20000 
John 60000 
John 20000 

Employee 

Name Salary 
John 20000 

John 60000 

Bag semantics Set semantics 

Which is more efficient? 



Natural Join 

•  Meaning:  R1⨝ R2 = ΠA(σ(R1 × R2))  

•  Where: 
– σ checks equality of all common attributes 
– ΠA eliminates the duplicate attributes 

R1 ⨝ R2 
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Natural Join 
A B 
X Y 
X Z 
Y Z 
Z V 

B C 
Z U 
V W 
Z V 

A B C 
X Z U 
X Z V 
Y Z U 
Y Z V 
Z V W 

R S 

R ⨝ S = 
ΠABC(σR.B=S.B(R × S))  
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Natural Join 

•  Given schemas R(A, B, C, D), S(A, C, E), 
what is the schema of R ⨝ S ? 

•  Given R(A, B, C),  S(D, E), what is R ⨝  S  ? 

•  Given R(A, B),  S(A, B),  what is  R ⨝ S  ? 
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Theta Join 

•  A join that involves a predicate 

•  Here θ can be any condition 
– Example band join: R ⨝R.A-5<S.B ∧ S.B<R.A+5 S  

R1 ⨝θ R2   =  σ θ (R1 × R2) 
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Eq-join 

•  A theta join where θ is an equality 

•  This is by far the most used variant of 
join in practice 

R1 ⨝A=B R2   =  σA=B (R1 × R2) 
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Semijoin 

•  Where A1, …, An are the attributes of R 

R ⋉C S returns tuples in R that join with some tuple in S 
•  Duplicates in R are preserved 
•  Duplicates in S don’t matter 

R ⋉C S  = Π A1,…,An (R ⨝C S) 

Note: the semijoin is an important notion; we will return to it 



Operators on Bags 
•  Duplicate elimination δ(R) = 

•  Grouping γA,sum(B) (R) =  
 

•  Sorting τA,B (R)	



SELECT DISTINCT *  
FROM R 

SELECT  A,sum(B) 
FROM R 
GROUP BY A 

SELECT  * 
FROM R 
ORDER BY A 



Complex RA Expressions 

 
     Customer x        Purchase y             Customer z           Product u 

 σname=fred  σname=gizmo 

Π pid Π cid 

y.cid=z.cid 

y.pid=u.pid 

x.cid=z.cid 

γ u.name, count(*) Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 

SELECT u.name, count(*) 
FROM Customer x, Purchase y,  
            Customer z, Product u 
WHERE z.name=‘fred’  
     and u.name=‘gizmo’ 
     and y.cid = z.cid 
     and y.pid = u.pid  
     and x.cid=z.cid 
GROUP BY u.name 



Query Evaluation 
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Physical Operators 

Each of the logical operators may have one or 
more implementations = physical operators 

 
Will discuss several basic physical operators, 

with a focus on join 
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Question in Class 
Logical operator: 
Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store) 

Propose three physical operators for the join, assuming the 
tables are in main memory: 

1.    
2.    
3.    
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Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



Question in Class 
Logical operator: 
Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store) 
 
Propose three physical operators for the join, assuming the 

tables are in main memory: 
1.  Nested Loop Join 
2.  Merge join 
3.  Hash join 
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Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 



1. Nested Loop Join 
for x in Product do { 
   for  y in Purchase do { 
        if (x.pid == y.pid) output(x,y); 
   } 
}  

Product = outer relation 
Purchase = inner relation 
Note: sometimes  
terminology is switched 

Would it be more efficient to 
choose Purchase=outer, Product=inner? 
What if we had an index on Product.pid ? 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 

Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store) 



Hash Tables 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Separate chaining: 

h(x) = x mod 10 

A (naïve) hash function: 

503 103 

76 666 

48 

503 

Duplicates OK 
WHY ?? 

Operations on a hash table: 

find(103) = ?? 
insert(488) = ?? 



2. “Classic Hash Join” 
for y in Purchase do  insert(y); 
 
for x in Product do { 
   ylist = find(x.pid); 
   for y in ylist do { output(x,y); } 
} 

Build 
phase 

Probe  
phase 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 

Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store) 

Better: make Product=inner, Purchse=outer (why?) 

Product = outer relation 
Purchase = inner relation 



3.  Merge Join (main memory) 
Product1= sort(Product, pid); 
Purchase1= sort(Purchase, pid); 
x=Product1.get_next(); y=Purchase1.get_next(); 
 
While (x!=NULL and y!=NULL) { 
    case: 
       x.pid < y.pid:    x = Product1.get_next( ); 
       x.pid > y.pid:    y = Purchase1.get_next(); 
       x.pid == y.pid { output(x,y); 
                                   y = Purchase1.get_next(); 
                                  } 
} 

Why ??? 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 

Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store) 



External Memory Algorithms 

•  Data is too large to fit in main memory 

•  Issue: disk access is 3-4 orders of 
magnitude slower than memory access 

•  Assumption: runtime dominated by # of 
disk I/O’s;  will ignore the main memory 
part of the runtime 



Cost Parameters 
The cost of an operation = total number of I/Os 
Cost parameters (used both in the book and by Shapiro): 

•  B(R) = number of blocks for relation R 
•  T(R) = number of tuples in relation R 
•  V(R, A) = number of distinct values of attribute A 
•  M = size of main memory buffer pool, in blocks 

Facts: (1) B(R) << T(R): 
 (2) When A is a key, V(R,A) = T(R) 
      When A is not a key, V(R,A) << T(R) 



Ad-hoc Convention 

•  The operator reads the data from disk 

•  The operator does not write the data 
back to disk (e.g.: pipelining) 

•  Thus: 

Any main memory join algorithms for R ⋈ S: Cost = B(R)+B(S)  



The Iterator Model 
Each operator implements this interface 

•  open() 

•  get_next() 

•  close() 
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Main Memory Nested Loop Join 
open( ) { 
   Product.open( ); 
   Purchase.open( );  
   x = Product.get_next( );  
} 

get_next( ) { 
   repeat {  
      y= Purchase.get_next( ); 
      if (y== NULL)  
         { Purchase.close(); 
            x= Product.get_next( ); 
            if (x== NULL) return NULL; 
            Purchase.open( ); 
            y= Purchase.get_next( ); 
          } 
   until (x.cid == y.cid); 
   return (x,y) 
} 

close( ) { 
   Product.close( ); 
   Purchase.close( );   
} 

ALL operators need to be implemented this way ! 

Product(pid, name, price) 
Purchase(pid, cid, store) 
Customer(cid, name, city) 

Product(pid,name,price) ⨝pid=pid Purchase(pid,cid,store) 



Join Algorithms 

•  Nested Loop Joins – have seen already 

•  Merge Join 

•  Hash join (and variations) 
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External Sorting 

•  Problem: sort a file R of size B(R) with 
memory M 

•  Will discuss only 2-pass sorting, when B ≤ M2 
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External Merge-Sort: Step 1 

•  Phase one: load M bytes in memory, sort 

Disk Disk 

. . 

. 
. . . 

 
M 

Main memory Runs of 
length M 

Can increase to length 2M using “replacement selection” (How?) 



External Merge-Sort: Step 2 

•  Merge M – 1 runs into a new run 
•  Result: runs of length M (M – 1)≈ M2 
 

Disk Disk 

. . 

. 
. . . 

Input M 

Input 1 

Input 2 
. . . . 

Output 

Main memory 

Assuming B ≤ M2  then we are done 

If B > M2,  
why not merge  
more than M runs  
in one step? 



Cost of External Merge Sort 

• Read+write+read = 3B(R) 
(we don’t count the final write) 

• Assumption: B(R) <= M2 
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Application: Merge-Join 

Join R ⨝ S 
•  Step 1a: initial runs for R 
•  Step 1b: initial runs for S 
•  Step 2: merge and join 
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Merge-Join 

 

Main memory 
Disk Disk 

. . 

. 
. . . 

Input M 

Input 1 

Input 2 
. . . . 

Output 

M1  = B(R)/M runs for R 
M2  = B(S)/M runs for S 
Merge-join M1  + M2  runs;  
need M1  + M2 ≤ M, or B(R) + B(S) ≤ M2 



Partitioned Hash Join, 
or GRACE Join 

R ⨝ S 
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How does it work? 



Partitioned Hash Join, 
or GRACE Join 

R ⨝ S 
•  Step 1: 

–  Hash S into M buckets 
–  send all buckets to disk 

•  Step 2 
–  Hash R into M buckets 
–  Send all buckets to disk 

•  Step 3 
–  Join every pair of buckets 
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The Idea of Hash-Based 
Partitioning 

•  Idea: partition a relation R into M-1 buckets, on disk 
•  Each bucket has size approx. B(R)/(M-1) ≈ B(R)/M 

M main memory buffers Disk Disk 

Relation R 
OUTPUT 

2 INPUT 

1 

hash function 
h M-1 

Partitions 

1 

2 

M-1 
. . . 

1 

2 

B(R) 

Assumption:     B(R)/M <= M,   i.e. B(R) <= M2 



Grace-Join 
•  Partition both relations 

using hash fn h:  R tuples 
in partition i will only join S 
tuples in partition i. 

•  Read in a partition of R, 
hash it using h2 (<> h!). 
Scan matching partition 
of S, search for 
matches. 

Partitions 
of R & S 

Input buffer 
for Ri 

Hash table for partition 
Si ( < M-1 pages) 

B main memory buffers Disk 

Output  
 buffer 

Disk 

Join Result 

hash 
fn 
h2 

h2 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash function 
h M-1 

Partitions 

1 

2 

M-1 
. . . 



Grace Join 

•  Cost: 3B(R) + 3B(S) 
•  Assumption: min(B(R), B(S)) <= M2 
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Hybrid Hash Join 

•  What problem does it address? 
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Hybrid Hash Join 

•  What problem does it address? 

•  If B(R) ≤ M then we can use main 
memory hash-join: cost = B(R) + B(S) 

•  If B(R) >≈ M then we must use Grace 
join: cost jumps to 3*B(R) + 3*B(S) 
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Hybrid Hash Join 

•  How does it work? 
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Hybrid Hash Join 

•  How does it work? 
•  Use B(R)/M buckets 
•  Since B(R)/M << M, there is enough space left 

in main memory: use it to store a few buckets 
•  Fuzzy math to make this work, but best done 

adaptively: 
–  Start by keeping all buckets in main memory 
–  When the remaining memory (M  - B(R)/M) fills up, 

spill one bucket to disk 
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